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BACKGROUND Eukaryotic cells can respond to diverse stimuli by converging at serine-51 phosphorylation on

eukaryotic initiation factor 2 alpha (eIF2a) and activate the integrated stress response (ISR). This is a key step in

translational control and must be tightly regulated; however, persistent eIF2a phosphorylation is observed in mouse and

human atheroma.

OBJECTIVES Potent ISR inhibitors that modulate neurodegenerative disorders have been identified. Here, the authors

evaluated the potential benefits of intercepting ISR in a chronic metabolic and inflammatory disease, atherosclerosis.

METHODS The authors investigated ISR’s role in lipid-induced inflammasome activation and atherogenesis by taking

advantage of 3 different small molecules and the ATP-analog sensitive kinase allele technology to intercept ISR at

multiple molecular nodes.

RESULTS The results show lipid-activated eIF2a signaling induces a mitochondrial protease, Lon protease 1 (LONP1),

that degrades phosphatase and tensin-induced putative kinase 1 and blocks Parkin-mediated mitophagy, resulting in

greater mitochondrial oxidative stress, inflammasome activation, and interleukin-1b secretion in macrophages. Further-

more, ISR inhibitors suppress hyperlipidemia-induced inflammasome activation and inflammation, and reduce

atherosclerosis.

CONCLUSIONS These results reveal endoplasmic reticulum controls mitochondrial clearance by activating eIF2a-

LONP1 signaling, contributing to an amplified oxidative stress response that triggers robust inflammasome activation and

interleukin-1b secretion by dietary fats. These findings underscore the intricate exchange of information and

coordination of both organelles’ responses to lipids is important for metabolic health. Modulation of ISR to

alleviate organelle stress can prevent inflammasome activation by dietary fats and may be a strategy to reduce

lipid-induced inflammation and atherosclerosis. (J Am Coll Cardiol 2019;73:1149–69) © 2019 The Authors. Published

by Elsevier on behalf of the American College of Cardiology Foundation. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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activates an adaptive signaling, the integrated
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family, pyrin domain-

containing protein-3
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Parkin = Parkinson juvenile

disease protein 2

PERK = protein kinase R-like

endoplasmic reticulum kinase/

eIF2a kinase

PINK1 = phosphatase and

tensin-induced putative kinase1

SFA = saturated fatty acid
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translational control, eIF2a phosphorylation
must be tightly regulated through dephos-
phorylation by the protein phosphatase-1
(PP1). In prolonged or severe stress, however,
ISR can revert to a cell death program (1,2).
SEE PAGE 1170
Endoplasmic reticulum (ER) stress is a
trigger for ISR. Unfolded proteins are sensed
by the ER-resident eIF2a kinase, protein
kinase RNA-activated-like ER kinase (PERK),
and trigger eIF2a phosphorylation. This
homeostatic pathway is hyperactivated in
obesity and dyslipidemia (2–4). Evidently,
reducing ER stress in mice reduces insulin
resistance, obesity, and atherosclerosis (5–8).
ER stress is induced by saturated fatty acids
(SFA), which are thought to promote cardio-
vascular diseases (CVD) (9–11). Replacing 5%
of the energy intake from SFA with an
equivalent intake of monounsaturated fatty
acids or polyunsaturated fatty acids is asso-
ciated with a reduced risk (15% and 25%,
respectively) of CVD (12). A causal relation-
ship between SFA intake and CVD risk was
demonstrated in nonhuman primates (11).
Other studies have challenged SFA’s role in
human CVD, and the molecular mechanisms
of SFA-induced inflammation in atheroscle-
rosis are not completely understood (10).

Increased cellular lipid influx negatively
impacts organelles leading to ER and mito-
chondrial stress, often intertwined in obesity
(13). Organelle stress is causally associated
with inflammation and atherosclerosis (14).
For example, organelle stress activates the
Nod-like receptor family, pyrin domain-
containing protein-3 (NLRP3) inflamma-
some, leading to interleukin (IL)-1b and IL-18
secretion (7,15,16). IL-1b is elevated in pla-
ques and serum during dyslipidemia and
drives atherosclerosis (7,17–19).
Persistent ISR activation, as evident by eIF2a and
PERK phosphorylation, is observed in atheroma (8).
PERK promotes foam cell formation, whereas CHOP
deletion in mice reduces atherosclerosis (5,6,8,20).
The circumstantial evidence thus suggests that PERK-
induced ISR may aggravate atherosclerosis, but can
intercepting this homeostatic pathway in a chronic
disease provide therapeutic gains? Using small mol-
ecules and genetic approaches to modulate multiple
ISR nodes, we show lipid-activated PERK induces
mitochondrial Lon protease-1 (LONP1). LONP1 de-
grades phosphatase tensin homolog-induced kinase-1
(PINK1) to suppress mitophagy, thus drives mito-
chondrial reactive oxygen species (mtROS) produc-
tion and robust inflammasome activation in lipid-
stressed macrophages. Finally, ISR inhibition in vivo
can suppress hyperlipidemia-induced inflammation
and reduce atherosclerosis progression in mice.

METHODS

GENERAL STUDY DESIGN. Three or more indepen-
dent replicates were performed for cell-based exper-
iments. Mice were randomly assigned to independent
cohorts, and data analysis was performed blind. The
only elimination criteria used for mouse studies was
based on health. Noted differences in mouse numbers
(en face aorta and plaque analysis) is related to
technical problems that occurred during sampling
before analysis.

MICE STUDIES AND TREATMENTS. C57BL/
6.129P2-Apoetm1Unc/J mice (Apoe�/� mice; received
from Jackson Laboratory, Bar Harbor, Maine, and
created by Nabuyo Maeda, University of North Car-
olina), and C57BL/6.129S4-Prkntm1Shn/J (parkin�/�

mice; received from Jackson Laboratory and created
by Jie Shen, Harvard Medical School) and C57BL/
6-eIF2ak3tm2201(G646N,M886A)Arte mice (PERK_ASKA
[ATP-analog sensitive kinase allele] mice; received
from J.R. Lipford at Amgen, Thousand Oaks, Califor-
nia, and created by Taconic Artemis, Cologne, Ger-
many); G646N/M886A mutations were introduced by
Cre-Lox system and bred with Apoe�/�. Apoe�/� mice
were injected with GSK2606414 (30 mg/kg/day;
Atomole Scientific, Wuhan, China) or trans-ISRIB
(1 to 2 mg/kg/day; Cayman Chemical, Ann
Arbor, Michigan). PERK_ASKA mice were injected
with 4-amino-1-tert-butyl-3-(1-naphthyl)pyrazolo
[3,4-d]pyrimidine (1-NAPP1) (60 mg/kg/day; Taconic
Artemis). Weight and blood glucose were measured
weekly (7,15). The experimental animal ethical care
committees at Bilkent University and Cedars Sinai
Medical Center approved all animal experiment
protocols.

DIETS. Western diet (0.21% cholesterol, 21% fat) was
obtained from Ssniff-Spezialdiäten, Soest, Germany
(TD.88137/E15721).

RESULTS

ISR REGULATES LIPID-INDUCED INFLAMMASOME

ACTIVATION. Lipid stress leads to eIF2a and PERK
phosphorylation in macrophages and plaques
(5,9,20). Here, we sought to understand the contri-
bution of PERK to SFA-induced inflammasome
activation and atherosclerosis. Palmitate (PA)



FIGURE 1 PERK’s Role in Lipid-Induced Inflammasome Activation
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(A and B) LPS-primed, PA-stimulated BMDM were transfected with PERK or control siRNA or (C and D) treated with GSK2606414 (2 mmol/l) or vehicle:

(A and C) protein lysates were analyzed by Western blotting using antibodies against P-PERK, PERK, b-actin, and caspase-1 (p45 and p10), and (B and D)

conditioned cell medium was analyzed with IL-1b ELISA. (E) LPS-primed, PA-stimulated macrophages from PERK_ASKA or WT mice were treated with

1-NAPP1 (20 mmol/l) and protein lysates were analyzed by Western blotting using antibodies against P-PERK, PERK, b-actin, caspase-1 (p45 and p10),

and IL-1b. Blots shown are representative of (n ¼ 3) experiments. Data are mean � SEM; (n ¼ 4) for ELISA. Unpaired t-test with Welch’s correction.

*p # 0.05, **p # 0.01, ***p # 0.001. BMDM ¼ bone marrow–derived macrophages; CE ¼ cell extract; ELISA ¼ enzyme-linked immunosorbent assay;

IL ¼ interleukin; LPS ¼ liposaccharide; PA ¼ palmitate; siRNA ¼ silencer RNA; SN ¼ supernatant; WT ¼ wild-type.
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treatment of mouse bone marrow–derived macro-
phages (BMDM) led to profound induction of
cleaved caspase-1 (p10 fragment) and IL-1b secre-
tion, but this was significantly reduced by silencer
RNA (siRNA)-mediated PERK suppression
(Figures 1A and 1B, Online Figure 1A). To further
assess PERK kinase activity’s role in this, lipid-
stressed macrophages were treated with a PERK
kinase inhibitor (GSK2606414) (21). GSK2606414
suppressed PERK phosphorylation and counteracted
lipid-induced caspase-1 cleavage and IL-1b secretion
in BMDMs (Figures 1C and 1D, Online Figure 1B),
human Thp1 macrophages, and human peripheral
blood monocytes (PBMC) (Online Figures 1C and
1D). PERK inhibition did not impact the expression
of pro-IL-1b, PYD and CARD domain-containing

https://doi.org/10.1016/j.jacc.2018.12.055
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FIGURE 2 ISR’s Critical Role in Lipid-Induced Inflammasome Activation
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(A and B) LPS-primed, PA-stimulated BMDM were treated with GSK2606414 (2 mmol/l) and/or Sephin1 (25 mmol/l) or (C and D) ISRIB (6 mmol/l): (A and C) protein

lysates were analyzed by Western blotting using antibodies against P-PERK, PERK, P-eIF2a, b-actin, caspase-1 (p45 and p10), and IL-1b, and conditioned cell medium

was analyzed with IL-1b ELISA, and (B and D) total RNA was analyzed by qRT-PCR for CHOP mRNA. (E and F) LPS-primed, PA-stimulated BMDMs were transfected with

ATF4 or control siRNAs: (E) protein lysates were analyzed by Western blotting using antibodies against: b-actin, caspase-1 (p10), and IL-1b, and conditioned cell

medium was analyzed with IL-1b ELISA, and (F) total RNA was analyzed by qRT-PCR for ATF4 mRNA. Western blots shown are representative (n ¼ 3) experiments.

Data are mean � SEM; (n ¼ 4) for ELISA and qPCR. Unpaired t-test with Welch’s correction. *p # 0.05, **p # 0.01, ***p # 0.001. ISR ¼ integrated stress response;

qRT-PCR ¼ quantitative reverse transcription polymerase chain reaction; other abbreviations as in Figure 1.
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protein, and pro-caspase-1 mRNAs, but a small
reduction in NLRP3 mRNA was noted (Online
Figures 1E and 1F). PERK inhibition also reduced
lipid-induced tumor necrosis factor (TNF)-a and C-C
motif chemokine ligand-2 (CCL2) mRNA (Online
Figures 1E and 1F).

Additionally, we took advantage of the ATP analog
sensitive kinase allele (ASKA) of PERK to specifically

https://doi.org/10.1016/j.jacc.2018.12.055
https://doi.org/10.1016/j.jacc.2018.12.055
https://doi.org/10.1016/j.jacc.2018.12.055
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modulate PERK’s kinase activity (22). The ASKA
approach involves a conserved (gatekeeper) amino
acid mutation in the deep, hydrophobic ATP-binding
kinase pocket, which unblocks access to bulky ATP
analogs (23). The M886A mutation on PERK confers
the ability to use ATP analogs with bulky alkyl groups
(22). To prevent an unstable kinase (24), the
PERK_ASKA mice were designed with a second sta-
bilizing mutation at G646N (Online Figures 1G
and 1H). 1-NAPP1 selectively suppressed PERK_ASKA
kinase activity (along with lipid-induced caspase-1
cleavage and IL-1b secretion in macrophages) but not
wild-type PERK’s activity (Figure 1E, Online Figure 1I),
demonstrating PERK kinase activity’s role in lipid-
induced inflammasome activation.

We next investigated eIF2a’s role in lipid-induced
inflammasome activation. Sephin1, a small molecule
inhibitor of the stress-induced eIF2a regulatory sub-
unit (25,26), lead to persistent eIF2a phosphorylation
and CHOP mRNA induction in PERK inhibitor-treated
BMDMs (Figures 2A and 2B, Online Figure 2A)
GSK2606414 inhibited lipid-induced caspase-1 cleav-
age and IL-1b secretion, but not in Sephin1-treated
BMDMs (Figure 2A, Online Figure 2A). This finding
confirms PERK acts through eIF2a phosphorylation in
controlling inflammasome activation.

We next inhibited PERK signaling downstream of
eIF2a with a small molecule activator of eIF2B, ISRIB
(27). ISRIB did not inhibit lipid-induced PERK
activation or eIF2a phosphorylation but blocked
stress-induced CHOP mRNA in BMDM and THP-1
macrophages (Figures 2C and 2D, Online Figures 1C
and 2B). ISRIB led to a profound suppression of lipid-
induced caspase-1 cleavage and IL-1b secretion
(Figure 2C,Online Figures 1C and 2B). ATF4 knockdown
also led to marked suppression of PA-induced cas-
pase-1 cleavage and IL-1b secretion (Figures 2E and 2F,
Online Figure 2C). ISRIB caused a small reduction
in lipid-induced NLRP3 mRNA and unexpectedly in
pro-IL-1b (Online Figure 2D), but ATF4 knockdown did
not impact pro-Il-1b mRNA (Online Figure 2E). Collec-
tively, these findings demonstrate that interrupting
ISR signaling can profoundly block lipid-induced
inflammasome activation.

PERK-INDUCED MITOCHONDRIAL LON PROTEASE

CONTROLS MITOCHONDRIA CLEARANCE AND

INFLAMMASOME ACTIVATION. Inflammasome acti-
vation by ER stress requires increased mtROS
production (18). SFA leads to dramatic elevation of
mtROS levels in BMDMs (16), and we observed this is
completely blocked by GSK2606414, but not Sephin1
(Figure 3A, Online Figures 3A and 3B). ISRIB also
suppressed lipid-induced mtROS (Figure 3A, Online
Figure 3C), demonstrating ISR’s important role in
managing mitochondrial oxidative stress.

We next investigated how PERK-eIF2a signaling
relays lipid stress to inflammasome activation. ER
toxins can up-regulate a mitochondrial matrix, ATP-
dependent protease and stress-induced chaperone,
LONP1, in a PERK-dependent manner (28,29). PINK1
(a mitochondria localized kinase that phosphorylates
Parkinson juvenile disease protein 2 [Parkin] and
recruits autophagosomes) is a LONP1 substrate,
implicating LONP1 in Parkin-dependent mitophagy
(30). Mitophagy counteracts mtROS and inflamma-
some activation by lipids (16). We asked whether
LONP1 plays a role in SFA-induced mtROS production
and inflammasome activation. Indeed, PA induced
LONP1 expression (Figure 3B), which was significantly
blocked by GSK2606414 (Figure 3B). Sephin1, on the
other hand, induced LONP1 and prevented PERK
inhibitor’s ability to suppress LONP1 (Figure 3B). As
expected, ISRIB significantly suppressed LONP1
(Figure 3B). PERK or ATF4 knockdown also blocked
LONP1 induction by lipids (Figure 3B). These results
demonstrate SFA induces LONP1 through PERK-eIF2a
signaling. Furthermore, SFA activates PERK, induces
LONP1 (Figure 3C, Online Figures 4A to 4D), but
reduces PINK1 in macrophages (Figure 3C, Online
Figure 4A). This inverse regulation is counteracted
by GSK2606414 or ISRIB (Figure 3C, Online Figures 4A
to 4D). To confirm SFA-induced PINK1 reduction was a
consequence of LONP1 activation, we silenced LONP1
with siRNA. This led to stabilization of PINK1 levels in
lipid-stressed BMDM (Figure 3D, Online Figure 4E).
These results show SFA leads to PINK1 suppression
by activating PERK-eIF2a-LONP1 signaling. Moreover,
treatment of lipid-stressed macrophages with
GSK2606414 or LONP1 inhibitor (2-cyano-3,12-dioxo-
oleana-1,9(11)-dien-28-oic-acid [CDDO]) led to a
profound increase in Parkin and autophagy receptor
(p62) recruitment to mitochondria (Figure 3E, Online
Figure 4F). Consistently, expression of a mitochon-
dria import receptor subunit-40 (TOM40) was simul-
taneously reduced (Figure 3E, Online Figure 4F).

We next assessed LONP1’s role in mtROS genera-
tion. PA induced mtROS in BMDM, but this
was significantly blocked by LONP1 knockdown
(Figure 3F, Online Figure 4G). Suppressing
LONP1 also prevented caspase-1 cleavage and IL-1b
secretion in lipid-stressed BMDM (Figures 3G and 3H,
Online Figures 4H and 4I). However, suppressing
PINK1 compromised PERK inhibitor’s ability to
block SFA-induced caspase-1 cleavage and IL-1b
secretion (Figure 3I, Online Figure 4J). Consistently,
GSK2606414, CDDO, or ISRIB could not block
SFA-induced IL-1b secretion or caspase-1 cleavage in
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FIGURE 3 PERK-Induced Mitochondrial LON Protease Regulates Mitophagy, mtROS, and Inflammasome Activation
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FIGURE 3 Continued
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FIGURE 4 PERK Inhibition Leads to Reduction in Plaque Area in Apoe�/� Mice
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FIGURE 4 Continued
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FIGURE 5 PERK Inhibitor Suppresses Hyperlipidemia-_Induced Inflammation in Apoe�/�
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(A–G) Immunohistochemical analysis of aortic root cryosections from GSK2606414- or vehicle (DMSO)-treated Apoe�/� (mice as in Figure 4). A representative image is

shown for the quantification: (A and B)MFI (green) quantified from macrophage positive area (red) (A) P-eIF2a (n ¼ 11 control group, 10 treatment group), (B) LONP1

(n ¼ 7 control group, 7 treatment group), (C) MOMA-2 (n ¼ 11 control group, 10 treatment group), (D) CD3 (n ¼ 12 control group, 10 treatment group), (E) a-SMA

(n ¼ 14 control group, 12 treatment group), and (F) Masson’s Trichrome (n ¼ 11 control group, 10 treatment group), (G) IL-1b (MFI) (green) quantified from the

macrophage area (red) (n ¼ 11 control group, 10 treatment group). (H) Aortic root plaque RNA was analyzed by qRT-PCR for pro–IL-1b expression (n ¼ 14 control

group, 12 treatment group). (I) Immunohistochemical analysis of aortic root cryosections for caspase-1 (FAM-FLICA, green), from MOMA-2–positive (red) area (n ¼ 7

control group, 8 treatment group). (J) Plasma IL-18 (left; n ¼ 8 control group, 8 treatment group) or IFNg (right; n ¼ 7 control group, 7 treatment group) were

measured with ELISA. Data are mean � SEM; Mann-Whitney U test. *p # 0.05, **p # 0.01, ***p # 0.001. (Scale bar: 200 mm except in D: 50 mm). MFI ¼ mean

fluorescent intensity; other abbreviations as in Figures 1, 2, 3, and 4.
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Parkin-deficient BMDMs (Figure 3J, Online Figure 4K).
These collective results demonstrate ISR inhibits
PINK1-Parkin–dependent mitophagy, elevates mtROS,
and activates the inflammasome in lipid-stressed
macrophages.

INHIBITION OF PERK KINASE MITIGATES

ATHEROSCLEROSIS. Organelle stress drives athero-
sclerosis progression (14,31). We next assessed
whether inhibiting PERK could prevent atheroscle-
rosis progression (32). To test this, we challenged
Apoe�/� mice with the Western diet (16 weeks) and
injected GSK2606414 (30 mg/kg/day) (6 weeks)
(Figure 4A) (33). No significant differences in plasma
glucose and insulin levels or blood cell counts
were observed between the groups (Online Figures 5A
and 5B). We confirmed the inhibitor engaged its
molecular target effectively by assessing PERK
autophosphorylation and CHOP and ATF3 mRNA
(Figures 4B and 4C, Online Figure 5C). We detected
no improvement in plasma lipids or lipoproteins

https://doi.org/10.1016/j.jacc.2018.12.055
https://doi.org/10.1016/j.jacc.2018.12.055
https://doi.org/10.1016/j.jacc.2018.12.055
https://doi.org/10.1016/j.jacc.2018.12.055
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(Online Figures 5D–5G); however, GSK2606414 led to
a significant decrease in atherosclerotic lesions in en
face aorta preparations (44%) (Figure 4D, Online
Figure 6A). GSK2606414 significantly reduced aortic
root plaque (32%) (Figure 4E) and foam cell area (25%)
(Figure 4F, Online Figure 6B). No significant
changes in the plaque necrotic area or apoptotic cell
numbers were noted between the groups (Figure 4G,
Online Figure 6C). There was a reduction in plaque
VCAM-1 protein (33%) (Online Figure 6D), and CCL2
(20%) (Online Figure 6E), and serum monocyte che-
moattractant protein-1 (46%) (Online Figure 6F) after
PERK inhibition, suggesting macrophage recruitment
is impacted.

We also analyzed atherosclerosis in the
PERK_ASKA, Apoe�/� transgenic mice. These mice

https://doi.org/10.1016/j.jacc.2018.12.055
https://doi.org/10.1016/j.jacc.2018.12.055
https://doi.org/10.1016/j.jacc.2018.12.055
https://doi.org/10.1016/j.jacc.2018.12.055
https://doi.org/10.1016/j.jacc.2018.12.055
https://doi.org/10.1016/j.jacc.2018.12.055
https://doi.org/10.1016/j.jacc.2018.12.055
https://doi.org/10.1016/j.jacc.2018.12.055
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were fed the Western diet (14 weeks) and treated with
1-NAPP1 (60 mg/kg/day, 4 weeks) (Figure 4H).
1-NAPP1 inhibited eIF2a phosphorylation (Figure 4I)
and CHOP, ATF4, and ATF3 mRNA (Figure 4J).
Although there were no significant differences in
systemic metabolic parameters between the groups
(Online Figures 7A and 7B), 1-NAPP1 significantly
reduced atherosclerotic lesions in en face aorta
preparations (45%) (Figure 4K) and aortic root foam
cell area (20%), but not plaque area (Figure 4L). These
findings in the PERK_ASKA mouse model confirm the
atheroprotection we observed in mice treated with
the PERK inhibitor.
PERK INHIBITION BLOCKS HYPERLIPIDEMIA-INDUCED

INFLAMMATION IN VIVO. Macrophages and other
immune cells infiltrate plaques during atherogenesis
(34). We next analyzed the impact of PERK inhibi-
tion on plaque cellular composition. GSK2606414
and 1-NAPP1 both lead to significant reduction
in P-eIF2a in plaque macrophage-rich areas
(GSK2606414: 45%) (Figure 5A), (1-NAPP1: 50%)
(Online Figure 7C), as well as CHOP and ATF3 mRNA
(GSK2606414: both 33%) (Figure 4C), (1-NAPP1: CHOP
50%; ATF3: 48%) (Figure 4J). PERK inhibition
reduced LONP1 (GSK2606414: 49%) (Figure 5B),
(GSK2606414: 20%) (Figure 4C), and (1-NAPP1: 48%)
(Figure 4J). Fewer macrophages (GSK2606414: 25%)
(Figure 5C) (1-NAPP1: 33%) (Online Figure 7D) and T
cells (GSK2606414: 45%) (Figure 5D) were observed
in plaques, but vascular smooth muscle cells and
collagen content were not altered by GSK2606414
(Figures 5E and 5F). On the basis of these results, the

https://doi.org/10.1016/j.jacc.2018.12.055
https://doi.org/10.1016/j.jacc.2018.12.055
https://doi.org/10.1016/j.jacc.2018.12.055
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major consequence of PERK inhibition on plaques is
reduced immune cells and lipid content.

PERK inhibition led to a significant inhibition of
hyperlipidemia-induced expression of plaque IL-1b
protein (GSK2606414: 45%) (Figure 5G), (1-NAPP1:
47%) (Online Figure 7E), but not IL-1b mRNA (Figure
5H, Online Figure 7F). However, PERK inhibition
reduced CCL2 and TNFa mRNA levels in plaques
(GSK2606414: 20% and 30%, respectively) (Online
Figure 6E) (1-NAPP1: 48% and 47%, respectively)
(Online Figure 7G). PERK inhibition reduced active
caspase-1 (both 50%) (GSK2606414: Figure 5I, 1-NAPP1:
Online Figure 7H). Consistently, PERK inhibitor reduced
IL-18 (80%) (Figure 5J) and IFNg (80%) (Figure 5J).

BLOCKING THE ISR WITH ISRIB COUNTERACTS

ATHEROSCLEROSIS. We next investigated the
consequences of modulating eIF2B for atherosclerosis
in vivo. Apoe�/� mice on the Western diet (15 to
16 weeks) were injected with ISRIB (1 mg/kg/day;
6 weeks, 2 mg/kg/day; 5 weeks) (Figure 6A) (35). ISRIB
did not inhibit eIF2a phosphorylation in vivo but
reduced CHOP, ATF3, and LONP1 mRNAs (Figures 6B
and 6C). There were no significant differences in
metabolic parameters or blood cell counts between
the groups (Online Figures 8A to 8D), but ISRIB
caused a significant decrease in lesions in en face
aorta preparations (1 mg/kg 26% and 2 mg/kg 39%)
(Figure 6D, Online Figure 8E). ISRIB did not alter
plaque area (Figure 6E) but reduced aortic root foam
cell area (1 mg/kg 28%, 2 mg/kg 32%) (Figure 6F,
Online Figure 8F). ISRIB also did not alter plaque
necrotic area (Figure 6G).

https://doi.org/10.1016/j.jacc.2018.12.055
https://doi.org/10.1016/j.jacc.2018.12.055
https://doi.org/10.1016/j.jacc.2018.12.055
https://doi.org/10.1016/j.jacc.2018.12.055
https://doi.org/10.1016/j.jacc.2018.12.055
https://doi.org/10.1016/j.jacc.2018.12.055
https://doi.org/10.1016/j.jacc.2018.12.055
https://doi.org/10.1016/j.jacc.2018.12.055
https://doi.org/10.1016/j.jacc.2018.12.055


FIGURE 6 Blocking ISR by ISRIB Alleviates Atherosclerosis
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ISRIB significantly reduced LONP1 expression in
macrophage-rich plaque areas (protein: 35%) (Figure
7A) (mRNA: 30%) (Figure 6C). ISRIB significantly
reduced plaque macrophages and T cells (23% and
45%, respectively) (Figures 7B and 7C), IL-1b protein
(38%) (Figure 7D), but not IL-1b mRNA (Figure 7E), and
reduced active caspase-1 (50%) (Figure 7F). Consis-
tently, ISRIB reduced systemic IL-18 levels (45%)
(Figure 7G) and plaque CCL2 and TNFa mRNA (59%
and 58%, respectively) (Figure 7H). These collective
results demonstrate ISR suppression by ISRIB can
mitigate lipid-induced inflammation and plaque
development.

DISCUSSION

Persistent PERK activation and eIF2a phosphoryla-
tion is observed in atherosclerotic plaques (5,8). The
targetability of ISR was recently assessed in neuro-
degenerative diseases, identifying potent and specific
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FIGURE 7 ISRIB Suppressed Hyperlipidemia-_Induced LONP1 and _Inflammation in Apoe�/�
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quantification: (A) LONP1 (MFI) (green) quantified from macrophage-positive area (red), (B) MOMA-2, (C) CD3, and (D) IL-1b (MFI) (green) quantified from

macrophage-positive area (red) (n ¼ 7 control group, 8 treatment group). (E and F) Total aortic root plaque RNA was analyzed by qRT-PCR for (E) IL-1b, and (F) CCL2

and TNFa mRNAs (n ¼ 7 control group, 8 treatment group). (G) Immunohistochemical analysis of aortic root cryosections for Caspase1 MFI (FAM-FLICA, green)

quantified from macrophage-positive area (red) (n ¼ 7 control group, 8 treatment group). (H) Plasma IL-18 levels was measured with ELISA (from mice as shown in

Figure 6) (n ¼ 8 control group, 8 treatment group). Data are mean � SEM; Mann-Whitney U Test.*p # 0.05, **p # 0.01, ***p # 0.001. (Scale bar: 200 mm; except C:

50 mm). Abbreviation as in Figures 1, 2, 3, and 5.
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small molecule modulators (25–27,35–39). Using these
powerful chemical tools, we investigated ISR’s role in
lipid-induced inflammation and atherosclerosis. To
alleviate concerns with possible off-target effects,
we utilized multiple drugs that target 3 different
molecular players in ISR (39,40). Complementary
approaches such as PERK_ASKA mutant or knock-
down of key players in the ISR pathway confirmed our
main mechanistic finding that PERK-eIF2a-LONP1
pathway couples the stress responses of ER and
mitochondria and potentiates inflammasome activa-
tion and inflammation induced by dietary fats, thus
promotes atherosclerosis.

ISR’s ROLE IN INTERORGANELLE COMMUNICATION

AND STERILE INFLAMMATION. LONP1 is an impor-
tant mitochondrial target that is regulated by
lipid-induced PERK-eIF2a signaling in macrophages
and in lesions. We discovered that LONP1 plays an
unprecedented role during prolonged ER stress by
limiting mitochondrial clearance through degrading
PINK1. Chronic ER stress caused by dietary fats and
activation of PERK-eIF2a-LONP1 signaling can
therefore sustain high mtROS levels that flame the
inflammasome and drive inflammatory cytokine pro-
duction during atherogenesis (Central Illustration).
These findings demonstrate ISR’s role in sterile
inflammation by modulating organelle stress re-
sponses that are important for inflammasome
activation by lipids. We observed ISR inhibition sup-
presses TNFa and CCL2 mRNA induction by lipids, and
this may be in part due to the suppression of IL-1b and
IL-18 cytokine signaling or ISR’s known inhibitory
effect on inflammatory transcription factors.
Furthermore, yet uncharacterized mitochondria-
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driven metabolic shifts driven by ISR inhibitors could
alter the immune epigenome. Our results also suggest
LONP1 drives sterile inflammation and atheroscle-
rosis, but this possibility needs to be directly tested.
These findings underscore the intricate exchange of
information between ER and mitochondria is impor-
tant for metabolic health and its disruption by dietary
fats can promote inflammation and atherosclerosis.

ORGANELLE THERAPEUTICS AS AN UPSTREAM

MODULATOR OF IL-1b. Lipid-induced NLRP3 activa-
tion in plaque macrophages is an important contrib-
utor to atherosclerosis. Previous studies showed
inflammasome inhibition or antagonizing IL-1b or
IL-18 can reduce atherosclerosis independent of an
improvement in dyslipidemia (41–43). Furthermore,
the results of the CANTOS (Cardiovascular Risk
Reduction Study [Reduction in Recurrent Major CV
Disease Events]) (neutralizing IL-1b) showed a
modest, but significantly lower, rate of recurrent car-
diovascular events in patients with previous myocar-
dial infarction, supporting the inflammatory basis of
atherothrombosis in humans (44,45). On the other
hand, emerging data suggest that IL-1b inhibition can
significantly increase the risk of infections (Group A
Streptococcus [GAS] [46] and Food and Drug
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Administration Adverse Event Reporting System). IL-1
receptor (R)-deficient mice (47) as well as anakinra
(IL-1R antagonist)-treated mice display impaired
bacterial killing, hypersusceptibility to GAS infection/
dissemination (46). However, caspase-1–deficient,
NLRP3-deficient mice or NLRP3 inhibitor–treated
mice do not display increased GAS susceptibility/
dissemination, suggesting that strategies for blocking
IL-1b maturation may not carry the same risks for
infection as those blocking its receptor (46). These
findings illustrate a paradigm in which IL-1b and the
inflammasome are not functionally redundant, with
implications for atherosclerosis. Therefore, strategies
to block the IL-1b pathway in proximal steps such as
by relieving organelle stress induced by dietary fats
may be beneficial in atherosclerotic patients and
bypass the unwanted infection risk associated with
ablating IL-1b all together.
STUDY LIMITATIONS. Here, we showed modulation
of ISR, especially by targeting eIF2B, is beneficial in
atherosclerosis in mice. The feasibility of targeting
eIF2B requires further testing in human atheroscle-
rosis in future studies.

CONCLUSIONS

Targeting homeostatic pathways such as unfolded
protein response (UPR) and ISR in complex diseases
has been challenging, because ablating an essential
stress response in a long-term fashion can have un-
wanted effects (such as pancreas toxicity associated
with PERK inhibition) (48). Furthermore, genetic
mouse models for important players in these path-
ways yielded confusing results through unintentional
hyperactivation of other pathway components (49).
Many groups have tackled this challenge by using
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chemical chaperones to relieve general ER stress or
small molecules targeting one of the proximal regu-
lators in the tripartite UPR signaling (48). These
in vivo studies have taught us lessons about modu-
lating the UPR that were not predictable from cell-
based studies. For example, inositol-requiring
enzyme-1’s (IRE1’s) endoribonuclease (RNase) activity
has been associated with cell survival as opposed to its
kinase activity associated with death (1), but IRE1
RNase inhibitors showed their in vivo anti-
inflammatory properties are beneficial by mitigating
atherosclerosis (7). Furthermore, in vivo studies with
small molecules to modulate key molecular players in
the ISR have begun to illuminate how to fine tune this
homeostatic response in complex diseases (25,39,48).
In this study, using several different approaches to
modulate eIF2a phosphorylation, we demonstrated
ISR’s causal role in lipid-induced inflammasome
activation, inflammation, and atherosclerosis pro-
gression. Among these strategies, eIF2B activation (by
ISRIB) appears to be the most advantageous in
atherosclerosis. First, unlike PERK kinase inhibitors
ISRIB is not associated with toxicity. Second, detailed
mechanism of how ISRIB impacts translation
was recently illuminated (36). Third, ISRIB’s unique
memory enhancing effects combined with its
anti-inflammatory and anti-atherosclerotic actions
suggest targeting eIF2B locus could combat both
memory decline and CVD, especially in an aging
population (27,39). Further studies are needed to
illuminate ISRIB’s impact on aging, but the available
information on the specificity, efficacy, and mecha-
nism of action of ISRIB suggest eIF2B could be a
desirable, molecular target for the modulation of the
ISR in atherosclerosis (26,39,40).
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