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Landscape of Conditional eQTL
in Dorsolateral Prefrontal Cortex
and Co-localization with Schizophrenia GWAS

Amanda Dobbyn,1,2 Laura M. Huckins,1,2 James Boocock,3 Laura G. Sloofman,1

Benjamin S. Glicksberg,2,4,5 Claudia Giambartolomei,6 Gabriel E. Hoffman,1,2,4 Thanneer M. Perumal,7

Kiran Girdhar,1,2 Yan Jiang,1,8 Towfique Raj,2,4,9 Douglas M. Ruderfer,10 Robin S. Kramer,11

Dalila Pinto,2,4,8,12,13 the CommonMind Consortium, Schahram Akbarian,1,8 Panos Roussos,1,4,8

Enrico Domenici,14,15 Bernie Devlin,16 Pamela Sklar,1,2,4,8,17 Eli A. Stahl,1,4,18,*
and Solveig K. Sieberts7,18,*

Causal genes and variants within genome-wide association study (GWAS) loci can be identified by integrating GWAS statistics with

expression quantitative trait loci (eQTL) and determining which variants underlie both GWAS and eQTL signals. Most analyses, how-

ever, consider only the marginal eQTL signal, rather than dissect this signal into multiple conditionally independent signals for each

gene. Here we show that analyzing conditional eQTL signatures, which could be important under specific cellular or temporal contexts,

leads to improved finemapping of GWAS associations. Using genotypes and gene expression levels from post-mortemhuman brain sam-

ples (n ¼ 467) reported by the CommonMind Consortium (CMC), we find that conditional eQTL are widespread; 63% of genes with

primary eQTL also have conditional eQTL. In addition, genomic features associated with conditional eQTL are consistent with

context-specific (e.g., tissue-, cell type-, or developmental time point-specific) regulation of gene expression. Integrating the 2014 Psy-

chiatric Genomics Consortium schizophrenia (SCZ) GWAS and CMC primary and conditional eQTL data reveals 40 loci with strong ev-

idence for co-localization (posterior probability > 0.8), including six loci with co-localization of conditional eQTL. Our co-localization

analyses support previously reported genes, identify novel genes associated with schizophrenia risk, and provide specific hypotheses for

their functional follow-up.
Introduction

Significant advances in understanding the genetic archi-

tecture of schizophrenia (MIM: 181500) have occurred

within the last 10 years. However, for common variants

identified in genome-wide association studies (GWASs),

the success in locus identification is not yet matched by

an understanding of their underlying basic mechanism

or effect on pathophysiology. Expression quantitative trait

loci (eQTL), which are responsible for a significant propor-

tion of variation in gene expression, could serve as a link

between the numerous non-coding genetic associations

that have been identified in GWASs and susceptibility to

common diseases directly through their association with

gene expression regulation.1–4 Accordingly, results from

eQTL mapping studies have been successfully utilized to
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identify genes and causal variants from GWASs for various

complex phenotypes, including asthma (MIM: 600807),

body mass index (MIM: 601665), celiac disease (MIM:

212750), and Crohn disease (MIM: 266600).5–8

Studies integrating eQTL and GWAS data have almost

exclusively used marginal association statistics which

typically represent the primary, or most significant, eQTL

signal when assessing co-localization with GWASs,

ignoring other SNPs that affect expression independently

of the primary eQTL for a given gene. However, recent

findings indicating that conditionally independent eQTL

are widespread9–12 motivate examination of the extent to

which considering conditional eQTL may provide addi-

tional power to identify likely causal genes in a GWAS lo-

cus. Recent reports provide evidence that conditional

eQTL are less frequently shared across tissues than primary
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eQTL10 and, like tissue- and cell type-specific eQTL, are

often found more distally to the genes they regu-

late.10,13,14 These lines of evidence suggest that condition-

ally independent eQTL may contribute to tissue-specific or

other context-specific gene regulation (e.g., specific to a

particular cell type, developmental stage, or stimulation

condition). One mechanism by which disease risk could

potentially be mediated by a conditional eQTL is the

disruption of a tissue-specific enhancer by a given variant,

leading to the dysregulation of the relevant eGene in only

the tissue for which the enhancer is specific. For example,

an eQTL affecting Parkinson disease risk through expres-

sion of SNCA was recently shown to act through the

disruption of an enhancer;15 if this enhancer is specific

to a disease-relevant cell type, such as nerve cells of the

substantia nigra, then it could manifest as a conditional

eQTL since it would be only partially represented in brain

homogenate.

Here, we leveraged genotype and dorsolateral prefrontal

cortex (DLPFC) expression data provided by the Common-

Mind Consortium (CMC) to elucidate the role of condi-

tional eQTL in the etiology of schizophrenia (SCZ).

Currently comprising the largest existing postmortem

brain genomic resource at nearly 600 samples, the CMC

is generating and making publicly available an unprece-

dented array of functional genomic data, including gene

expression (RNA sequencing), histone modification (chro-

matin immunoprecipitation [ChIP-seq]), and SNP geno-

types, from individuals with psychiatric disorders as well

as unaffected controls.16 We utilized SNP dosage and

RNA-sequencing (RNA-seq) data from the CMC to identify

primary and conditionally independent eQTL. We then

characterized the resulting eQTL on various genomic

attributes including distance to transcription start site

and their genes’ specificities across tissues, cell types, and

developmental periods. In addition, we quantified enrich-

ment of primary and conditional eQTL in promoter and

enhancer functional genomic elements inferred from

epigenomic data. Finally, we isolated each independent

eQTL signal by conducting a series of ‘‘all-but-one’’ condi-

tional analyses for genes with multiple independent eQTL

and then assessed the overlap between all eQTL association

signals and the schizophrenia GWAS signals.
Material and Methods

CommonMind Consortium Data
We used pre-QC’ed genotype and expression data from the

CommonMind Consortium, and detailed information on quality

control, data adjustment, and normalization procedures can be

found in Fromer et al.16 Briefly, samples were genotyped at

958,178 markers using the Illumina Infinium HumanOmniExpress

Exome array and markers were removed on the basis of having no

alternate alleles, having a genotyping call rate % 0.98, or having a

Hardy-Weinberg p value< 53 10�5. After QC, 668 individuals gen-

otyped at 767,368 markers were used for imputation. Phasing was

performed on each chromosome using ShapeIt v2.r790,17 and var-
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iants were imputed in 5 Mb segments with Impute v2.3.118 using

the 1000 Genomes Phase 1 integrated reference panel,19 excluding

singleton variants. After phasing and imputation, then filtering out

variants with INFO < 0.8 or MAF < 0.05, the number of markers

included in the analysis totaled approximately 6.4 million. Gene

expression was assayed via RNA-seq using 100 base pair paired

end reads and was mapped to human Ensembl gene reference

(v.70) using TopHat v.2.0.9 and Bowtie v.2.1.0. After discarding

genes with less than 1 CPM (counts per million) in at least 50%

of the samples, RNA-seq data for a total of 16,423 Ensembl genes

was considered for analysis. The expression data was voom-

adjusted for both known covariates (RIN, library batch, institution,

diagnosis, post-mortem interval, and sex) and 20 surrogate vari-

ables identified via surrogate variable analysis (SVA).20 After the

removal of samples that did not pass RNA sample QC (including

but not limited to: having RIN < 5.5, having less than 50 million

total reads or more than 5% of reads aligning to rRNA, having

any discordance between genotyping and RNA-seq data, and hav-

ing RNA outlier status or evidence for contamination) and retaining

only genetically identified European-ancestry individuals, a total of

467 samples was used for downstream analyses. These 467 individ-

uals comprised 209 SCZ-affected case subjects, 52 AFF (bipolar, ma-

jor depressive disorder, or mood disorder, unspecified)-affected case

subjects, and 206 control subjects.
eQTL Identification
An overview of our workflow can be found in Figure S1. First, to

identify primary and conditional cis-eQTL, we a conducted forward

stepwise conditional analysis implemented in MatrixEQTL21 using

genotype data at 6.4 million markers and RNA-seq data for 16,423

genes. FDR was initially assessed using the Benjamini-Hochberg al-

gorithm across all cis-eQTL tests within each chromosome. FDR

was not re-assessed at each conditional step; instead, a fixed p value

threshold was used as the inclusion criteria in the stepwise model

selection. For each gene with at least one cis-eQTL (gene 5

1 Mb) association at a 5% false discovery rate (FDR), the most sig-

nificant SNPwas added as a covariate in order to identify additional

independent associations (considered significant if the p value

achieved was less than that corresponding to the initial 5% FDR

for primary eQTL). This procedure was repeated iteratively until

no further eQTLmet the p value threshold criteria.We used a linear

regression model, adjusting for diagnosis and five ancestry covari-

ates inferred by GemTools. Following eQTL identification, only

autosomal eQTL were retained for downstream analyses.
Replication in Independent Datasets
Replication was performed in the HBCC microarray cohort

(dbGaP: phs000979, see Web Resources) and in the ROSMAP22

RNA-seq cohort by fitting the stepwise regression models identi-

fied in the CMC data. For cases in which a marker was unavailable

in the replication cohort, all models including thatmarker (i.e., for

that eQTL and higher-order eQTL conditional on it, for a given

gene) were omitted from replication.

Data from the HBCC cohort was QC’ed and normalized as

described in Fromer et al.16 DLPFC tissue was profiled on the Illu-

mina HumanHT-12_V4 BeadChip and normalized in an analo-

gous manner to the CMC data. Genotypes were obtained using

the HumanHap650Yv3 or Human1MDuov3 chips and imputed

using the 1000 Genomes Phase 1 reference panel. Replication of

the eQTL models was performed on 279 genetically inferred Euro-

pean-ancestry samples (76 control subjects, 72 SCZ-affected
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subjects, 43 BP-affected subjects, 88 MDD-affected subjects), ad-

justing for diagnosis and five ancestry components.

ROSMAP data were obtained from the AMP-AD Knowledge Por-

tal (see Web Resources). Quantile normalized FPKM expression

values were adjusted for age of death, RIN, PMI, and 31 hidden

confounders from SVA, conditional on diagnosis. Only genes

with FPKM > 0 in more than 50 samples were retained. QC’ed ge-

notypes were also obtained from the AMP-AD Knowledge Portal

and imputed to the Haplotype Reference Consortium (v.1.1)23

reference panel via the Michigan Imputation Server.24 Only

markers with imputation quality score R2 R 0.7 were considered

in the replication analysis. GemTools was used to infer ancestry

components as was done for the CMC data above. After QC, 494

samples were used for eQTL replication in a linear regression

model that also adjusted for diagnosis (Alzheimer disease, mild

cognitive impairment, no cognitive impairment, and other) and

four ancestry components.
Modeling Number of eQTL per Gene on Genomic

Features
We considered three genomic features (gene length, number of LD

blocks in the cis-region, and genic constraint score) for our

modeling analyses. Gene lengths were calculated using Ensembl

gene locations. We obtained LD blocks from the LDetect Bitbucket

site to tally the number of blocks overlapping each gene’s cis-re-

gion (gene 5 1 Mb). We obtained loss-of-function-based genic

constraint scores from the Exome Aggregation Consortium

(ExAC). A negative binomial generalized linear regression model

was used to model the number of eQTL per gene based on the

above variables; results were qualitatively the same using linear

regression of Box-Cox transformed eQTL numbers. Backward-for-

ward stepwise regression using the full model with interaction

terms for these three variables was used to determine the relation-

ship between genomic attributes and eQTL number. These ana-

lyses were implemented in R. cis-heritability of gene expression

was estimated using the same CMC data that were used for

eQTL detection, including all markers in the cis-region and imple-

mented in GCTA.25 SNP-heritability estimates were then added to

the modeling procedure described above.

Tissue, cell type, and developmental time point specificity were

measured using the expression specificity metric Tau.26,27 Tissue

specificity for each gene was calculated using publicly available

expression data for 53 tissues from the GTEx project28 (release

V6p). Expression for each tissue was summarized as the log2 of

the median expression plus one, and then used to calculate tissue

specificity Tau. Cell type specificity for each gene was computed

using publicly available single-cell RNA-sequencing expression

data29 generated from human cortex and hippocampus tissues.

Raw expression counts for 285 cells comprising sixmajor cell types

of the brain were obtained from GEO (GSE67835) and counts data

were library normalized to CPM. Expression for each cell type was

summarized as the log2 of themean expression plus one, and then

used to compute cell type specificity Tau. Developmental time

point specificity for each gene was calculated using publicly avail-

able DLPFC expression data for 27 time points, clustered into eight

biologically relevant groups, from the BrainSpan atlas (see Web

Resources). Eight developmental periods30 were defined as follows:

early prenatal (8–12 pcw), early mid-prenatal (13–17 pcw), late

mid-prenatal (19–24 pcw), late prenatal (25–37 pcw), infancy

(4 months–1 year), childhood (2–11 years), adolescence (13–19

years), and adulthood (21þ years). Expression for each time point
The America
was summarized as the log2 of the median expression plus one

and then used to calculate developmental period specificity Tau.

Each Tau was added to the above model for eQTL number individ-

ually, as well as all together.
Enrichment Analyses
We divided eQTL into separate subgroups by stepwise conditional

order (first, second, and greater than second) and created sets of

matched SNPs drawn from the SNPsnap31 database for each sub-

group, matching onminor allele frequency, gene density (number

of genes within 1 Mb of the SNP), distance from SNP to TSS of the

nearest gene, and LD (number of LD-partners within r2 R 0.8). For

each subgroup of eQTL, we performed a logistic regression of sta-

tus as eQTL or matched SNP on overlap with functional annota-

tion, including the four SNP matching parameters as covariates.

Enrichment was taken as the regression coefficient estimate, inter-

pretable as the log-odds ratio for being an eQTL given a functional

annotation. Functional annotations tested included: brain pro-

moters and enhancers (union of all brain region TssA and

EnhþEnhG intervals, respectively, from the NIH Roadmap Epige-

nomics Project32 ChromHMM33 core 15-state model), brain-spe-

cific promoters and enhancers (the union of all brain region

TssA and EnhþEnhG intervals, excluding those present in seven

other non-brain tissues/cell types: primary T helper cells from pe-

ripheral blood, osteoblast primary cells, HUES64 cells, adipose

nuclei, liver, NHLF lung fibroblast primary cells, and NHEK-

epidermal keratinocyte primary cells), and pre-frontal cortex

(PFC) neuronal (NeuNþ) and non-neuronal (NeuN�) nucleus

H3K4me3 and H3K27ac ChIP-seq marks from the CMC. For

each data source, active promoter and enhancer (or H3K4me3

and H3K27ac) annotations were tested for enrichment jointly.

This analysis was repeated but restricting to matched SNPs located

within 1 Mb of any of the 16,423 genes that were tested for eQTL,

in order to determine whether the enrichment estimates were in-

flated due to the proximity of our primary and conditional eQTL

to brain-expressed genes, which may be more likely to occur

near active regulatory regions in the brain. In addition, to ensure

that any enrichment patterns observed were not due to varying ef-

fect size among primary and conditional eQTL, the enrichment

analyses were also carried out taking into account the variance

in expression explained by each eQTL. Variance explained (R2)

was estimated using the variancePartition34 R package, and eQTL

were stratified into three R2 bins: bin 1, 1 3 10�2 % R2 % 1.75 3

10�2; bin 2, 1.75 3 10�2 % R2 % 2.25 3 10�2; and bin 3, 2.25 3

10�2 % R2 % 3 3 10�2. Logistic regression of status as eQTL or

matched SNP was then carried out separately for each R2 bin,

within each eQTL order.
Conditional eQTL Analyses
In order to isolate each conditionally independent cis-eQTL asso-

ciation, we carried out a series of ‘‘all-but-one’’ conditional ana-

lyses, implemented within MatrixEQTL,21 for each gene possess-

ing more than one independent eQTL. As these conditional

eQTL signals were to be used to test for co-localization with the

SCZ GWAS signals, we limited these analyses to those genes (346

in total) with eQTL overlapping GWAS loci. For each of these

genes, we conducted an all-but-one analysis for each independent

eQTL by regressing the given gene’s expression data on the dosage

data, including all of the other independent eQTL for that gene as

covariates in addition to diagnosis and five ancestry components.

For example, three conditional analyses would be conducted for a
n Journal of Human Genetics 102, 1169–1184, June 7, 2018 1171



gene with three independent eQTL: one analysis conditioning on

the secondary and tertiary eQTL, one analysis conditioning on the

primary and tertiary, and one analysis conditioning on the pri-

mary and secondary. In this manner we generated summary statis-

tics for each independent eQTL in isolation, conditional on all of

the other independent eQTL for that gene.
Co-localization Analyses
For our co-localization analyses, we used summary statistics and

genomic intervals from the 2014 Psychiatric Genomics Con-

sortium (PGC) SCZ GWAS.35 We included 217 loci at a p value

threshold of 1 3 10�6 (excluding the MHC locus), defined these

loci by their LD r2 R 0.6 with the lead SNP, and then merged over-

lapping loci. GWAS and eQTL signatures were qualitatively

compared using p value-p value (P-P) plots, rendered in R, and

LocusZoom36 plots.

Multiple methods that aim to identify GWAS-eQTL co-localized

loci are currently available.37–42 We chose to further develop co-

loc39 for our co-localization analyses for several reasons: (1) it

uses data from all SNPs within a locus; (2) it avoids the computa-

tional burden or approximate results of Bayesian inferential

methods for causal variants,41,42 which rely on reference panel es-

timates of linkage disequilibrium (LD); and (3) and it has been

widely used43–45 including in direct comparisons of GWAS-eQTL

co-localization methods.42,46 We tested for co-localization using

an updated version of coloc39 R functions, which we name coloc2

(see Web Resources), and incorporated several improvements to

the method. First, coloc2 pre-processes data by aligning eQTL

and GWAS summary statistics for each eQTL cis-region. Second,

the coloc2 model optionally incorporates changes implemented

in gwas-pw.43 Briefly, we implemented likelihood estimation of

mixture proportions of five hypotheses (H0, no association; H1,

GWAS association only; H2, eQTL association only; H3, both but

not co-localized; and H4, both and co-localized) from genome-

wide data. Coloc2 uses these proportions as priors (or optionally,

coloc default or user-specified priors) in the empirical Bayesian

calculation of the posterior probability of co-localization for

each locus (eQTL cis-region). Coloc2 averages per-SNP Wakefield

asymptotic Bayes factors (WABF)47 across three different values

for the WABF prior variance term, 0.01, 0.1, and 0.5, and provides

options for specifying phenotypic variance, estimating it from

case-control proportions or estimating it from the data.
Results

Identification of eQTL

Primary and conditional eQTL were identified using geno-

type and RNA-seq data from the CommonMind Con-

sortium post-mortem DLPFC samples (467 European-

ancestry case and control subjects).16 We identified

12,813 primary and 16,082 conditional eQTL, totaling

28,895 independent eQTL. Of the genes tested, 81%

(12,813 of 15,817 autosomal genes) had at least one

eQTL and 63% of these (51% of all genes) also had at least

one conditional eQTL, with an average of 1.83 indepen-

dent eQTL per gene (2.26 among those with at least one

eQTL) (Figure 1A). Conversely, when examining the distri-

butions for the number of genes whose expression was

affected by each eQTL (Table S1), the majority of eQTL
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were specific for a single gene, and only a small fraction

of eQTL, 1.47%, affected more than one gene, with a

maximum of six genes affected by a single eQTL.

We tested for replication of conditional eQTL in two in-

dependent datasets, the National Institute of Mental

Health’s Human Brain Collection Core (HBCC, n ¼ 279,

microarray expression data) and the Religious Orders

Study/Memory and Aging Project22 (ROSMAP, n ¼ 494,

RNA-seq expression). For each gene the same models

were evaluated that were identified in forward-stepwise

conditional analysis in the CMC data. We observed signif-

icant evidence of replication for both primary and condi-

tional eQTL in the HBCC and ROSMAP post-mortem brain

cohorts (Table S2). The estimated proportion of true associ-

ations (p1) in ROSMAP was 0.57 and 0.26 for primary and

conditional eQTL, respectively; in HBCC p1 was 0.46 and

0.20 for primary and conditional eQTL. Therefore, replica-

tion was stronger for primary than for conditional eQTL, as

expected given their stronger effect sizes. Replication rates

were somewhat higher in the RNA-seq ROSMAP data than

in HBCC.

Genomic Characterization of Primary and Conditional

eQTL

The features for which primary and conditional eQTL and

their respective eGenes displayed identifiable differences

included distance from eQTL to its gene’s transcription

start site (TSS), gene length, LD blocks per genic cis-region,

genic constraint score, and genic cis-SNP-heritability. Ac-

cording to prior results, eQTL that are shared across tissues

and cell types tend to be located closer to transcription

start sites than context-specific eQTL;13,14 we therefore first

examined the relationship between primary or conditional

eQTL status and distance to genic TSS. Primary eQTL fall

closer to the TSS than conditional eQTL (Figure 1C): pri-

mary eQTL occur at a median distance of 70.4 kb from

the TSS versus a median distance of 302 kb for conditional

eQTL. This difference holds true even more proximally to

the TSS (Figure S2); 8.1% and 2.5% of primary and condi-

tional eQTL, respectively, fall within 3 kb of the TSS. We

next characterized the relationship between the number

of independent eQTL per gene and three different genomic

features: gene length, number of LD blocks48 in the gene’s

cis-region (51 Mb), and Exome Aggregation Consortium

(ExAC) genic constraint score,49 including possible interac-

tions. The best multivariate model for eQTL number

included gene length, number of LD blocks, and genic

constraint as predictors, as well as a gene length-LD blocks

interaction (Table 1). The number of independent eQTL

was positively correlated with gene length and number

of LD blocks and negatively correlated with genic

constraint score (Figure S3). We then examined the vari-

ance of gene expression explained by cis-region SNPs, or

cis-SNP-heritability, estimated by linear mixed model vari-

ance component analysis25 (Figure S4). We found a strong

effect of estimated cis-heritability on number of indepen-

dent eQTL (Table 1, Figure S5). In a joint model with
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Figure 1. Characterization of Conditional eQTL
(A) Counts of the numbers of genes (y axis) regulated by at least N (1 % N % 16) independent eQTL (x axis).
(B) Median Tau value (y axis) for genes with N independent eQTL (x axis), colored by Tau type (cell type, developmental time point, or
tissue type Tau).
(C) Density plot representing the distance from eSNP to eGene transcription start site (TSS), colored by eQTL order. Dashed lines repre-
sent the median distance to TSS for each order of eQTL.
cis-SNP-heritability, the main effects of gene length, num-

ber of LD blocks, and genic constraint on eQTL number re-

mained at least nominally significant.

We then addressed whether genes with conditional

eQTL exhibit greater context specificity as measured by

the robust expression specificity metric Tau.26,27 We calcu-

lated Tau across 53 tissues from the Genotype-Tissue

Expression (GTEx) project, across 6 DLPFC cell types (as-

trocytes, endothelial cells, microglia, neurons, oligoden-

drocytes, and oligodendrocyte progenitor cells) from sin-

gle-cell RNA-seq,29 and across 8 developmental periods30

(early prenatal, early mid-prenatal, late mid-prenatal, late

prenatal, infant, child, adolescent, and adult) from the

BrainSpan atlas DLPFC RNA-seq data. We confirmed that

higher values of Tau reflect expression specificity by

comparing the distributions of all three Tau measures for

all genes with the distributions for a subset of house-

keeping genes50 (Figure S6). We found positive correlations

between eQTL number and tissue, cell type, and develop-

mental time point specificities (Figure 1B, Table 1, Table

S3, Figure S7). In a joint model, the strongest correlation

was with DLPFC cell type Tau, which is consistent with

previous data demonstrating tissue-specific, cell type-

dependent expression in blood;12 however, we note that

all three Tau sets were inter-correlated (Table S3).
The America
Epigenetic Enrichment Analyses

One way in which eQTL may affect gene expression is

through alteration of cis-regulatory elements such as pro-

moters and enhancers. Putative causal eSNPs have been

shown to be enriched in genomic regions containing func-

tional annotations such as DNase hypersensitive sites,

transcription factor binding sites, promoters, and en-

hancers.51–54 Our observation that conditional eQTL fall

farther from transcription start sites than primary eQTL

led us to hypothesize that primary eQTL may affect tran-

scription levels by altering functional sites in promoters

whereas conditional eQTL may do so by altering more

distal regulatory elements such as enhancers. We therefore

assessed enrichment of primary and conditional eQTL in

brain active promoter (TssA) and enhancer (merged Enh

and EnhG) states derived from the NIH Roadmap Epige-

nomics Project,32,33 and in H3K4me3 and H3K27ac

neuronal (NeuNþ) and non-neuronal (NeuN�) ChIP-seq

peaks from a subset of the CMC post-mortem DLPFC sam-

ples. The overlap of H3K4me3 and H3K27ac ChIP-seq

peaks was used as a proxy for active promoters, and

H3K27ac peaks that do not overlap H3K4me3 peaks were

used as a (relatively non-specific) proxy for enhancers.33

We performed logistic regression of SNP status (eQTL

versus random matched SNP) on overlap with functional
n Journal of Human Genetics 102, 1169–1184, June 7, 2018 1173



Table 1. Number of eQTL per Gene Modeled on Genomic Features

Predictor
Model 1
Estimate

Model 1
Robust SE

Model 1
Pr(> jzj)

Model 2
Estimate

Model 2
Robust SE

Model 2
Pr(> jzj)

Model 3
Estimate

Model 3
Robust SE

Model 3
Pr(> jzj)

log(Gene length) 0.27 0.04 5.16E�12 0.16 0.03 2.20E�06 0.17 0.03 9.87E�07

LD blocks 0.59 0.17 6.47E�04 0.33 0.15 2.92E�02 0.37 0.15 1.55E�02

log(Gene length):
LD blocks

�0.03 0.02 7.77E�02 �0.01 0.01 5.65E�01 �0.01 0.01 4.11E�01

Constraint �0.61 0.03 5.93E�85 �0.20 0.03 2.93E�13 �0.15 0.03 5.41E�08

cis-heritability – – – 7.03 0.18 0.00 7.02 0.18 0.00

Tau (tissue) – – – – – – 0.08 0.08 2.76E�01

Tau (DLPFC cell type) – – – – – – 0.20 0.09 3.69E�02

Tau (developmental
time point)

– – – – – – 0.17 0.09 5.99E�02
annotations, separately for each eQTL order (primary, sec-

ondary, and greater than secondary).

Primary and conditional eQTL were significantly en-

riched in both promoter and enhancer chromatin states

from REMC brain and CMC DLPFC tissues, with greatest

enrichments overall observed in PFC neuronal (NeuNþ)
promoters and enhancers (Figure 2, Table S4). We found

that whereas active promoter enrichments in all tissue/

cell types markedly decreased with higher conditional or-

der of eQTL, enhancer enrichments either only slightly

decreased (REMC brain and PFC NeuNþ, Figures 2A and

2C) or remained level (REMC brain-specific, Figure 2B).

Though there was also significant enrichment of eQTL in

non-neuronal nuclei (NeuN�) promoters and enhancers,

this trend of a marked decrease in active promoters but

steady levels of enhancer enrichment with greater eQTL

order was not observed for non-neuronal PFC nuclei

(Figure 2D). This greater decrease in enrichment for pro-

moters compared to enhancers with increasing eQTL order

was not confounded by an excess of eQTL near brain-ex-

pressed genes in comparison to matched SNPs (Figure S8,

Table S5) and furthermore was not an artifact of varying ef-

fect size with eQTL order; the same overall pattern was

observed when stratifying eQTL by variance in expression

explained (R2) and comparing enrichment across eQTL or-

der, within each R2 bin (Figures S9–S12, Table S6).

eQTL Co-localization with SCZ GWAS

We performed co-localization analyses in order to evaluate

the extent of overlap between eQTL and GWAS signatures

in schizophrenia and to identify putative causal genes

from GWAS associations. Considering 217 loci (Table S7)

with lead SNPs reaching a significance threshold of p <

13 10�6 from the 2014 Psychiatric Genomics Consortium

(PGC) schizophrenia GWAS,35 we tabulated the number of

primary and conditional eQTL falling within GWAS loci. A

total of 114 out of 217 loci contained primary and/or

conditional eQTL for 346 genes; 110 of these genes had

one eQTL only and 236 genes hadmore than one indepen-

dent eQTL.
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To quantitatively compare the SCZ GWAS and eQTL as-

sociation signatures, we modified the R package coloc39

for Bayesian inference of co-localization between the two

sets of summary statistics across each gene’s cis-region.

Coloc2, our modified implementation of coloc, analyzes

the hierarchical model of gwas-pw,43 with likelihood-based

estimation of dataset-wide probabilities of five hypotheses

(H0, no association; H1, GWAS association only; H2, eQTL

association only; H3, both but not co-localized; and H4,

both and co-localized). We then used these probabilities

as priors to calculate empirical Bayesian posterior probabil-

ities for the five hypotheses for each locus, in particular

PPH4 for co-localization.

For genes with conditional eQTL overlapping SCZGWAS

loci, summary statistics from all-but-one conditional

eQTL analyses were assessed for co-localization with the

GWAS signature (Figure 3). To illustrate this analytical

strategy, we show eQTL results for the iron responsive

element binding protein 2 gene IREB2 (MIM: 147582,

chr15:78729773–78793798) as an example (Figure 4). For-

ward stepwise selection analysis identified two indepen-

dent cis-eQTL for IREB2. In order to generate summary

statistics for each eQTL in isolation, we conducted two

all-but-one conditional analyses, in each analysis condi-

tioning on all but a focal independent eQTL (for IREB2

this entailed conditioning on only one eQTL per condi-

tional analysis, but involved conditioning on up to six

eQTL per gene across all genes considered in the SCZ co-

localization analysis). We then tested for co-localization

between the GWAS and all of the eQTL summary statistics

resulting from the above conditioning analysis using co-

loc2 (Table S12). In the case of IREB2, the conditional

eQTL (rs7171869) was implicated as co-localized with the

GWAS signal at this locus with a posterior probability for

co-localization (PPH4) of 0.94. A qualitative examination

of the IREB2 locus supported the coloc2 results: the corre-

lation between the GWAS p values and conditional eQTL

p values was higher than that between the GWAS and pri-

mary eQTL p values (Figure 4A). In addition, the GWAS

signature for the locus more closely resembled the
e 7, 2018



Figure 2. Enrichments of Primary and Conditional eQTL in Active Regulatory Annotations
Plotted are enrichments (regression coefficient estimate5 95%CI from logistic regression, y axes) of primary (x axis eQTL order¼ 1) and
conditional (eQTL order ¼ 2, R 3) eQTL in functional annotations.
(A and B) Enrichment in brain (union of all individual brain regions) and brain-specific (present in brain but not in seven other non-
brain tissues) active promoter (green) and enhancer (orange) ChromHMM states from the NIH Roadmap Epigenomics Project.
(C) Enrichment in neuronal nuclei (NeuNþ) for active promoters (intersection of DLPFC H3K4me3 and H3K27ac ChIP-seq peaks, green)
and enhancers (H3K27 peaks that do not overlap H3K4me3 peaks, orange).
(D) Enrichments in the same annotations, but for DLPFC non-neuronal nuclei (NeuN�).
conditional eQTL signature than either the non-condi-

tional eQTL signature or the primary eQTL signature

(Figure 4B).

We found that 40 loci contained genes with strong evi-

dence of co-localization between eQTL and GWAS signa-

tures, with posterior probability of H4 (PPH4) R 0.8

(Table 2). When restricting to genome-wide significance

for the GWAS, we found co-localization in 24 of the 108

loci. Given the correlations between number of indepen-

dent eQTL and expression specificity scores (Tau) across

tissues, cell types, and development, we tabulated the re-

ported genes’ Tau percentiles and expression levels, to

highlight contexts in which the genes are specifically ex-

pressed (Table 2, Table S8). We acknowledge that while

posterior probability PPH4 R 0.8 demonstrates strong

Bayesian evidence for co-localization, it is an arbitrary

threshold for characterizing loci as GWAS-eQTL co-local-

ized; we find that many loci with PPH4 R 0.5 appear qual-

itatively consistent with co-localization.

Importantly, for 6 of the 40 co-localizing loci, a condi-

tional rather than primary eQTL co-localized with the

GWAS with compelling qualitative support (Table 2,

Figure 4, Table S11, Figures S13–S17). The genes showing

strong evidence for conditional eQTL co-localization

include SLC35E2, PROX1-AS1 (MIM: 601546), PPM1M
The America
(MIM: 608979), SDAD1P1, STAT6 (MIM: 601512), and

IREB2. Also notable are the occurrences of complex pat-

terns of co-localization for some loci; for example, three

loci showed evidence for co-localization with a primary

eQTL for one gene and a conditional eQTL for another.

Comparison with Previous Co-localization Analyses

In the prior CMC study, a GWAS-eQTL co-localization

analysis implemented in Sherlock and using non-condi-

tional eQTL summary statistics reported a total of 18 co-

localized loci, representing 17% of the 108 genome-wide

significant loci examined. Through our all-but-one condi-

tional co-localization analysis, we replicate the majority

of their findings and detect an additional 13 instances of

co-localization, bringing the total number of co-localiza-

tions when considering only the genome-wide significant

(and not including the MHC) loci up to 24 (representing

22% of these 108 loci) (Table S9). These 13 comprise in-

stances of conditional eQTL co-localization (for genes

SLC35E2 and IREB2) and improved detection of primary

eQTL co-localization due to isolation of independent

eQTL signatures and our choice of co-localization software

(coloc2). Of the six co-localized loci identified in the previ-

ous but not current analysis, three resulted from differ-

ences in study design such as GWAS locus definition and
n Journal of Human Genetics 102, 1169–1184, June 7, 2018 1175



Figure 3. All-but-One Conditional Analysis to Isolate Independent eQTL Signatures
(A) Hypothetical GWAS signature (top, green) at a given locus and an overlapping hypothetical eQTL signature (bottom, purple), which
comprises two independent eQTL.
(B) Same hypothetical GWAS and eQTL signatures after the all-but-one conditional eQTL analysis isolating the primary (red) and sec-
ondary (blue) eQTL signatures. Before conditional analysis there is a lack of co-localization between the GWAS signature and eQTL signa-
ture. After all-but-one conditional analysis, there is evidence for co-localization between the conditional (secondary) eQTL and GWAS
signatures.
eQTL overlap criteria, and two were suggestive in the cur-

rent analysis (0.65 < PPH4 < 0.8). The one remaining

discrepant locus (chr8:143302933–143403527) was found

to co-localize with TSNARE1 eQTL previously (Sherlock

p ¼ 8.24 3 10�7) but not here (coloc2 primary eQTL

PPH4 ¼ 0.074, PPH3 ¼ 0.93). A qualitative comparison

of the eQTL and GWAS data (Figure S18) did not appear

to support co-localization; while the strongest GWAS

association and the strongest eQTL are in close phy-

sical proximity, the LD between the two index SNPs is

low (r2�0.2–0.4). Additionally, our attempts to disentangle

independent eQTL signal via conditional analysis do not

reveal the GWAS index SNP to be in high LD with any of

the conditionally independent eQTL peaks.

We also compared our conditional co-localization results

with those from non-conditional eQTL analysis, using co-

loc2 and the same SCZ GWAS loci (Table S10). Conditional

and non-conditional coloc2 results were highly concor-

dant, with slightly higher PPH4s resulting from the same

WABFs due to a higher prior probability of co-localization

estimated in the non-conditional coloc2 analysis. Thirty-

five loci were co-localized in both analyses; five loci

that were co-localized in the non-conditional analysis

only were highly suggestive in the conditional analysis

(0.65< PPH4< 0.8), and the five loci that were co-localized
1176 The American Journal of Human Genetics 102, 1169–1184, Jun
only in the conditional coloc2 analysis involved condi-

tional eQTL, emphasizing the utility of the conditional

analysis. This conditional eQTL co-localization represents

a substantial proportion (�15%) of all instances of co-

localization, and furthermore could reflect context-specific

differential expression that has the potential to implicate

cell types, tissue types, and developmental stages that are

relevant to disease etiology.
Discussion

Weutilized genotype and expression data from 467 human

post-mortem brain samples from the DLPFC to conduct

eQTL mapping analyses, to characterize both primary

and conditional eQTL. We then identified co-localization

between SCZ GWAS and eQTL association signals,

comprising both primary and conditional eQTL. Our prin-

cipal findings include four major observations. First, we

detect that conditional eQTL are widespread in the brain

tissue samples we investigated. In 63% of genes with at

least one eQTL, we found multiple statistically indepen-

dent eQTL (representing 8,136 genes). In addition, condi-

tional eQTL make substantial contributions to regulatory

genetic variation, as there is a strong association between
e 7, 2018



Figure 4. GWAS Signature for IREB2 Co-localizes with the Conditional eQTL Signature
(A) P-P plots comparing�log10 p values fromGWAS (y axes) and all-but-one conditional eQTL analysis (x axes), which show the highest
correlation to be between the GWAS and the conditional eQTL rs7171869 (blue, bottom).
(B) LocusZoom plots for the IREB2 locus, where the GWAS signal (top) more closely resembles the conditional eQTL signal (rs7171869,
bottom) than the primary eQTL signal (rs11639224, third from top) or non-conditional eQTL signal (second from top). For all
LocusZoom plots, LD is colored with respect to the GWAS lead SNP (rs8042374, labeled).
eQTL number and gene expression cis-SNP-heritability.

This demonstrates that genetic variation affecting RNA

abundance is incompletely characterized by focusing on

only one primary eQTL per gene, which is the case

currently for most eQTL studies.

Second, we find the genomics of conditional eQTL and

their genes are consistent with complex, context-specific

regulation of gene expression, which may be conferred

through overlap with distal regulatory elements. Genes

with more independent eQTL tend to be larger and span

multiple recombination hotspot intervals, and tend to be
The America
less constrained at the protein level. While these associa-

tions may reflect in part greater power to detect indepen-

dent eQTL that are not in linkage disequilibrium and

explain more phenotypic variance, they are also consistent

with more complex regulation and greater potential for reg-

ulatory genetic variation. Context-specific genetic regula-

tion of expression could manifest as conditional eQTL

signal in the analysis of expression from a heterogeneous

source. For example, eQTL in naive and stimulated (LPS,

IFN) monocytes55 may occur as either primary or condi-

tional eQTL in our CMC data, due to related microglial cells
n Journal of Human Genetics 102, 1169–1184, June 7, 2018 1177



Table 2. GWAS-eQTL Co-localized Loci

Chr GWAS Locus Start GWAS Locus End GWAS Lead SNP GWAS p Value eSNP eSNP p Value
Primary/
Conditional PPH4 Gene

Relevant Tissue/Cell Type/
Developmental Period

1 2372401 2402501 rs4648845 4.03E�09 rs12037821 4.9E�04 conditional 0.87 SLC35E2 –/–/early mid-prenatal

1 8355697 8638984 rs301797 2.03E�09 rs138050288 1.8E�04 primary 0.95 RERE –/–/–

1 30412551 30443951 rs1498232 1.28E�09 rs2015244 1.8E�08 primary 0.99 PTPRU –/neurons /early mid-prenatal

1 163582923 163766623 rs7521492 5.64E�07 rs10799961 3.18E�11 primary 0.91 PBX1 –/–/early prenatal

1 205015255 205189455 rs16937 8.69E�07 rs12724651 7.31E�07 primary 0.89 TMEM81 –/neurons/–

rs12031350 8.15E�06 conditional 0.87 RBBP5 –/–/–

1 214137889 214163689 rs7529073 9.69E�07 rs1431983 1.67E�04 conditional 0.93 PROX1-AS1 cerebellar hemisphere/neurons/adult

2 73194203 73900439 rs56145559 8.42E�08 rs11679809 1.85E�34 primary 0.86 ALMS1P testis/–/–

2 110262036 110398236 rs9330316 7.69E�08 rs892464 2.35E�26 primary 0.92 SEPT10 –/–/late prenatal

2 198148577 198835577 rs6434928 1.48E�11 rs12621129 6.06E�12 primary 0.94 SF3B1 –/–/–

2 200715237 201247789 rs281768 1.78E�14 rs35220450 3.46E�14 primary 0.95 FTCDNL1, AC073043.2 –/–/adult

rs186546506 8.77E�04 conditional 0.83 LINC01792, AC007163.3 putamen (basal ganglia)/ –/adult

2 208371631 208531731 rs2709410 5.75E�07 rs34171849 5.86E�17 primary 0.88 METTL21A –/–/–

rs2551656 2.85E�09 primary 0.86 CREB1 –/–/early prenatal

2 220033801 220071601 rs6707588 9.51E�07 rs13404754 1.08E�09 primary 0.92 CNPPD1 –/–/–

3 36843183 36945783 rs75968099 3.39E�12 rs9834970 1.88E�05 primary 0.94 DCLK3 nerve - tibial /neurons/infant

3 52281078 53539269 rs2535627 3.96E�11 rs6801235 2.81E�08 conditional 0.86 PPM1M –/neurons/late prenatal

3 63792650 64004050 rs832187 2.58E�08 rs113386200 1.95E�12 primary 0.98 THOC7 –/–/–

3 135807405 136615405 rs7432375 5.27E�11 rs10935184 7.71E�25 primary 0.93 PCCB –/–/–

4 170357552 170646052 rs10520163 1.02E�08 rs7438 1.02E�09 primary 0.97 CLCN3 –/–/–

5 45291475 46404116 rs1501357 1.24E�08 rs9292918 4.45E�05 primary 0.94 BRCAT54, RP11-53O19.1 –/–/adult

6 83779798 84407274 rs3798869 8.57E�10 rs2016358 1.19E�09 primary 0.90 SNAP91 cerebellar hemisphere/–/–

6 108875527 109019327 rs9398171 3.37E�08 rs111727905 3.84E�06 primary 0.97 ZNF259P1 –/–/early mid-prenatal

7 21485312 21545712 rs73060317 6.60E�07 rs141984481 3.59E�05 primary 0.92 SP4 –/–/early prenatal

8 8088038 10056127 rs2945232 2.03E�08 rs2980441 7.68E�69 primary 0.82 FAM86B3P –/–/adolescent

8 26181524 26279124 rs1042992 2.27E�07 rs17055186 3.06E�24 conditional 0.91 SDAD1P1 testis/–/adult

8 38020424 38310924 rs57709857 2.32E�07 rs201999919 1.70E�07 primary 0.88 WHSC1L1 –/–/early prenatal

8 144822546 144871746 rs11784536 1.83E�07 rs12541792 6.45E�35 primary 0.90 FAM83H esophagus - mucosa/
oligodendrocytes/adolescent

(Continued on next page)
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Table 2. Continued

Chr GWAS Locus Start GWAS Locus End GWAS Lead SNP GWAS p Value eSNP eSNP p Value
Primary/
Conditional PPH4 Gene

Relevant Tissue/Cell Type/
Developmental Period

9 26839508 26909408 rs10967586 4.75E�07 rs12345197 3.90E�06 primary 0.80 IFT74 –/–/–

11 46340213 46751213 rs7951870 1.97E�11 rs16938506 5.08E�05 primary 0.88 MDK –/–/early mid-prenatal

12 57428314 57497814 rs324017 2.13E�07 rs4559 2.02E�05 conditional 0.91 STAT6 –/microglia/adolescent

14 35421614 35847614 rs77477310 1.52E�07 rs1028449 8.09E�04 primary 0.84 RP11-85K15.2 –/–/–

15 78803032 78926732 rs8042374 1.87E�12 rs7171869 1.44E�04 conditional 0.94 IREB2 –/–/early prenatal

15 84661161 85153461 rs950169 7.62E�11 rs35677834 1.54E�34 primary 0.80 LOC101929479, RP11-
561C5.3

ovary/–/early mid-prenatal

15 91416560 91436560 rs4702 2.30E�12 rs4702 4.49E�13 primary 1.00 FURIN –/endothelial cells/adolescent

16 4447751 4596451 rs6500602 2.79E�07 rs3747580 4.75E�16 primary 0.90 CORO7 –/–/–

rs8046295 2.68E�11 primary 0.89 NMRAL1 –/–/–

16 29924377 30144877 rs12691307 1.30E�10 rs4788203 1.95E�05 primary 0.88 TMEM219 –/–/–

rs3935873 7.46E�14 primary 0.87 INO80E –/neurons/–

rs4787491 1.60E�04 conditional 0.82 DOC2A brain - cortex/neurons/adolescent

16 58669293 58691393 rs12325245 1.15E�08 rs11647976 4.83E�04 primary 0.94 CNOT1 –/–/–

17 17722402 18030202 rs8082590 6.84E�09 rs4072739 4.74E�13 primary 0.92 DRG2 –/–/–

19 11839736 11859736 rs72986630 4.64E�08 rs72986630 2.20E�14 primary 1.00 ZNF823 –/endothelial cells/early prenatal

19 19374022 19658022 rs2905426 6.92E�09 rs2965199 9.22E�36 primary 0.87 GATAD2A –/–/–

19 50067499 50135399 rs56873913 2.19E�07 rs5023763 9.32E�05 primary 0.93 SNRNP70 –/–/–

22 41408556 42689414 rs9607782 6.76E�12 rs200447424 1.87E�04 primary 0.96 RANGAP1 –/–/–
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being present in brain tissue homogenate.We found that 60

stimulation-specific eQTL (FDR< 0.01 in interferon or lipo-

polysaccharide stimulated monocytes, but FDR R 0.05 in

naive monocytes) were also conditional eQTL in DLPFC.

Notably, rs7171787, a conditional (tertiary) eQTL in our

DLPFC analysis, is a stimulation-specific monocyte eQTL

for the neurodevelopmental56–58 gene CYFIP1. In our

data, associations with specificity of expression across tis-

sues, developmental periods, and cell types determined

from single-cell RNA-sequencing data suggest that context

specificity plays a role in the occurrence of multiple statisti-

cally independent eQTL. Cell type specificity is particularly

strongly correlated with eQTL number, consistent with

those cell types being present in the current tissue

homogenate data. Since previous studies have shown the

importance of developmental59–62 or cell-specific contribu-

tions61,63–66 to schizophrenia, interrogation of independent

eQTL effects may elucidate developmental or tissue-specific

effects obscured in whole-tissue eQTL studies.

This context specificity of expression regulation is

potentially mediated through overlap of eSNPs with

distal regulatory elements, such as enhancers. Conditional

eQTL occur farther from transcription start sites than pri-

mary eQTL, consistent with effects on enhancers. In addi-

tion, while both primary and conditional eQTL are en-

riched in both active promoter and enhancer regions,

their enrichment in active promoters diminishes with

increasing conditional eQTL order. In other words, condi-

tional eQTL show greater enrichment in enhancers relative

to promoters than do primary eQTL.

Third, we have identified a number of candidate genes

for which genetic variation for expression co-localizes

with genetic variation for schizophrenia risk (Table 2),

including cases of co-localization with conditional eQTL.

Genetic co-localization is expected if gene expression

causally mediates disease risk, although we recognize

that co-localization could also result from pleiotropy or

linkage, particularly in regions of extensive linkage

disequilibrium and haplotype structure.40,67 We also note

that several co-localization methods have recently been

developed,37,38,40–42 and direct comparisons have found

broad concordance among these methods and a high de-

gree of specificity of positive results using coloc.42,45,46

However, some differences in results would likely be

achieved using alternative co-localization methods.

Our analyses prioritize 27 genes within 24 genome-wide

significant (GWAS p < 5 3 10�8) SCZ loci and 19 genes in

17 suggestive (p < 1 3 10�6) loci. In addition to a number

of previously implicated SCZ risk genes, our findings

include several genes not previously considered as candi-

dates,35 in some cases—e.g., SLC35E2, PTPRU (MIM:

602454), LINC01792, DCLK3, PPM1M, LOC101929479—

because the genes themselves do not overlap the GWAS lo-

cus regions but their eQTL do. In examining these genes

for expression specificity in GTEx tissues, brain sample

cell types from single-cell RNA-seq,29 and in BrainSpan

DLPFC developmental periods (Tables 2 and S8), we find
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their expression contexts show a diversity of patterns

and can provide clues to generate specific hypotheses for

functional follow-up of their potential roles in SCZ. Inter-

estingly, genes broadly expressed across cell types tend to

show prenatal expression.

Fourth, we highlight the importance of examining con-

ditional eQTL for co-localization with GWASs. In at least 6

out of 40 loci showing GWAS-eQTL co-localization, a con-

ditional eQTL signal co-localizes with SCZ risk. This is

likely to be a conservative estimate, as the smaller effect

sizes of conditional eQTL results in bias against detection

of conditional GWAS-eQTL co-localization. If we had

considered only primary eQTL in the analyses, these in-

stances of co-localization would not have been identified.

Among our highlighted conditional eQTL-GWAS co-local-

ized genes are IREB2, STAT6, and PROX1-AS1. IREB2 (iron

regulatory element binding protein 2) is a key regulator of

iron homeostasis68,69 that has been previously implicated

in neurodegenerative disorders.70,71 Mouse IREB2 homo-

log Irp2 knockouts exhibit impairments in coordination

and balance, exploration, and nociception.69 The im-

mune-related transcription factor STAT6 induces inter-

leukin 4 (IL-4)-mediated anti-apoptotic activity of T help-

er cells, and the locus is associated with migraine72,73 and

brain glioma74 as well as several immune/inflammatory

diseases.75–77 STAT6 also activates neuronal progenitor/

stem cells and neurogenesis,78 making it intriguing as an

immune-related SCZ candidate given recent observations

about the role of complement factor 4 (C4) gene as a SCZ

risk gene79 and prior work potentially implicating micro-

glia.80 Consistent with a role in immune-mediated synap-

tic pruning, STAT6 expression is broadly postnatal and

shows specificity for microglia (Table S8). PROX1-AS1 en-

codes a lncRNA that has been implicated as aberrantly ex-

pressed in several cancers, is upregulated in the cell cycle

S-phase, and promotes G1/S transition in cell culture.81

As a potential regulator of the Prospero Homeobox 1

(PROX1) transcription factor, it could be involved in

development and cell differentiation in several tissues,

including oligodendrocytes82 and GABAnergic interneu-

rons83 in the brain. PROX1-AS1 expression is specific to

neurons and mature oligodendrocytes and is expressed

postnatally (Table S8).

In conclusion, we find that conditional eQTL are wide-

spread and are consistent with complex and context-spe-

cific regulation. Accounting for conditional eQTL leads to

new findings of GWAS-eQTL co-localization and generates

specific hypotheses for the role of gene expression regula-

tion in disease etiology. The analytical strategy presented

here could be implemented as a means of identification

of putatively causal genes for any phenotype in which

GWAS summary statistics and expression and genotype

data from the GWAS phenotype-relevant tissue are avail-

able. Conditional eQTL that co-localize with disease risk

may reflect regulatory mechanisms that are important in

a key developmental period or individual cell type and

may bemissed when focusing on primary eQTL discovered
e 7, 2018



in adult whole tissue. As further efforts are made to

generate data across ranges of tissues or individual cell

types, we may have a better ability to directly identify reg-

ulatory variants specific to these contexts. However, if a

variant is primarily active in a very specific time point or

stimulus condition, capturing data reflecting this condi-

tion will remain challenging. Conditional co-localization

analysis in well-powered eQTL cohorts may best identify

the genes driving these trait associations, though further

validation work will be required to understand the mecha-

nism by which the gene contributes to disease risk.
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