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Monomial G-posets and their Lefschetz invariants
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Abstract

Let G be a finite group, and C be an abelian group. We introduce the notions of
C-monomial G-sets and C-monomial G-posets, and state some of their categorical
properties. This gives in particular a new description of the C-monomial Burn-
side ring Bco(G). We also introduce Lefschetz invariants of C-monomial G-posets,
which are elements of Bo(G). These invariants allow for a definition of a gener-
alized tensor induction multiplicative map Ty x : Bo(G) — Be(H) associated to
any C-monomial (G, H)-biset (U, \), which in turn gives a group homomorphism
Bco(G)* — Be(H)™ between the unit groups of C-monomial Burnside rings.
AMS Classification: 06A11, 19A22, 20J15
Keywords: Burnside ring, monomial, tensor induction, Lefschetz invariant

1 Introduction

Let GG be a finite group, and C' be an abelian group. In this work, we first introduce the
notion of C'-monomial G-set: this is a pair (X, [) consisting of a finite G-set X, together
with a functor from the transporter category X of X , to the the groupoid es with one
object and automorphism group C. The C-monomial G-sets form a category « M G-set,
and we show that it is equivalent to the category «F'G-set of C-fibred G-sets considered
by Barker ([1]). In particular, the C-monomial Burnside ring B¢ (G) introduced by Dress
([5]) is isomorphic to the Grothendieck ring of the category M G-set.

We extend these definitions to the notion of C'-monomial G-poset: this is a pair (X, [)
consisting of a finite G-poset X, and a functor [ from the transporter category X to oC.
We associate to each such pair (X,[) a Lefschetz invariant A(x lying in Bo(G). We
show that any element of B¢ (G) is equal to the Lefschetz invariant of some (non unique)
C-monomial G-poset.

We also introduce the category M G-poset of C-monomial G-posets, and show that
there are natural functors of induction Indff : cM H-poset — oM G-poset and of restric-
tion Resg : cMG-poset — M H-poset, whenever H is a subgroup of G. These functors
are compatible with the construction of Lefschetz invariants.

We extend several classical properties of the Lefschetz invariants of G-posets to Lef-
schetz invariants of C-monomial G-posets (the classical case being the case where C' is
trivial).

We next turn to the construction of generalized tensor induction functors

Ty : cMG-poset — oM H-poset
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associated, for arbitrary finite groups G and H, to any C-monomial (G, H)-biset (U, \).
We show that these functors induce well defined tensor induction maps

7;]’)\ : Bc(G) — Bc(H),

which are not additive in general, but multiplicative and preserve identity elements. In
particular, we get induced group homomorphisms between the corresponding unit groups
of monomial Burnside rings, similar to those obtained by Carman (J4]) for other usual
representation rings.

We show moreover that under an additional assumption, these tensor induction func-
tors and their associated tensor induction maps are well behaved for composition. This
yields to a (partial) fibred biset functor structure on the group of units of the monomial
Burnside ring.

2 The monomial Burnside ring

Let G be a finite group and C' be an abelian group which is noted multiplicatively. We
denote by G-set the category of finite G-sets (with G-equivariant maps as morphisms),
and B(G) the usual Burnside ring of G, i.e. the Grothendieck ring of G-set for relations
given by disjoint union decompositions of finite G-sets.

2.1 The category of C-fibred G-sets

A C-fibred G-set is defined to be a C-free (C' x G)-set with finitely many C-orbits. Let
o F'G-set denote the category of C-fibred G-sets where morphisms are (C'x G)-equivariant
maps. The coproduct of C-fibred G-sets X, Y is their coproduct X LY as sets, with the
obvious (C' x G)-action. If X and Y are C-fibred G-sets, there is a C-action on X x Y
defined by c(x,y) = (cx,c'y) for any ¢ € C and (x,y) € X x Y. The C-orbit of an
element (z,y) of X XY is denoted by x ® y and the set of C-orbits is denoted by X ® Y.
Moreover C' x G acts on X ® Y by

(c,9)(x®yY) = cgr @ gy

for any (¢,9) € C x G and x @ y € X ® Y. One checks easily that X ® Y is again a
C-fibred G-set, called the tensor product of X and Y.

We denote the isomorphism class of a C-fibred G-set X by [X]|. The C-monomial
Burnside ring Bo(G), introduced by Dress ([5]), is defined as the Grothendieck group
of the category of C-fibred G-sets, for relations given by [X] + [Y] = [X UY]. The ring
structure of Bo(G) is induced by [X] - [Y] = [X ® Y]. The identity element is the set
C with trivial G-action and the zero element is the empty set. If C' is trivial we recover
the ordinary Burnside ring of the group G.

Given a C-fibred G-set X, we denote the set of C-orbits on X by C\ X. The group G
acts on C\ X, and X is (C' x G)-transitive if and only if C\ X is G-transitive. If C\ X
is transitive as a G-set it is isomorphic to G/U for some U < G. There exists a group



homomorphism p : U — C such that if U is the stabilizer of the orbit C'z, then ax =
p(a)zx for all @ € U. Since the stabilizer (C' x G), of z in C' x G is equal to

(0% G)s = {(ul) " a) |a € U},

the C-fibred G-set X is determined up to isomorphism by the subgroup U and pu.

Conversely, let U be a subgroup of GG, and p : U — C be a group homomorphism.
Then we set U, = {(u(a)™,a) | @ € U}, and denote by [U, ul¢ the C-fibred G-set
(C x G)/U,. The pair (U, p) is called a C-subcharacter of G. We denote the set of
C-subcharacters by ch(G). The group G acts on ch(G) by conjugation. The G-set
ch(G) is a poset with the relation < defined by

(U,p) < (V,v) & U < Vand Resjjv =

for any (U, ) and (V,v) in ch(G).
As an abelian group we have

Bo(G)= P ZU.ue

(Um)€q ch(G)

where (V,v) runs over G-representatives of the C-subcharacters of G, details can be seen
in [1.

2.2 The category of C-monomial G-sets

Let G be a finite group and C' be an abelian group. Given a G-set X, we consider its
transporter category X whose objects are the elements of X and given z, y in X the set
of morphisms from x to y is

Homg(z,y) = {9 € G | g = y}.

Let o¢ denote the category with one object where morphisms are the elements of C' and
composition is multiplication in C'. Now we define C-monomial G-sets as follows.

Definition 1. A C-monomial G-set is a pair (X,[) consisting of a finite G-set X and
a functor [ : X — ec.

In otherwords, for each x,y € X and g € G such that gxr = y, we have an element
(g, z,y) of C, with the property that [(h,y, z)l(g, x,y) = (hg,z, z) if h € G and hy = z,
and [(1,z,x2) =1 for any x € X.

Let (X,I) and (Y, m) be C-monomial G-sets. If f : X — Y is a map of G-sets,
we slightly abuse notation and also denote by f : X — Y the obvious functor induced
by f. Now a map (f,A) : (X, ) = (Y, m) of C-monomial G-sets is a pair consisting of
amap f: X — Y of G-sets and a natural transformation A : [ — mo f. We denote by
cMG-set the category whose objects are C-monomial G-sets, morphisms are the maps
of C-monomial G-sets, and composition is the obvious one.



Let (X,I) and (X',l') be C-monomial G-sets. We define the disjoint union of C-
monomial G-sets as (X, [) U (X', I') = (X U X', [Ul') where X U X’ is the disjoint union
of G-sets and -

(Ul : XuX — e¢

is the functor such that

: eX
([I_l [/)(9721,Z2> = (9’21722) 21, %9
[,(ngl,Zg) 21, 29 c X/

for any 21, 2z € X U X’ such that gz; = 25 for some g € G.
The product of C-monomial G-sets (X, [), (X', l') is defined to be (X x X'/ [ x [)

where X x X’ is the product of G-sets and [ X I' : X X Y — e is the functor defined by

(tx ) (g, (z,2), (y,9)) = Ug, =, )l (g, 2",y

for g € G and (z,2'), (y,vy') € X x X’ such that g(z,2") = (y,v¢).

Our goal is to show that the categories ¢ M G-set and ¢ F'G-set are equivalent. For
this, we define a functor F': c M G-set — ¢ F'G-set as follows: given a C-monomial G-set
(X, 1), we set

F(X,I)=C x( X,

which is the direct product C'x X endowed with the (C'xG)-action defined by (k, g)(c, x) =
(kcl(g, z, gz), gz) for any (k,g) € C x G and (c,z) € C' x X.
Given a map (f,A) : (X,[) = (Y, m) of C-monomial G-sets, we define

F(f,N):Cxi X 5Cx,Y

by F(f,A)(c,z) = (cAy, f(2)) for any (c¢,z) € C' x; X. Then F(f,\) is a (C' x G)-map:
indeed, given (k,g) € C' x G and (¢,z) € C' x X, we have

(k, 9)F(f, M) (e, x) = (k, g) (A, f(2)) = (keham(g, f(2), f(gz)), fg2))
= (kehgal(g, @, g), f(gx)) = F(f, N (kel(g, z, gx), gx)
= F(f,\)((k,9)(c,x)).

It is clear that F': c M G-set — ¢ F'G-set is a functor.

Lemma 2. Let C be an abelian group and G be a finite group. Then the above functor
F:cMG-set — ¢ FG-set is an equivalence of categories.

Proof. We prove that F is fully faithful and essentially surjective. First we show that
F is essentially surjective. Given a C-fibred G-set X, let C'\ X be the set of C-orbits.

Clearly C\ X is a G-set. We define a functor [ : C/’\?( — o¢. Let Cx, Cy € C\X such
that C'gx = C'y for some g € G. Then there exists a unique ¢ € C such that gxr = cy.
We set [(g,Cz,Cy) = c¢. We have F(C\X,[) = C x; (C\X). Now choose a set [C'\ X]
of G-representatives of the G-action on C'\ X. Then for any = € X, there exits a unique
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Co, € [C\X] such that x € Co,. Since X is C-free, there exists a unique ¢, € C' such
that © = c,0,. We define a (C'xG)-map f : X — Cx;(C\X) such that f(x) = (¢;, Coy).
Then

(c,9)f(x) = (c,9)(ca, Cop) = (cacl(g, Cop, Cgoy), Cgoy) = (cac, Cgoy)

= (chxa ngx) — f((C, g)x)

So fis a (C' x G)-map and clearly an isomorphism. Thus, F'is essentially surjective.
Let (X, 1) and (Y, m) be C-monomial G-sets. We need to show that the map

F : Hom((X,1),(Y,m)) - Hom(F(X,1), F(Y,m))

induced by F' is surjective and injective. Let ¢ : C x| X — C X, Y be a (C x G)-
map. Given (1,2) € C x( X, let o(1,2) = (¢4, 2,) for (¢, 2,) € C x Y. Since ¢ is a
(C' x G)-map, we get
(,O(C, SL’) = (cha Zm)
and
0(1, 97) = (cam(g, 22, 92:) (9, 7, g7), g22)
for any c € C' and g € G. We define a map

(f,A) (X, ) = (Y,m)

such that f: X — Y is defined by f(z) = 2, and A : [ = mo f is defined by A, = ¢, for
any x € X. Clearly, f is a G-set map. Let x € X and g € G. Then

m(g, f(2), f(g2))\e = m(g, f(2), f(g7))ce = cam(g, f(2), f(g2))1 (g, 2, g) (g, 7, gz)

=g, 2, 97)cee = (g, 7, gT) Agor-

So A:l— mo f is a natural transformation and (f,A) is a map of C-monomial G-sets.
Thus, F(f,\) = ¢ and F' is surjective. The injectivity is clear, so F' is fully faithful. O

Proposition 3. Let G be a finite group. Then Bo(G) is isomorphic to the Grothendieck
ring of the category ¢ MG-set, for relations given by decomposition into disjoint unions
of C-monomial G-sets and multiplication induced by product of C-monomial G-sets.

Proof. We let BL(G) denote the Grothendieck ring of the category ¢MG-set. The
equivalence
F o MG-set — o FG-set

induces a bijection R

such that R
F([(X, [)}) — [C %, X]



for any C-monomial G-set (X,[). Now we show that F is a ring homomorphism. Let
(X1, 1) and (X, I3) be C-monomial G-sets. Then

ﬁ([(xl, )] + [(X3, [1)}) - ﬁ([(Xl, L) U (X, [1)]> - 13([()(1 U Xy, [ L [2)]>

= [C X Uly (Xl L Xg)} = [(Xl, [1) L (XQ, [2)] = [C X1 Xl] -+ [C X1, XQ]
For multiplicativity of F we define a map
f :C Xy xly (X1 X Xg) — (C X Xl) X (C X1, X2)

such that f(c, (z1,22)) = (c,21) X¢ (1,32). Let (k,g) € C x G and (¢, (z1,22)) €
C X1 xly (Xl X XQ) Then

(k, 9)f (e, (w1, 22)) = (k, g)((c, 1) % (1,22)) = ((k, g)(e, 1) e (1, 9)(1, 22))
= (kc[l(g,xl,gxl),g:cl) X ([2(g,:c2,gx2),g:c2)
= (kcli(g, 1, gr1)la(g, T2, g22), g1) X (1, g22)

(keli(g, 21, g1)la(g, 22, g22), (21, 22))

(

(k. g)(c, (z1,72))).

—~

So fis a (C x G)-map and obviously, f is a (C' x G)-isomorphism. Using f we get
F\([Xl, [1]'[X2, [2]) = F\([Xl XXQ, [1X[2]) = [CX[2><[2(X1 XXQ)] = [(CX[le)Xc(CX[QXg)}.

Thus, the desired result follows.
U

Remark 4. Let (X,[) be a C-monomial G-set. For all x € X, we get a character
[, : G, — C defined by I,(g9) = (g, x,x) for g € G,. On the other hand given a subgroup
U of G and a group homomorphism p : U — C we get a C-monomial G-set (G /U, [i)

where and i : G/U — e¢ is the functor such that given gU, kU € G /U if hgU = kU for
some g € G then fi(h, gU, kU) = u(k='hg). Moreover, U, ulc and [G/U, 1] represents
the same element in Be(QG).

2.3 The Lefschetz invariant attached to a monomial G-poset

A G-poset X is a partially ordered set (X, <) with a compatible G-action (that is gz < gy
whenever g € G and < y in X). A map of G-posets is a G-equivariant map of posets.
We denote by G-poset the category of finite G-posets obtained in this way.

There is an obvious functor ¢g : G-set — G-poset sending each finite G-set to the set
X ordered by the equality relation, and each G-equivariant map to itself.

The Lefschetz invariant attached to a finite G-poset, which is an element of the
Burnside ring of G has been introduced in [7] by Thévenaz. We will define similarly a
Lefschetz invariant attached to a C-monomial G-poset as an element of the C-monomial
Burnside ring of G.



2.3.1 The category of C-monomial G-posets

Given a G-poset X, we consider the category X whose objects are the elements of X
and given z, y in X the set of morphisms from x to y is

Homg(z,y) = {9 € G | gz < y}.
Now we define a C-monomial G-poset as follows.

Definition 5. A C-monomial G-poset is a pair (X, ) consisting of a G-poset X and a
functor 1: X — ec.

In otherwords, for each z,y € X and g € G such that gxr <y, we have an element
[(g,z,y) of C, with the property that [(h,y, 2)l(g, x,y) = l(hg,x, z) if h € G and hy < z,
and [(1,z,2) =1 for any x € X.

Let (X, [) and (Y, m) be C-monomial G-posets. A map of C'-monomial G-posets from
(X, 1) to (Y,m) is a pair (f,A) : (X,[) = (Y,m), where f: X — Y is a map of G-posets
and A : [ — mo f is a natural transformation. We denote the category of C-monomial G-
posets by ¢ M G-poset. Product and disjoint union of C-monomial G-posets are defined
as for C-monomial G-sets. When C' is the trivial group, we will identify the category
oM G-poset with G-poset.

Remark 6. If (X,[) is a C-monomial G-poset, then for any x € X we get a character
[, : G, — C defined by I,(g) = (g, x,x). Moreover, if x <y, then

Gy _ Gy
rescr g, le = resglng, by

because we have the following commutative diagram:

() =25 1(y)

[(g,w,w)l l[(g,yw)

[(I) [(1,x,y) [(y) :

Let H be a subgroup of G and (X, [) be a C-monomial H-set. We let G xg X to
be the quotient of G x X by the action of H. The set G x gz X is a G-set via the action
g(u,, ) = (gu,, x), for any g € G, and (u,, ) € G xy X. We define an order relation
<onGxgX as

Y(u,, z), (v,,y) € GxgX, (u,, ) < (v,,y) < Ihe€ H u=uvh, < hly.

Since we have

GXHX: I_I gXHX,
geG/H

it’s enough to consider the chains of type (u,, zo) < ... < (u,, z,) in G Xz X for some
u € G and a chain z¢ < ... < x,, in X for some n € N.
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Let (u,, x), (u,, y) € G xg X and g € G such that g(u,, =) < (u,, y). Then there
exists h € H such that gu = uh and ha < y. We define the induced C-monomial G-poset
Ind% (X, [) of (X, 1) as the pair (G xy X, G xg ) where Gxyl: G xyg X — o¢ is defined
by

(G X 0)(g, (u,yy ), (uy, y)) = Uh 2, y).

Now show that (G xg X, G x g [) is a C-monomial G-poset.
Let (u,, x), (u,, y), (u,, 2) € G xxg X such that
9(t,y ) < (U, y)

and
9, y) < (u,, 2)
for some g, ¢’ € G. Then there exist some h, h’ € H such that

gu =uh, gu=uh', hx <y, hy <z
Then t = W'h € H. Moreover ¢'gu = uh’h = ut and tx = h'hx < z. Now we get
(G XH [) (g/gv (uvH IL’), (U,H Z)) = [(t,l‘, Z) = [(h/hu xz, Z) = [<h/7y7 Z)[(h7 x7y>

= (G XH [) (glv (u7H SL‘), (u7H y))(G XH [) (ga (u7H y)? (u7H Z))

We also have (G xp 0)(1, (u,y ), (u,, z)) = 1 for any (u,, z) € G xg X. Thus G xpy
is a functor. So Ind% (X, [) is a C-monomial G-poset.

Given a C-monomial G-poset (Y, m), the restriction Res$ (Y, m) of (Y, m) is the pair
(Res$Y, res$m) where Res$Y is the restriction of the G-poset Y to H-poset and resGm

—

is the restriction of the functor m from Y to Res%Y.
Proposition 7. Let G be a finite group.

1. If Y is a finite G-poset, denote by 1y : Y — oc the trivial functor defined by
ly(g,z,y) =1 for any g € G and x,y € Y such that gx < y. Then the assignment
Y — (Y, 1ly) is a functor 7o from G-poset to ¢ M G-poset.

2. Let H be a subgroup of G. The assignment (X,1) — Ind$(X,1) is a functor
Ind¥ : ¢« M H-poset — ¢ MG-poset, and the assignment (Y, m) — Res% (Y, m) is a
functor Resg : cMG-poset — M H -poset.

3. Moreover the diagrams

nd$, Res
H-poset ————— G-poset and G-poset ————— H -poset

T,{ TGl ”’l THl
Ind$ Res€

oM H -poset — - M G-poset MG -poset —2 M H -poset

of categories and functors are commutative.



Proof. 1. Let f: X — Y be a map of G-posets. We set

Ta(f) = (f:15) : (X, 1x) = (V. 1y),

where 1 : 1x — 1y o f is defined by 1; = 1 for any x € X. Obviously (f,1y) is
a map of C-monomial G-posets and 74 is a functor.

2. Let (f,\): (X,I) = (Y,m) be a map of C-monomial H-posets. We set the pair
Ind% (f,\) = (G xy f,Gxg ) :(GxygX,Gxyl)—= (GxyY,Gxygm)
where
Gxgf:GxgX —=>GxgY
is defined by (G %y f)(u,, z) = (u,, f(z)) and

GXxgA:Gxgl—=(Gxygm)o(Gxyf)

is defined by (G xpy )\)(U,HI) = A\, for any (u,,z) € G xg X. It’s clear that
G x g fis a map of C-monomial G-posets. Now we show that G x gy A is a natural
transformation. Let (u,, x), (u,, y) € G xg X such that g(u,, z) < (u,,y) for
some g € G. Then gu = uh and hx < y for some h € H. Since A : [ - mo f is a
natural transformation, we get

(G XH m) <gv (u7H f(x))v (u7H f(y))) (G XH A)(u,Hm) = m(h, f(x)v f(y))kx

=\, z,y) = (G xg )\)(uva)(G X l) (g, (U, ), (u,, y))

Now consider (idy, id;) : (X,[) — (X, [) where idx : X — X is the identity map
on the H-set X and id;: [ — [o idy is the identity transformation. Then we get
Il’ldg(idx, ld[) = (ideHXa idGXH[).

Now let (f,A) : (X,I) = (Y,m) and (¢,5) : (Y,m) — (Z,¢t) be the maps of C-

monomial H-posets. We obviously have

(Gxpgt)o(Gxpf)=Gxg(tof)
and
(G XHﬁ)O(GXH)\):GXH(ﬂo)\).
Thus,
Indf (¢, 8) o Indf (f, ) = Ind5 ((t, ) o (f,N)).
So Indg : cM H-poset — - MG-poset is a functor.

Now let (f,A) : (X,I) = (Y, m) be a map of C-monomial G-posets. We set the
pair

Res%(f, \) = (flm, Alm) : (Res% X, resGl) — (Res%Y, resGm)
where f|g : Res$X — Res$Y is defined as the restriction of map of G-posets f
to map of H-posets and |z : resGl — resmo f|y is defined as the restriction of
A. Clearly, we get that Resg : cMG-poset — M H-poset is a functor.
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3. Let X be an H-poset. Commmutativity of the first diagram follows from
a0 Ind(X) = 10(Gxg X) = (Gxg X, lox,x) = d5 (X, 1x) = Ind$ oy (X).
Now let Y be a G-poset. Commutativity of the second diagram follows from
7 0 Res%(Y) = 7i(Res$Y) = (Res$Y, lReGy)
= (ResGY, resGly) = Res$ (Y, 1y) = Res$ o ().
U

Proposition 8. Let G be a finite group and H be subgroup of G. Then the functor
Ind% : ¢ M H-poset — «MG-poset is left adjoint to the functor (Y, m) — Res% (Y, m).

Proof. We prove that for any C-monomial H-poset (X, [) and any C-monomial G-poset
(Y, m) we have a bijection

Hom, ae (Ind§ (X, 1), (Y, m)) = Homam ((X, 1), Res% (Y, m))

natural in (X, [) and (Y, m).
We define

¢+ Hom, e (IndG (X, 1), (Y,m)) — Hom,aw ((X, 1), Res§(Y,m))

where
p: (£,0) = (e(f), e(V)

such that
o(f) : X — Res@(Y)

defined by ¢(f)(z) = f(1,, x) and
©(A) 1 I — resmo p(f)

defined by p(A). = A, ) for any z € X. Obviously, ¢(f) is a map of H-posets. We
need to show that

@A) : [ — resmo p(f)
is a natural transformation. Let z, y € X such that gz < y for some g € G. Then

m (b () (@), (1)) p(N)a = m (s f(L,, @), f(Ly ) A1)
= )\(17Hy)[(ha Z, y) = QO(A)y(G XH [) (h> (1’H I)a (]‘7H y))

We define an inverse map to ¢ as

0 : Hom,na (X, 1), Res;(Y,m)) — Hom, e (Ind% (X, 1), (Y, m))
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where
0: (1, B) — (0(v),0(8))

such that

defined as 0(¢)(u,,, ) = u)(x) and
0(B): G xgl—mob(v)
defined as

0(8) gy = m(w, P(), utp(2)) Be

for any (u,, ) € G xy X. Obviously, the map 6(¢)) is a map of G-posets. We need to
show that 0(f) is a natural transformation. Let (u,, ), (u,, y) € G Xy X such that
g(u,, ) < (u,, y) for some g € G. Then there exists some h € H such that gu = uh
and hx <y. Now, we have

m(g, () (u,, ), 0(0) (U, 5 ) 0(B) u, o) = W(g, wth(x), b (y) )m(u, (x), uip(x)) Be
= m(u, (y), ub(y))m(h, ¥(x), ¥ (y)) Be = m(u, ¥(y), up(y)) Byl(h, z,y)
= H(B)(H,Hy)(G X 1) (hv (uHx)7 (uvH y))

Clearly, ¢ and # are mutual inverse maps, and natural in (X, [) and (Y, m).

2.3.2 The Lefschetz invariant attached to a C'-monomial G-poset

Let (X,[) be a C-monomial G-poset. The Lefschetz invariant Axy of (X,I) is the
element of Bo(G) defined by

Axp= > (=" [Gapen Res® ()],

.....
,,,,,

for any 0 < i < n.
Let (X,I) be a C-monomial G-poset. Given n € N, let Sd,(X) denote the set of
chains in X with order n + 1. Obviously, the set Sd,,(X) is a G-set. Then (Sd,(X),[,)

is a C-monomial G-set where [,, : Sd,,(X) — e is the functor defined by

(g, 00 < oo < Ty Yo < oo < Yn) = (g, o, Yo)

11



for any zg < ... <z, and yo < ... < y,, in Sd,(X) such that
9o < oo <Tp) = Yo < ... < Yn

for some g € G.

Remark 9. Given a C-monomial G-poset (X, 1), we have the following isomorphism of
monomial G-sets:

(Sd,(X),1,) = | | (G/Girgens Resg? ()
20<...<xn€¢g Sdn (X)
for any n € N.

Proof. Let [G/Sd,(X)] be a set of representative of the G-action on Sd,(X). Let
x =19 < ... < x, be a chain in Sd, (X) then there exist some g, € G and a unique
o, € [G/Sd,(X)] such that x = g,0, where 0, = 0., < ... < 0,,,. We define

(£, A) : (Sdn(X),1,) — | | (G/Gapoons Res? (1)

20<...<xZn€q Sdn (X)

where f(z) = 9.G,, € G/G,, and \, = [(¢;}, 204y, 0,). Obviously,

fiSda(X) — | ] G/Gap,...om

20<...<Tn€g Sdn(X)

is an isomorphism of G-sets. We show that

A= | Resg;3 (o f

20<...<xn€GSdn (X)

is a natural transformation. Let x = 29 < ... < x,,, and y = yo < ... < ¥y, be sequences
in Sd,,(X) such that gz =y for some g € G. There exist a unique o,, 0, € [G/Sd,(X)]
such that z = ¢,0, and y = g¢,0, for some g, and g, in G. Then zy = g,0,, and
Yo = gyOy, SO Yo = gTo = §Yz0z,- Thus, by uniqueness o,, = oy, and so g, Y99, € G

—

Then setting r = Resgzo (Ieo) (9, f(2), f(y)) Az, we have that

O'xo‘

7= Lo (9 92 Gy 9y G 92, 020r0s Tag) = Luo (95990095 Gugs Ty
= (g, ' 99z, 20, 0)U(gy '+ GoTo» Ty
= (Gas Oaps 92020 ) UG, 9200 992020) UGy " 992020: 0a0) WGy s GaOags Oy
= (g, 20, Y0) 19y ', 9yTyor To)
= l(9, 7, y) Ay

12



By Remark [@] the Lefschetz invariant of a C-monomial G-set (X, [) can be written as

Axp= >, (=1)"[Gry.n Resg;g ()] =D (=1 (Sdu(X), 1)

r0<...<xn€gX neN
It follows that Ax = A, (x), where Ax the Lefschetz invariant of the G-poset X intro-
duced in [2].
We define similarly the reduced Lefschetz invariant of (X, I)

Axpy = Axp — (G, 16le
where 14 is the trivial character of G.

Lemma 10. Let G be a finite group and C' be an abelian group.

1. Let (X, 1) be a C-monomial G-set, viewed a a C-monomial G-poset ordered by the
equality relation on X. Then Ax, = [C x; X] in Bo(G).

2. Let (X,1) and (Y,m) be C-monomial G-posets. Then Axuyy = Ax, + Aym) @0
Bo(G).

3. Given C-monomial G-posets (X,[) and (Y, m), we have Axxy,xm) = Ax,nAym)

Proof. 1. and 2. are clear.
3. In the following proof using the inclusion

Beo(G) — Q ®z Be(Q)

we identify the elements of Bo(G) with their image in Q ®z Be(G). We start with
rearranging the chains in X x Y as in the proof of Lemma 11.2.9 in [2]. Let n € N.
Given a chain z = 2y < ... < z, in X X Y projection of z on X is denoted by zx and on
Y is denoted by zy. Then zx is a chain in X with order ¢ + 1 for some ¢ < n and zy is
a chain in Y with order j + 1 for some 5 < n such that ¢ + 7 = n. Let s; be the chain
so < ... < s; and ¢; be the chain {y < ... <?;. Now

n Gz n‘GZ| Gz
Mpwapam = D, (FU'[Ga Resg? (L))o= D (Z)" 15710 Resg? (L)l
neN, neN,
2€G Sdp (X XY) 2€ Sdn (X XY)
- Z sy
1,7EN
8, €X
ey
where
n|G§z mG§| Gs G
Lo = D (I [Ga N Gy Resg (1) Res (m)],
neN

2€Sdn (X XY ):zx=s;, 2y =t

13



|G§i N G§]| Gs Gt n
- =@ Gy, N Gy, Res (L) Resg,’ (M), D>, (=1
neN

2€Sdn (X XY):zx=s,, 2y =t;

Gso

|Gy, NGy | . L
=———2[G, N Gy, Resg (Isy) Resgzj (myy)] (=1

|Gl

Now,

1G4 NGy s t
A(xxyixm) = Z (—1)Z+]Tj [Gs, N G, Resg;([so) Resg; (mto)]G.
i,jEN

$;€X
t,ey

On the other hand

Gs ] Gy
Axohom = D (1[G, Resg(I,)] D (=1 [Gy,, Res,” (my))]
ieN jeN
s;,€6X t,eqY

; |G§Z G£| Gs G
= Z (_1)Z+]T2] [G§Z N thj, ReSG;j ([50) ReSgG;? (gmto)] G
i JEN
slex
ﬁjEY
Gingng

_ _1)i+i
ST TN

Gs 9IG
|:G§i N gG£j> ReSG; ([so) Reng;‘; (gmto)} a
4,JEN
s,€X
tjGY

geG
i .|G§iﬂgG§_| G 9IG
= D (U G 176y, Resg ! (L) Resgy (')
2,JEN
s.€X

=

tEY
geG

G NGy \
:ZPWiﬁﬁ@Ww%WMQ%m%me;

gt;

i |Gs, NGy | c. G
— Z(_l) +j - (G, NG, ResG;([so)ResG;(mto)]G.
i,jEN

Thus, A(XxY,[xm) = A(X,[)A(Y,m)-
U

The first assertion of Lemma [I0 tells us that every positive element of Bo(G) is
in of the form A(x, for some C-monomial G-poset (X,[). Now consider the poset
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X ={a,b,c,d, e} with the ordering {a < ¢,a < d,a < e,b < ¢,b<d,b<e}. Consider
trivial G-action on X. Then A, (x) = —1p,(c). So as a consequence of Lemma [0 we
get the following corollary.

Corollary 11. Any element of the monomial Burnside ring can be expressed as the
Lefschetz invariant of some (non unique) monomial G-poset.

Proposition 12. Let H be a subgroup of G. Given a C-monomial H-poset (X,I), we
have

Indg(A(X,l)) = Alndg(x,[)-
Proof. Since

Indf (Agxn) = Y (=1)" Indf (Sda(X), 1),

neN
we need to show that there exists a C-monomial G-set isomorphism between

(G i 8d,(X), G xy 1)
and
(8dn(G xa X), (G xp 1))

for any n € N.
We define

(fu, i) : (G xp1 Sdn(X), G x1 1) = (Sdu(G g X), (G %11 1))

where
such that
fo(tyy o < oo < 1) = (U, T0) < o < (U, T))
for any chain (u,, 2o < ... < x,) in G xg Sd,(X).
Let (ug,, z0) < ... < (tn,, ®,) be a chain in Sd,,(G x g X). There exist some h; € H
such that w;h; = u; 1 and h;lxi < x;q1 forall 0 <i <n—1. Then
fn(UO,H Ty < hol’l < ... < ho...hn_ll’n) = (U(),H ZL’Q) <. < (un,H l’n)

Obviously, f, is a map of G-sets and injective.
Now, we show that G xy [,, = (G Xy ), o f,. We consider an element k& € G, and
chains (u,, xo < ... < 2,) in G xg Sd,(X) such that

k(u,, xo < ... < xp) = (U, Yo < oo < Yn)-
There exists some h € H such that ku = vh and hx; = y; for all 0 < i < n. Then

(G >y D)y (ks fo(uyy 2o < oo < @), fa(vyy Yo < oo < Un))

= (G xy [)n(k;, (U o) < oo < (Usyy Tn)s (U, Yo) < oo < (0, yn))
=L(h,z0 < ... <Tp,Yo < ... <Yp)

= (G xpy [n)(k;, (U o < oo < Tp),s (U, Yo < oo < yn))

15



Let (X,[I) be a G-poset and let € X. Then the pairs (]z,-[x, [-,) and (]-, z[x, [**)
are C-monomial G -posets where

. [x={ye X[z <y}, | olx={yeX]|y<uz}

which are G -posets and I-, : |z, [x — oc and [<* : |- z[x — e¢ are the restrictions of
the functor I.

Lemma 13. Let (X,[) be a monomial G-poset. We have

A(X,[) = — Z Indgx ([GI, [x]Gx . K]%'[X)'
z€|G/X]

Proof.

Ay = D (—1)"[Gury oz Res” . (Ia)]

20<...<Tn€ X

-y S ()" [Crorrs Res ()]

xOEGX m1<...<mn€GX:xo<m1

= Z Il’ldgxo Z (—1)” [Gmo ..... T Resgzg on ([xo)] Gay

xOEGX w1<...<mnecxo}$07'[){

=Y Indg, [GIO,[IO}G% > (—=1)" [Gaprroions 1ag.on ) O

ToE€H X x1<"'<x"€G10]mOv'[X

Remark 14. We can define the opposite of a C-monomial G-poset (X, 1) as follows.
We consider the pair (X °P [°P) where X °P is the opposite G-poset with the order <°P
defined by

Ve,ye X, ge G, gr <Py y<gr

and [P : X °P — e is defined by

(°P(g,2,y) = 797", y, )
for any x,y € X and g € G such that gr <°P y. Obviously, the pair (X °P, [°P)
is a C-monomial G-poset. Moreover the assignment (X,[) — (X P, [°P) is a functor
cMG-poset — «MG-poset: if (f,A) : (X,I) — (Y,m) is a map of C-monomial G-
posets, then f : X°P — Y °P is a map of G-posets and for any gr <°P 2/, we get the
commutative diagram

[(x) — 2 imo f(z)

[Op(gvmvm/)‘ ‘/mOp(g,f(Z‘)7f(x/)>

[(z’)TmOf(x’).
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Observe that (1°P),(g) = 1797z, 2) = (g, z,2) = (g), foranyxz € X and g € G,.
It follows that Ax 1y = A(xop (ov).

Let (f,A) : (X,I) — (Y,m) be a map of C-monomial G-posets. Given y € Y,
following [3] we set

fP=A{eeX[flx)<y}, fi={zeX[flz)=y}

which are both Gy-posets. We denote by (fY,[sv) the C-monomial G,-poset where
[sv : fY — ¢ is the restriction of the functor [. Similarly, we denote by (f,,[,) to be
C-monomial Gy-poset where [y, : f, — ®¢ is the restriction of the functor .

Example 15. Let (f,\) : (X, [) — (Y, m) be a map of C-monomial G-posets. We define
a G-poset X x5\ Y with underlying G-set X UY as follows: for z,2/ € X UY, we set

2,2 € X and z<z2ZeX
2<Z ez eYy and z2<zZ eY
zeX,Z €Y and f(z) <2 €Y

We define the functor [y, m: XUy — o by
l(g,2,2) if z, 2/ e X
(Ispam)(g,2,2") = ¢ m(g, 2,2) if 2, 7 €Y
m(g, f(2),2)\, ifz€X, 2 €Y.

forany z, 2 € X %7, Y and g € G such that gz < 2.

Now let 21, 20, z3 € X x5, Y and g, ¢ € G such that gz; < zo and g’z < z3. We
aim to show that

(Lkpam)(g'g, 21, 23) = (Lxpam) (g, 22, 23) (LA m) (g, 21, 22).
We have four cases to consider:
® 21, 2,236 X
e 2, € X and z3 €Y
e 21X and 2, z3 €Y
® 2,2, 23€Y.

In the first case we get

(Lxpam)(g'g, 21, 23) = U(d'g, 21, 23) = (g, 22, 23)(g, 21, 22)

- ([ *EA m)(gla 225 23)([ *FA m)(g, 21, 22).
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In the second case, using the naturality of X we get
(Ixpam)(g'g, 21, 23) = m(g’g, f(21), 23)>\zl = m(g’, f(22), 23)m(g, f(21), f(Zz))Azl

= I(g, 21, 22)"‘1(9/, f(z2), Z3>)\zz = ([*p m) (g, 22, 23) (1 *ram)(g, 21, 22).
In the third case, we get

{ *FA m)(gl% 21,23) = m(g/gv f(z1), 23)&1 = m(g/v f(22), Z3)m(g7 f(z1), f(22)))\z1

= (Ixpam)(g, 21, 22) (LA m)(g', 22, 23).
In the fourth case

([ g m)(g'g, 21, 23) = m(glg, 21, 23) =m(g’, 22, 23)m(g, 21, 22)

= ([ *fA m)(gla 22, 23)([ D) m)(g, 21, 22).
Let z € X x4, Y then obviously we have (Ixpym)(1,2,2) = 1. Thus, (X %5, Y, %5, m)
is a C-monomial G-poset.

Lemma 16. Let (f,\) : (X, ) = (Y, m) be a map of C-monomial G-posets. Then
A(X*fy)\Y,[*fy)\m) = A(Y,m)

Proof. 1. Let z € Z = X %4, Y. If 2 € X consider the map ¢ :]z,-[z— [f(2), ]y
defined by

) f) ifteX
g(t)_{t iftey '

Let ¢': [f(2),-[ = ], [ defined by ¢'(s) = s. Then g and ¢’ are maps of G,-posets
such that go ¢’ = Id and Id < gLo g. So if z € X using [[3], Lemma 4.2.4 and
Proposition 4.2.5], we get A, | = Aff.).[ = 0. Thus,

A(X*f,AYv[*f,Am) = Z Indgz([Gm [z]GZ ’ A}z,[)
Z2€[G\X x5 ,Y]

==Y Indf ([Gy, L], Ay ) = Am)-
yE[G\Y]

O

As a consequence, we give an analogue of Proposition 4.2.7. in [3], which in turn was
inspired by a much deeper theorem of Quillen in [6].

Proposition 17. Let (f,\) : (X,[) = (Y, m) be a map of C-monomial G-posets. Then

K(Y,m) = K(X,[) +Z Indgy (Kfy/i(}yf[%mw)).
yeG\Y

Ay = Mxy +Y_Ind@ (Mg, Ay mey))-
yeG\Y
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Proof. We follow the proof of Proposition 4.2.7 in [3]. For any n € N, any chain z =
29 < ... < 2z, € Sdp(X *4,Y) can be of two types, depending on z, € X or z, € Y. For
a sequence z of the first type we get

,,,,,

Now a sequence z of the second type has a smallest element y = z; in Y, thus, we can
write the sequence as

To < ... <Zim1 <Y<y <..<Yp—i-1

such that zop < ... < x;_; isin Sd;_1(fY), and yo < ... < Yp—i—1 is in Sd,—;i—1(Jy, -[v). We
get

,,,,,,,,,,

Let z,_, denote the chain zp < ... < z;_; and Yo i denote the chain yy < ... < yp_i_1.
Then, by Lemma [I[0] and Lemma [T6] we get

A(Y,m) = A(X*f,AY,[*f,Am) = Z(—l)n(Sdn(X *ﬁ)\ Y), ([ *ﬁ)\ m)n)

neN

= Z (=1)"[Ga,.. 20 Resgjg (B m),]

neN
z0<...<znpt€ Sdn([*fykm)

= (=1)"(Sda(X), 1)

neN
G G
+ ) mdg, > Y (G, Res$l L my ]
yE[G\Y] =0 =z, ;€S8d;—1(fY)
Y i1 €8dn—i—1(yrlay)
. _
= Ao+ > IdG (Ao Mgy mey)-

ye[G\Y]
For the second assertion we consider the opposite map
(f,A) : (XPIP) — (Y P, m°P)
Since we have A(x ) = A(xop (or)y by Remark [I4] the result follows. O

Corollary 18. Let (f, ) : (X, [) = (Y, m) be a map of C-monomial G-posets. If Apy =0
forally €Y (resp. if Ay, =0 for ally €Y), then Ax; = Ayn.

Remark 19. The assumption of this corollary is fulfilled in particular if f : XY
admits a right adjoint g, in other words if there exists a map of posets g :' Y — X such
that f(x) <y < x < g(y) forany x € X andy €Y, i.e. equivalently if fog(y) <y
and go f(z) <z forany x € X and anyy €Y.
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Now we set some notation. Given a C-monomial G-set (X,[), we can rewrite its
Lefschetz invariant as

Ay =3 (=1)"[Gay o Res (L)),

r0<...<xn€gX
X1
= ,}/V,I/[‘/’ V]G
(V,v)eg ch(G)
where

X, n 1 n
Ty = Z (—1) :W Z (=)™

z0<...<xn€qX z0<...<xn€X

Gz T
(Gx() ~~~~~ Tn ReSG:CO lxo):G(Vvy) (Gzo ’’’’’ Tn ROSGxg ,,,,, Tn

Given a C-monomial G-poset (X, [) we let the set (X, [)V* to be

(X, 0% = {z € XV | ResS*l, = pu}
where (U, ut) is a subcharacter of G. Then given a C-subcharacter (U, u) € ch(G) we

have
Uuu‘ — n __ X7[
X((Xv y ) = E (1" = My,
neN (Vv)e ch(G)
:L‘()G< <zn€X UCVvV
zQ _ V=
ResGI0 """ on lyg=H Resgv=p
where
X[ n
mV,l/ - § : (_1)
neN
SC()<é.<1'nEX
(Gayg, ..., zn,Rcscig """ oy l20)=(V:1)

Now |Ng(V,v) : V|m€/{i = %)/?V‘ Using this fact we prove the following lemma.

Lemma 20. Let (X,[) and (Y, m) be C-monomial G-posets then Ax 1 = Ay,m) if and
only if x((X,0Y") = x((Y,m)"#) for every C-subcharacter (U, ;1) of G.

Proof. Assume A(x ) = Ay,m). Then

walVirle = ) wilVivle

(Vv)€g ch(G) (V,v)€g ch(G)
S (i =WVl = 0.
(Viv)eg ch(G)

*‘),(;u = m‘Y/:u for every C-subcharacter (V,v) of G. We get

X\ Y,m
mV,V - mV,u .

(U =(Viv)eg ch(G)  (Up)<(Viv)eg ch(G)

X[ _ Y,
So vy, = Y/, and then m
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Thus, x((X,)"*) = x((Y,m)%*) for every C-subcharacter (U, u) of G.
Conversely, assume that x ((X, ") = x((Y, m)"*) for every C-subcharacter (U, u)
of G. Then
X, Ym
mV,V = mV,V’

(U <(V)ech(@)  (Up)<(Vw)e ch(G)

(Un)<(Viv)€ ch(G)

Let 2 be the matrix with the coefficients

1 if (U, 1) < (V,v)

AU, Viv) = [(Up) < (Viv)] = {0 otherwise

for any C-subcharacters (U, u), (V,v). If we list the C-subcharacters in non-decreasing
order of size of the subgroups, the matrix z is upper triangular with nonzero diagonal

coefficients. Thus, z is nonsingular and so m“)/(; = m)‘;‘; This implies 7‘)/{1/[ = 7‘)//,/‘“ We
get
Axy = yalVile = Y. wirlVivle = Ay
(Viv)eg ch(@) (Viv)eg ch(G)
This proves the lemma. O

3 Generalized tensor induction

Let G and H be finite groups. A set U is a (G, H)-biset if U is a left G-set and right
H-set such that the G-action and the H-action commute. Any (G, H)-biset U is a left
(G x H)-set with the following action:

VueU, (g,h) € Gx H (g,h)-u=guh™.

A C-monomial (G x H)-set (U, A) will be called a C-monomial (G, H)-biset, and usually
denoted by U, for simplicity.

Now let Uy, be a C-monomial (G x H)-set and u, ' € U. Then the set of morphisms
from u to v/ in U is

Homg (u, u') = {(g,h) € G x H | gu = u'h}.
If (9, h) € Homp(u,u’), we denote the image of (g, h) under A by (g, h,u, ).
Let Uy be a C-monomial (G, H)-biset and V,, be a C-monomial (H, K)-biset. Con-
sider the set
UyoV,={(u,v) e U xV |VYh e H,NH,, \(1,h,u,u)p(h,1,v,v) = 1}.
The set Uy oV, is an H-set with the action

V(u,v) € Uy oV,, Yh € H, h(u,v) = (uh™", hv).
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Indeed, the condition that we impose on Uy o V,, amounts to saying that given (u,v) €
Uy o V,, the linear character &,, : h — (1, h,u,u)p(h,1,v,v) of H, N H, is trivial.
Moreover we have &, ,-1,(h) = &uo(zha™") =1 for x € H and h € Hy,, N Hy-1,y, e
zhae™' € H,N H,.

We let Uy o V, denote the set of H-orbits on Uy oV, and (u,, v) denote the H-orbit
containing (u,v). The set Uy oy V, is (G, K)-biset with the action

(u,, v) € UyonV,, (9,k) € G x K, g(u,, v)k = (gu,, vk).

We obtain a C-monomial (G, K')-biset (Uyop V,, A X p), where A x p is defined as follows:
if (u,, v) and (u',, v") € UyoyV, and (g, k) € G x K are such that g(u,, v) = (v, V')k,
then there exists h € H such that gu = w'h and hv = v’k. This element h need not be
unique, but it is well defined up to multiplication on the right by an element of H, N H,,.
We set

(>\ X p) (g7 k? (u7H U)’ (ul7H /U/> = A(g? h? u? u/>p(h'7 k7/U7 Ul)’

which does not depend on the choice of h, by the defining property of Uy oV,. Note that
Uyxog V,=U xy V when V is a left free (H, K)-biset, or when A and p are both equal
to the trivial functor.

Given a C-monomial G-poset (X, [), we let ¢, (X, ) be the set of G-equivariant maps
f U — X such that

(g, f(w), f(u)) = Ag, L, u, u)

forallu € U and g € G,,. Then ty (X, () is an H-poset with the action (hf)(u) = f(uh),
for any h € H, for any f € ty,(X,[), for any u € U. The order < is given as follows:

Vi f €tua(X,0), f< feVuel, flu) < f'(u)in X,

Now we define a functor £ : tyA(X,[) = ec. Let f, f' € ty (X,[) and h € H
such that hf < f’. We choose a set [G\U] of representatives of G-orbits of U. Then for
all u € U there exist some g, € G and a unique op,(u) € [G\U] such that

uh = gpuon(u).

Since hf < f', we get gn.f (on(u)) < f'(u), and we set

Loxlh, f, ) = H [<gh,u,f(ah(u)),f/(u)>>\_1 (gh,u,h,ah(u),u).

u€[G\U]

Now we show that this definition does not depend on the choice of gy, ,,. Assume that
there exist gn.u, gj,,, € G such that

uh = gnuon(u) = gp, ,on(u).

So there exists w € Gy, () such that g, = gg,uw. We get

[(w,f(ah(u)),f(ah(u))> = Mw, 1, 0p,(u), op(u)).
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Furthermore, we get the following commutative diagram:

—>0'h

\Au

Thus,
Coalh. £.1') = g\m (g £ (o0 (0)) f (1) ) A7 (ghas s o), )
- E[\U}I<927uw,f(Uh(U))>f’(U))A_l(gé,uw,h, on(u), )
- g\m[(gg,u,f(ah<u>),f’(u))w(gg,u,h,o—h<u>,u)-

Definition 21. The above construction Ty : (X, 1) — (tur(X,1),Lu) is called the
generalized tensor induction for C-monomial G-posets, associated to (U, \).

Lemma 22. Let G and K be finite groups and U be a (G, K)-biset. Then there exists a
bijection between the sets {(u,t) | v € [G\U/K], t € [(K NG*)\K]} and [G\U].

Proof. Let v € [G\U/K] and t € [(K N G")\K] then there exist some ¢;, € G and a
unique o¢(u) € [G\U] such that
ut = g0t ().

We define 9 : {(u,t) | u € [G\U/K], t € [(K N G)\K]|} = [G\U] by ¢¥(u,t) = o(u).
U

Lemma 23. Let G and H be finite groups, (U, X) be a monomial (G, H)-biset and (X, )
be a C-monomial G-poset.

1. (tU,)\(X, ), £U7,\) is a C-monomial H-poset.

2. (tU,A(X, ), SU,,\) does not depend on the choice of representative set [(G\U], up to
isomorphism.

Proof. 1. We show that £y, : tUj_)?,[) — ec is a functor. Let h, b € H and
I f f" € tux(X, 1) such that Af < f" and A'f" < f"”. Let uw € [G\U]. Then
there exist some gn.u, g/ u, grnu in G and unique elements oy, (u), op (u), opp(w)
in [G\U] such that

uh = ghvuah(u), uh' = gh/7u0'h/(u), uh'h = gh/hmah/h(u).

Also there exist some g ,,,(u) € G and a unique oy, (Uh’ (u)) € [G\U] such that
Op/ (u)h = gh,oh/(u)ah (O’h/(u))_
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Now we get
uh'h = 9n' wGh,op, (uw)Oh (O-h’ (u))

and
O'h/h(u) = Op (O’h/ (u))

Then there exists w € G y such that

oprp(u
In'ha = G uwGh,op (u)W-

We have the following commutative diagram:

Uh’h —> Uh’h

gh’h\‘ %ugh 10 ()
uh'h

On the other hand since w € G , we get

oprp (u

[(w, f(ah/h(u)), f(ah/h(u))) = )\(w, 1, O’h/h(u), O’h/h(u)).

Thus, setting L = Ly (h'h, f, f"), we have

L= H [(gh’h,ua f(ah/h(u)), f// (u)) )\_1 (gh’h7u7 h/h, ah/h(u), u)

ue[G\U]

= H [<gh’,ugh,ah/(u)w7 f (O'h/h(U)), f// (U)) >\_1 (gh’,ugh,ah/(u)wu h/ha Uh’h(u>7 U)
u€[G\U]

= H [<gh’,ugh,oh,(u)a f(Uh'h(U)), f” (U)> AT (gh’ u9h,op (u h h, Uh’h( ) )
u€[G\U]

=L 1 1)L f, ).

Moreover, given f € Ty (X, [) we have
1) = [T 1 f@), f)A (1,1, u,u) = 1.
ue[G\U]

—

Thus, £p) : tux(X, [) — e¢ is a functor.

. Let h € H and f, f" € tyA(X,[) such that hf < f'. Let S = [G\U] and let S’
be the another choice of representatives. If «’ € S’ then there exist some a, € G,
and a unique u € S such that v’ = a,u. Then there exist some gp, 4,u, gru € G, a
unique o} (a,u) € S, and a unique op(u) € S such that

ayuh = gn ayuop (@)
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Prop
1.

2.

Proof.

2.

and
uh = gpuon(u).
Then
ayuh = ayGnu0n (W) = Qudhuly, () Go, @) Th(W)-
So 0,(ayt) = Go,wyon(u). Note that aq,wyon(u) € S’. We get the following com-
mutative diagram:

augh, ul,

o ) f (o (1)) 4%(% a, f'(u)

—1
agh(ﬂ)h )l\a“

f(on(w)) ——5—— f(u).

Thus, setting L = £, ,(h, f, f'), we have

=] [<“u9h,u“;hl(u>=f (Ao won(w), f /(“uu)>x1(@u9h,u@;;(u>vhv%h(u)ah(“)vauu)

ay,uesS’

= Lya(h, £, 1) = Loalh, |, fapa;?

where

ap = H[ Ay, f'(u), ayf'(u )) (au, 1,u, auu)

uesS

and

H[ Lauf(u), flu ))A‘l(agl,l,auu,u).

uesS

0
osition 24. Let G and H be finite groups and (U, X) be a C-monomial (G, H)-biset.
Let (X, 1), (X',V) be C-monomial G-posets then

TU’)\((X, [) X (X/, [/)) = TU’)\(X, [) X TU’)\(X/, [/)
Ty cMG-poset — M H-poset is a functor.

1. is clear.

Let (¢, B) : (X,I) = (Y, m) be a map of C-monomial G-posets. We define a map
of C-monomial G-posets

(TU,A(QP)aTU,)\(ﬁ)) : (tU)\(X, [),Q) — (tU)\(YV, m),i)ﬁ)

25



where
Tua(p) : tua(X, ) = tya(Y,m)

such that Ty (¢)(f) = ¢ o f and

Tux(B) : £(f) = Mo Tyx(e)(f)

such that
Tu(f H B

ue[G\U]

for any f € tyA(X,[). Clearly, oo f: U — X — Y is a map of G-posets. Since
given g € G, and u € U the map § : [ — mo ¢ is natural, we have the following
commutative diagram:

(1)) =2 mo o f(u)

So
Brt(9: £ (), £ (w)) = m(g.0(F() 0 (F W) ) Brco

Since g € G ), we have

[(g,f(u),f(u)) =Xg, 1, u,u).
Then we get
m(g,so(f(U)),w(f(U))) =g, 1, u, u).

Thus, po f € tUJ\(Y, m)
Now we show that
TU,A(ﬁ) L= Mo TU,A(SO)

is a natural transformation. Let f, f’ € ty (X, [) and h € H such that hf < f'. We
show that the following diagram is commutative:

Ty,

e(f) 220 on 6 Ty (0)(f)
L(h,fof") lfm(h,wﬁswf’)

) = Mo Toal) ().

26



Let w € [G\U]. Then there exist some g5, € G and a unique oj,(u) € [G\U] such
that

uh = gpuon(u).

Since 5 : [ — mo ¢ is a natural transformation, we obtain the following commutative
diagram :

(£ (on(w)) = w0 o £ (on(w))

(g1 Fln(a), f’(u))h Bm (sr0 2 (100 0))- ()
[(f’(u)) mogo(f’(u)).

By

Using the commutativity of the above diagram, and setting T' = Ty (8) o £(h, f, f'),
we get

T = TU,A(ﬁ)f’( H [(ghm,f(ah(u)),f’(u)))\_l(ghm,h, Uh(u),u))

u€[G\U]
=TT Brw!(gn Fon(). £@)A" (ghr by on(w), w)
u€[G\U]
= 11 m(gh,u,so(f(o*h(w))’w(f'(“»)xl(g’““’h"’h(u)’“)ﬁf(oh(w)
ue[G\U]

=M(h,po f,oo f)p;.

So TyA(B) : £ = Mo Ty a(p) is a natural transformation. Thus,

(TU,A(@aTU,A(ﬁ)) : (tU,A(X> [),2) — (tU,A(Ya m),i)ﬁ)
is a map of C-monomial G-posets. O

Lemma 25. Let G, H and K be finite groups. If U is a (G, H)-biset and V' is a left free
(H, K)-biset, then the map (u,v) € U X V +— (u,,v) € U xg V restricts to a bijection
7w [G\U] x [H\V] — [G\(U xg V)], where brackets denote sets of representatives of
orbits.

Proof. For (u,v) € U x V, there exists vy € [G\V] and h € H such that v = hvy. Then
there exists ug € [G\U] and g € G such that uh = gug. Then (u,, v) = g(ug,, vo).
Hence 7 is surjective. Now if (ug,vo) and (uy,v;) are pairs in [G\U] x [H\V] which lie
in the same G-orbit, there exists ¢ € G and h € H such that (gug,vo) = (urh™!, hoy).
Hence hv; = vy, so vg = v1 = hvy, and h = 1 since H act freely on V. Then gug = uq,
SO ug = u1, and 7 is injective. O
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Proposition 26. Let G, H and K be finite groups.

1. Let (o,1) be the C-monomial G-poset where o is G-poset with one element and
1: e — e¢ is the functor such that 1(g,e,e) = 1. Then Ty (e,1) = (o,1).

2. Let (0, z) be the empty C-monomial (G, H)-poset. Then Ty , is the constant functor
with value (o, 1).

3. Let (U, \) and (U, \') be C-monomial (G, H)-bisets and let (X, 1) be a C-monomial
G-poset then
Tow auv (X, 1) = Ty (X, DT v (X, D).

4. Let idg stand for the identity (G, G)-biset. Then Tia,1(X, 1) = (X,I) for any
C-monomial G-poset (X, 1).

5. Let (V,p) be a C-monomial left free (H, K)-biset, and (U, \) be a C-monomial
(H,G)-biset. Then
Tv,oTux = Tuxyvaxp-

Proof. 1., 2., 3. and 4. are clear.
5. Note that since V' is left free, we have Uy oy V, = U xy Vk. Let (X,[) be a
C-monomial G-poset. We need to show that

(tV,p(tU,)\(Xa 0, L), Lv,p 0 £U,>\) = (tuxuyvase(X, 1), Lus pvaxn) -
We define a K-poset map ¢ : tv,, (tu (X, 1), Lu1) = tuxvaxpe(X, [) such that

P(f)u, o) = f(v)(u)

for any f € tv,(tua(X,1), Lu) and (u, ,v) € U xp V. It’s clear that the map ¢(f) is a
map of G-posets.
Let g € G(u,,,v). Note that since V' is H-free, we have g € GG,. Then

1(9:0(F) (2 0): 2 (£) (s 0)) = 19, )W), F(0) ()

= )‘(ga 1auau)p(1> 1,1),'11) = ()‘ X p) (ga L, (u?H,U)’ (ua HU))'

and 50 ©(f) € tux,vaxe(X, D).
Now we define a map

0 2t vaso(X, 1) = tv, (tua(X, 1), Lua)

such that 6(¢)(v)(u) = t(u, ,v) for any t € tyx,vax,(X, 1), u € U and v € V. We show
that 0(t) € tv,(tua(X, 1), Lu,x). Indeed, the map 6(t) is clearly a map of H-sets and
moreover, since V' is H-free, we have H, = 1 for any v € V. Then

Lo (1,01 (©), 0()(v)) = 1 = p(1,1,v,0).
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Clearly, 0(t)(v) is a map of G-sets. Let g € Gi. Then g € G, ), and we get

(9,00 (0) (@), 0(8) () () ) = 19, ), s 1))
= Ag, L,u,u)p(1,1,v,v) = g, 1, u,u).

So H(t) c tV’p(tU)\(X, [), £U,>\)-

Now we show that £v,,0Lp ) = Lux,vax,y Letk € Kand f, f' € tv7p(tU7,\(X, [, EU,A)
such that kf < f’. Let v € [H\V]. Then there exist a unique o4 (v) € [H\V] and some
hi € H such that

vk = hk’UO'k(U).

Let u € [G\U]. Then there exist a unique oy, ,(u) € [G\U] and some gy, ., € G such
that
Wk = Ghy o uThy, (W)

Then
(U, yv) = (Ul 'y ©) = (Uhgwyy By V)
= (IhpuThy, (W) Ok (O)ETY) = iy (Ony, (1), o0 (0)) BT
We get
(4, 0k = Gy (Ony, (1), 0k (0)).
Then
(Uhk)v(u),H ak(v)) = op(u, ,v)
and

Ghywou = Gk (u, ;o)W

for some w € G, (u,,,v)- We get the following commutative diagram:

or(u, ,v) = ox(u, ,v)
(u, yv)k

Using the commutativity of the above diagram and Lemma 25 we get

£ OQU)\(]{? f f H QU)\(hkv,f(Uk(U)) f’(v))p‘l(hk,v,k,ak(v),v)

ve[H\V]

H [<ghkvu’ Uk( ))(Uhkv( )) f/(v)(u)))‘_l(ghk,mu’hkﬂ”Uhk,u(u)’u>p_1(hk,v’kao_k(”)?”)

=TT (s O (W 02 (0)) £ (11 0) ) 0 2) ™ (G K (O, (), 400 (0)). (1 0))

(u, g 0)E[G\(Ux V)]
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— H [(gk7(u7Hv)w, f(ak(u, Hv)), f’(u, HU)) (Axp)~! (gk,(u,Hv)wv k, (Uhk,v (u), Hak(v)), (u, HU))

(u, g V) E[G\(Ux V)]

=TT t(mwgor F Rl ) £ (1 0) ) 0x) ™ (Gt s (0, (), 4 or(0)). (1, 0) )

(w, g ) E[G\(Ux V)]

= Luwv(X,0).
O

Remark 27. The following example shows that the assumption that V is left free seems
to be necessary for Assertion 5. Suppose that H = N x K is a semidirect product of
a normal subgroup N with K. Let G be the group K, viewed as a subgroup of H. Let
moreover U be the set H, viewed as a (G, H)-biset by left and right multiplication, and
let V' be the set K, acted on by K on the right by multiplication, and by H on the left
by projection to K = H/N, followed by multiplication in K. Let moreover A\ and p be
equal to the trivial functor on U and XA/, respectively.

Then UyogV, =UxgxV, as XA and p are both trivial. Moreover U xgV = G Xy K is
equal to the identity (K, K)-biset (this makes sense since G = K ), s0 Tux yvaxp = Tidp 1
is the identity functor, by Assertion 4.

On the other hand G\U = K\(NK) = N, and H\V has cardinality 1. So in the
computation of the functor Ly appearing in Ty 1 (X, [), we have a product of values of |,
indezed by N. So the composition Ty o Ty cannot act in general as the identity on
(X, 1), if N is non trivial. Hence Ty, o Ty, # Tux yvaxp i this situation.

Remark 28. Let G and H be finite groups, and U be a (finite) (G, H)-biset. Then one
can check that the diagram

G-poset —2— M G-poset

lTU JTU’ 1y

H-poset — M H-poset

of categories and functors is commutative, up to isomorphism, where the functor Ty on
the left is the usual generalized tensor induction functor for G-posets.

Lemma 29. Let G and H be finite groups, and let (U, \) be a C'-monomial (G, H)-biset.
Then there exists a unique map

Tox: Bo(G) — Bo(H)

such that Ty x(Ax,n) = Az, (x, for any finite C-monomial G-poset (X, 1).
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Proof. We show that if (X,[) and (Y, m) are finite C-monomial G-posets such that if
Axy = Aymy in Be(G), then Az, xn = My (vm) 0 Be(H). So it’s enough to show

that X(TU,,\((X, [))K’G) = x(TU,A((Y, m))K’a), by Lemma 20 for any (K, 6) of ch(G).
Let u € [G\U/K], k € K and t € [K N G*\ K] then there exist a unique oy(ut) €
[G\U] and some gy, ., € G such that
uth = gruror(ut).
Also there exist some ¢, € K N G* and a unique 7(¢) € [K N G*\ K] such that
tk = C]mng(t).

Since ¢, € K N G*, there exists 7., € G such that

UCkt = Vi, t,uU-

Now
uth = uck 7 (t) = Ve rutTe(t) = grwor(ut).

So op(ut) = ut(t) and there exists w € Go, () such that gp . = Yeeow. We get the
following commutative diagram:

ut —> ak ut

gkx %tu

Now let f € ty (X, )% and k € K such that kf = f. Note that since f is K-fixed,
we have

f(Utk) = f(Ut) = f(u) = ’Yk,t,uf (UTk(t)) = ’Yk,t,uf(u)a
SO Vit € G- Hence

flon(ut)) = f(umi(t)) = Yepuf (uth) = ypuf (W) = f(u).

Let Yy, = IT  twand @ (k) = I1 A (Yt Ky ox(ut), ut). Then
te[KNGU\ K] te|[KNGU\ K]

g(kufv f) = H [(Qk,uaf(Uk(U))af(u)>>\_1(9k,u,k70k(u),u)

u€[G\U]

— H [(gkm, f(on(ut)), f (ut)) A (Gt b, o (ut), ut)

u€[G\U/K]
te[KNGY\ K]

— H [(%,t,u% f (ak(ut)) f (ut)) At (vk,mw, k, oy (ut), ut)

u€[G\U/K]
te[KNGY\ K]

31



— H [(%J,u, f(ak(ut)), f(ut)))\_l (%ﬂt,u, k, o (ut), ut)

u€[G\U/K]
te|[KNGY\ K]

- H [f(u) (7k,u)¢u(k)
u€[G\U/K]
— (k).

Let = be the family of the sets § = {&. }ueia\v/x) Where &, : "/ — C'is a character
such that res, f(“)([f ) = & and

G\U/K]

for all k € K and u € [G\U/K].
We claim that

Tur(X, DE |_| H (X, 1)Kk

¢€Z ue[G\U/K]

Let f € Tya(X, D5 then f(guk) = gf(u) for all g € G, u € U, and k € K. So

to determine f, it’s enough to know f(u) for u € [G\U/K]. Let f(u) = x,. Then
res. 7Ly, € {€u}ueic\v/x) for some {&,}ueuyx) € &

Conversely, let us choose z,, € X for any u € [G\U/K]. Let v € V then v = guk for
some g € G, for some k£ € K and a unique v € [G\U/K]|. We set f(v) = gx,. Now f
is well defined if and only if gz, = z, whenever g € “K or equivalently z, € X" %. We
want that f € Ty (X, )59 If z, € (X, 1) K4 then ressz(I,,) = &, and

G\U/K]

So f S TUJ\(X, [)K’g.
Now using [[2], Lemma 11.2.9] we get

(TU)\ X, Ke) Z H NCTRED)

€€E ue[G\U/K]

Thus, if Ax) = Awy,m then A, | (x) = Ay, (vm)- So we can define a map
7;]’)\ : Bc(G) — Bc(H)

such that Ty (a) = A, (x,y where (X, ) is a C-monomial G-poset such that a = Ax,,
as in Corollary [TT1 O]

Proposition 30. Let G and H be finite groups, and let (U, X) be a C'-monomial (G, H)-
biset.
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1. Tua(G, 16)e) = [H, 1uln.
2. Tua(ab) = Tua(a)Tua(b), for any a, b € Be(G).
In particular, the restriction of Ty to Bo(G)™ is a group homomorphism
U>,<)\ : Bc(G)X — Bc(H)X

Proof. 1. Consider the C-monomial G-poset (e, 1) then clearly A1) = [H,1g]g. So
using the first assertion of Proposition 26] we get

Toa(lG, 1) = Aryyo0) = Moy = [H, 1u]u-

2. Let a, b € Bc(G) then by Corollary [I] there exist C-monomial G-posets (X, I)
and (Y, m) such that A(xy = a and Ay,m) = b. Then

7?]7,\(ab) = %,A(A(X,[)A(Y,m)) = %,A(AXxY,[xm) = ATU,,\(XXY,[xm)

= ATU,A(Xv[)ATU,A(va) = 7;19\(&)7;],)\([))

Proposition 31. Let G, H, and K be finite groups.

1. Let idg stand for the identity (G,G)-biset. Then T;
Be(G).

is the identity map of

dg,1lc

2. Let (U, \) and (U, XN') be C-monomial (G, H)-bisets. Then for any a € Be(G)
Touvr o (@) = Toa(a)Tor v (a).

3. Let (U,\) be a C-monomial (G, H)-biset and let (V,p) be a monomial left free
(H, K)-biset then
%,p o 72])\ = 7;]><HV,)\><p-

Proof. Let a € Bo(G) then by Corollary [l there exists a C-monomial G-poset (X, [)
such that a = A¢x .

1. Using the third assertion of Proposition 26, we get
Tiac16(@) = Tiag1q (A(X,[)) = ATidG,lc(XJ) =Axp=a
2. Using the second assertion of Proposition 26l we get

Touoaox (@) = Tour oy (Axn) = A1y o000

= ATU’/\(X,[)XTU/A/(X,[) = ATUy)\(X,[)ATU/A/(X,[)

= Tuar(Ax ) Tor v (Aix ) = Toa(a)Tor y(a).
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3. Using the fourth assertion of Proposition 26 we get
7}4) © %,A(a) = 7}7/) © %,A(A(XJ)) = ATV,pOTU,A(X7[)

= Ay v (X0 = Toxavaxe(Axn) = Toxuvaxp(a).
O

Corollary 32. Let G and H be finite groups. The map (U, \) = Ti7'\ of Proposition |30
extends to a bilinear map

Be(G, H) x Be(G)* — Bo(H)™.

Proof. This follows from Assertion 2 of Proposition 26land Assertion 2 of Proposition [31],
and from the fact that the map 7E[X] » depends only on the isomorphism class of (U, N). O

Remark 33. It follows from Remark[28 that if U is a finite (G, H)-biset, the square

B(G) —%= Bc(Q)

t
TU TU,lU
B(H) - Bo(H)

of groups and multiplicative maps, is commutative, where T on the left is the usual
generalized tensor induction map for Burnside rings, and the horizontal maps tg and ty
are the ring homomorphisms induced by the functors ¢ and Tp.
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