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Unsupervised Anomaly Detection With
LSTM Neural Networks
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Abstract— We investigate anomaly detection in an unsuper-
vised framework and introduce long short-term memory (LSTM)
neural network-based algorithms. In particular, given variable
length data sequences, we first pass these sequences through
our LSTM-based structure and obtain fixed-length sequences.
We then find a decision function for our anomaly detectors based
on the one-class support vector machines (OC-SVMs) and sup-
port vector data description (SVDD) algorithms. As the first time
in the literature, we jointly train and optimize the parameters of
the LSTM architecture and the OC-SVM (or SVDD) algorithm
using highly effective gradient and quadratic programming-
based training methods. To apply the gradient-based training
method, we modify the original objective criteria of the OC-SVM
and SVDD algorithms, where we prove the convergence of the
modified objective criteria to the original criteria. We also provide
extensions of our unsupervised formulation to the semisupervised
and fully supervised frameworks. Thus, we obtain anomaly detec-
tion algorithms that can process variable length data sequences
while providing high performance, especially for time series data.
Our approach is generic so that we also apply this approach to
the gated recurrent unit (GRU) architecture by directly replacing
our LSTM-based structure with the GRU-based structure. In our
experiments, we illustrate significant performance gains achieved
by our algorithms with respect to the conventional methods.

Index Terms— Anomaly detection, gated recurrent unit (GRU),
long short-term memory (LSTM), support vector data descrip-
tion (SVDD), support vector machines (SVMs).

I. INTRODUCTION

A. Preliminaries

ANOMALY detection [1] has attracted significant inter-
est in the contemporary learning literature due to its

applications in a wide range of engineering problems [2]–[4].
In this article, we study the variable length anomaly detection
problem in an unsupervised framework, where we seek to find
a function to decide whether or not each unlabeled variable
length sequence in a given data set is anomalous. Note that
although this problem is extensively studied in the literature
and there exist different methods, e.g., supervised (or semisu-
pervised) methods, that require the knowledge of data labels,
we employ an unsupervised method due to the high cost of
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obtaining accurate labels in most real-life applications [1].
However, we also extend our derivations to the semisupervised
and fully supervised frameworks for completeness.

In the current literature, a common and widely used
approach for anomaly detection is to find a decision function
that defines the model of normality [1], [5]. In this approach,
one first defines a certain decision function and then optimizes
the parameters of this function with respect to a predefined
objective criterion, e.g., the one-class support vector machines
(OC-SVMs) and support vector data description (SVDD) algo-
rithms [6], [7]. However, algorithms based on this approach
examine time series data over a sufficiently long time window
to achieve an acceptable performance [1], [8], [9]. Thus,
their performances significantly depend on the length of this
time window so that this approach requires careful selection
for the length of the time window to provide a satisfactory
performance [8], [10]. To enhance performance for time series
data, Fisher kernel and generative models are introduced
[11]–[14]. However, the main drawback of the Fisher kernel
model is that it requires the inversion of the Fisher information
matrix, which has a high computational complexity [11], [12].
On the other hand, in order to obtain an adequate performance
from a generative model such as a hidden Markov model
(HMM), one should carefully select its structural parameters,
e.g., the number of states and topology of the model [13], [14].
Furthermore, the type of training algorithm has also consider-
able effects on the performance of generative models, which
limits their usage in real-life applications [14]. Thus, neural
networks, especially recurrent neural networks (RNNs)-based
approaches are introduced, thanks to their inherent memory
structure that can store “time” or “state” information [1], [15].
However, since the basic RNN architecture does not have
control structures (gates) to regulate the amount of information
to be stored [16], [17], a more advanced RNN architec-
ture with several control structures, i.e., the long short-term
memory (LSTM) network, is introduced [17], [18]. However,
neural networks-based approaches cannot directly optimize an
objective criterion for anomaly detection due to the lack of
data labels in an unsupervised framework [1], [19]. Hence,
they first predict a sequence from its past samples and then
determine whether the sequence is an anomaly or not based
on the prediction error, i.e., an anomaly is an event, which
cannot be predicted from the past nominal data [1]. Thus,
they require a probabilistic model for the prediction error and a
threshold on the probabilistic model to detect anomalies, which
results in challenging optimization problems and restricts their
performance accordingly [1], [19], [20]. Furthermore, both the
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Fig. 1. Overall structure of our anomaly detection approach.

common and neural networks-based approaches can process
only fixed-length vector sequences, which significantly limits
their usage in real-life applications [1].

In order to circumvent these issues, we introduce novel
LSTM-based anomaly detection algorithms for variable length
data sequences. In particular, we first pass variable length
data sequences through an LSTM-based structure to obtain
fixed-length representations. We then apply our OC-SVM [6]-
based algorithm and SVDD [7]-based algorithm for detecting
anomalies in the extracted fixed-length vectors as illustrated
in Fig. 1. Unlike the previous approaches in the literature [1],
we jointly train the parameters of the LSTM architecture
and the OC-SVM (or SVDD) formulation to maximize the
detection performance. For this joint optimization, we propose
two different training methods, i.e., a quadratic programming-
based algorithm and gradient-based algorithm, where the
merits of each different approach are detailed in the arti-
cle. For our gradient-based training method, we modify the
original OC-SVM and SVDD formulations and then provide
the convergence results of the modified formulations to the
original ones. Thus, instead of following the prediction-based
approaches [1], [19], [20] in the current literature, we define
proper objective functions for anomaly detection using the
LSTM architecture and optimize the parameters of the LSTM
architecture via these well-defined objective functions. Hence,
our anomaly detection algorithms are able to process variable
length sequences and provide high performance for time series
data. Furthermore, since we introduce a generic approach in
the sense that it can be applied to any RNN architecture,
we also apply our approach to the gated recurrent unit (GRU)
architecture [21], i.e., an advanced RNN architecture as the
LSTM architecture, in our simulations. Through an extensive
set of experiments, we demonstrate significant performance
gains with respect to the conventional methods [6], [7], [10].

B. Prior Art and Comparisons

Several different methods have been introduced for the
anomaly detection problem [1]. Among these methods,
the OC-SVM [6] and SVDD [7] algorithms are generally
employed due their high performance in real-life applica-
tions [22]. However, these algorithms provide inadequate
performance for time series data due to their inability to
capture time dependencies [8], [9]. In order to improve the
performances of these algorithms for time series data, in [9],
Zhang et al. convert time series data into a set of vectors
by replicating each sample so that they obtain 2-D vector
sequences. However, even though they obtain 2-D vector

sequences, the second dimension does not provide additional
information such that this approach still provides inadequate
performance for time series data [8]. As another approach,
the OC-SVM-based method in [8] acquires a set of vectors
from time series data by unfolding the data into a phase
space using a time delay embedding process [23]. More
specifically, for a certain sample, they create an E dimensional
vector by using the previous E − 1 samples along with the
sample itself [8]. However, in order to obtain satisfactory
performance from this approach, the dimensionality, i.e., E ,
should be carefully tuned, which restricts its usage in real-life
applications [24]. On the other hand, even though LSTM-based
algorithms provide high performance for time series data,
we have to solve highly complex optimization problems to
get adequate performance [1]. For example, the LSTM-based
anomaly detection algorithms in [10] and [25] first predict time
series data and then fit a multivariate Gaussian distribution
to the error, where they also select a threshold for this
distribution. Here, they allocate a different set of sequences
to learn the parameters of the distribution and threshold via
the maximum likelihood estimation technique [10], [25]. Thus,
the conventional LSTM-based approaches require careful
selection of several additional parameters, which significantly
degrades their performance in real-life [1], [10]. Furthermore,
both the OC-SVM- (or SVDD) and LSTM-based methods
are able to process only fixed-length sequences [6], [7], [10].
To circumvent these issues, we introduce generic LSTM-based
anomaly detectors for variable length data sequences, where
we jointly train the parameters of the LSTM architecture
and the OC-SVM (or SVDD) formulation via a predefined
objective function. Therefore, we not only obtain high perfor-
mance for time series data but also enjoy joint and effective
optimization of the parameters with respect to a well-defined
objective function.

C. Contributions

Our main contributions are as follows.
1) We introduce LSTM-based anomaly detection algo-

rithms in an unsupervised framework, where we also
extend our derivations to the semisupervised and fully
supervised frameworks.

2) As the first time in the literature, we jointly train the
parameters of the LSTM architecture and the OC-SVM
(or SVDD) formulation via a well-defined objective
function, where we introduce two different joint opti-
mization methods. For our gradient-based joint opti-
mization method, we modify the OC-SVM and SVDD
formulations and then prove the convergence of the
modified formulations to the original ones.

3) Thanks to our LSTM-based structure, the introduced
methods are able to process variable length data
sequences. In addition, unlike the conventional meth-
ods [6], [7], our methods effectively detect anomalies in
time series data without requiring any preprocessing.

4) Through an extensive set of experiments involving
real and simulated data, we illustrate significant per-
formance improvements achieved by our algorithms
with respect to the conventional methods [6], [7], [10].
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Moreover, since our approach is generic, we also apply
it to the recently proposed GRU architecture [21] in our
experiments.

D. Organization of the Article

The organization of this article is as follows. In Section II,
we first describe the variable length anomaly detection
problem and then introduce our LSTM-based structure.
In Section III-A, we introduce anomaly detection algorithms
based on the OC-SVM formulation, where we also propose
two different joint training methods in order to learn the
LSTM and SVM parameters. The merits of each different
approach are also detailed. In a similar manner, we introduce
anomaly detection algorithms based on the SVDD formulation
and provide two different joint training methods to learn the
parameters in Section III-B. In Section IV, we demonstrate
performance improvements over several real-life data sets.
Thanks to our generic approach, we also introduce GRU-based
anomaly detection algorithms. Finally, we provide concluding
remarks in Section V.

II. MODEL AND PROBLEM DESCRIPTION

In this article, all vectors are column vectors and denoted
by boldface lower case letters. Matrices are represented by
boldface uppercase letters. For a vector a, aT is its ordinary
transpose and ||a|| = √

aT a is the �2-norm. The time index is
given as subscript, e.g., ai is the i th vector. Here, 1 (and 0) is
a vector of all ones (and zeros) and I represents the identity
matrix, where the sizes are understood from the context.

We observe data sequences {X i }n
i=1, i.e., defined as

X i = [xi,1 xi,2 . . . xi,di ]
where xi, j ∈ R

p , ∀ j ∈ {1, 2, . . . di } and di ∈ Z
+ is the

number of columns in X i , which can vary with respect to i .
Here, we assume that the bulk of the observed sequences
are normal and the remaining sequences are anomalous. Our
aim is to find a scoring (or decision) function to determine
whether X i is anomalous or not based on the observed
data, where +1 and −1 represent the outputs of the desired
scoring function for nominal and anomalous data, respectively.
As an example application for this framework, in host-based
intrusion detection [1], the system handles operating system
call traces, where the data consist of system calls that are
generated by users or programs. All traces contain system calls
that belong to the same alphabet; however, the co-occurrence
of the system calls is the key issue in detecting anomalies [1].
For different programs, these system calls are executed in
different sequences, where the length of the sequence may
vary for each program. Binary encoding of a sample set
of call sequences can be X1 = 101011, X2 = 1010, and
X3 = 1011001 for n = 3 case [1]. After observing such a set
of call sequences, our aim is to find a scoring function that
successfully distinguishes the anomalous call sequences from
the normal sequences.

In order to find a scoring function l(·) such that

l(X i ) =
�

−1, if X i is anomalous

+1, otherwise

Fig. 2. Our LSTM-based structure for obtaining fixed-length sequences. Note
that each LSTM block has the same parameters; however, we represent them
as separate blocks for presentation simplicity.

one can use the OC-SVM algorithm [6] to find a hyperplane
that separates the anomalies from the normal data or the SVDD
algorithm [7] to find a hypersphere enclosing the normal data
while leaving the anomalies outside the hypersphere. However,
these algorithms can only process fixed-length sequences.
Hence, we use the LSTM architecture [18] to obtain a fixed-
length vector representation for each Xi as we previously
introduced in [26]. Although there exist several different ver-
sions of LSTM architecture, we use the most widely employed
architecture, i.e., the LSTM architecture without peephole
connections [17]. We first feed X i to the LSTM architecture
as demonstrated in Fig. 2, where the internal LSTM equations
are as follows [18]:

zi, j = g(W (z)xi, j + R(z)hi, j−1 + b(z)) (1)

si, j = σ(W (s)xi, j + R(s)hi, j−1 + b(s)) (2)

f i, j = σ(W ( f )xi, j + R( f )hi, j−1 + b( f )) (3)

ci, j = si, j � zi, j + f i, j � ci, j−1 (4)

oi, j = σ(W (o)xi, j + R(o)hi, j−1 + b(o)) (5)

hi, j = oi, j � g(ci, j ) (6)

where ci, j ∈ R
m is the state vector, xi, j ∈ R

p is the input
vector, and hi, j ∈ R

m is the output vector for the j th LSTM
unit in Fig. 2. In addition, si, j , f i, j , and oi, j is the input,
forget, and output gates, respectively. Here, g(·) is set to
the hyperbolic tangent function, i.e., tanh, and applies to
input vectors pointwise. Similarly, σ(·) is set to the sigmoid
function. � is the operation for elementwise multiplication of
two same-sized vectors. Furthermore, W (·), R(·), and b(·) are
the parameters of the LSTM architecture, where the size of
each is selected according to the dimensionality of the input
and output vectors. Basically, in our LSTM architecture, ci, j−1
represents the cell state of the network from the previous
LSTM block. This cell state provides an information flow
between consecutive LSTM blocks. For the LSTM architec-
ture, it is important to determine how much information we
should keep in the cell state. Thus, in order to determine the
amount of information to be kept, we use f i, j , which outputs
a number between 0 and 1, and scales the cell state in (4).
The next step is to determine how much new information
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we should learn from the data. For this purpose, we compute
zi, j , which contains new candidate values, via a tanh layer,
where we control the amount of learning through si, j . We then
generate a new cell state information by multiplying old and
new information with the forget and input gates, respectively,
as in (4). Finally, we need to determine what we should output.
In order to obtain the output, we use ci, j . However, we also
need to determine which parts of the cell state we should keep
for the output. Thus, we first compute oi, j to filter certain parts
of the cell state. Then, we push the cell state through a tanh
layer and multiply it with the output gate to obtain the final
output of an LSTM block as in (6).

After applying the LSTM architecture to each column of
our data sequences as illustrated in Fig. 2, we take the average
of the LSTM outputs for each data sequence, i.e., the mean
pooling method. Through this, we obtain a new set of fixed-
length sequences, i.e., denoted as {h̄i }n

i=1, h̄i ∈ R
m . Note that

we also use the same procedure to obtain the state information
c̄i ∈ R

m for each X i as demonstrated in Fig. 2. We emphasize
that even though we do not use the mean state vector c̄i

explicitly in Section III, all the calculations that include h̄i

also requires the computation c̄i via the mean pooling method.
Remark 1: We use the mean pooling method in order to

obtain the fixed-length sequences as h̄i = (1/di )
�di

j=1 hi, j .
However, we can also use the other pooling methods. For
example, for the last and max pooling methods, we use h̄i =
hi,di and h̄i = max j hi, j , ∀i ∈ {1, 2, . . . n}, respectively. Our
derivations can be straightforwardly extended to these different
pooling methods.

III. NOVEL ANOMALY DETECTION ALGORITHMS

In this section, we first formulate the anomaly detection
approaches based on the OC-SVM and SVDD algorithms.
We then provide joint optimization updates to train the para-
meters of the overall structure.

A. Anomaly Detection With the OC-SVM Algorithm

In this section, we provide an anomaly detection algorithm
based on the OC-SVM formulation and derive the joint updates
for both the LSTM and SVM parameters. For the training,
we first provide a quadratic programming-based algorithm and
then introduce a gradient-based training algorithm. To apply
the gradient-based training method, we smoothly approximate
the original OC-SVM formulation and then prove the conver-
gence of the approximated formulation to the actual one in
Section III-A2.

In the OC-SVM algorithm, our aim is to find a hyperplane
that separates the anomalies from the normal data [6]. We for-
mulate the OC-SVM optimization problem for the sequence
{h̄i }n

i=1 as follows [6]:

min
θ∈R

nθ ,w∈Rm,ξ∈R,ρ∈R

�w�2

2
+ 1

nλ

n�
i=1

ξi − ρ (7)

s. t.: wT h̄i ≥ ρ − ξi , ξi ≥ 0 ∀i (8)

W (·)T W (·) = I, R(·)T R(·) = I

and b(·)T b(·) = 1 (9)

where ρ and w are the parameters of the separating hyper-
plane, λ > 0 is a regularization parameter, ξ is a slack
variable to penalize misclassified instances, and we group
the LSTM parameters {W (z), R(z), b(z), W (s), R(s), b(s),
W ( f ), R( f ), b( f ), W (o), R(o), b(o)} into θ ∈ R

nθ , where
nθ = 4m(m+ p+1). Since the LSTM parameters are unknown
and h̄i is a function of these parameters, we also minimize the
cost function in (7) with respect to θ .

After solving the optimization problem in (7)–(9), we use
the scoring function

l(X i ) = sgn(wT h̄i − ρ) (10)

to detect the anomalous data, where the sgn(·) function returns
the sign of its input.

We emphasize that while minimizing (7) with respect to θ ,
we might suffer from overfitting and impotent learning of time
dependencies on the data [27], i.e., forcing the parameters to
null values, e.g., θ = 0. To circumvent these issues, we intro-
duce (9), which constraints the norm of θ to avoid overfitting
and trivial solutions, e.g., θ = 0, while boosting the ability of
the LSTM architecture to capture time dependencies [27], [28].

Remark 2: In (9), we use an orthogonality constraint for
each LSTM parameter. However, we can also use other con-
straints instead of (9) and solve the optimization problem in
(7)–(9) in the same manner. For example, a common choice
of constraint for neural networks is the Frobenius norm [29],
i.e., defined as

�A�F =
�

i

�
j

A2
i j (11)

for a real matrix A, where Ai j represents the element at
the i th column and j th row of A. In this case, we can
directly replace (9) with a Frobenius norm constraint for
each LSTM parameter as in (11) and then solve the opti-
mization problem in the same manner. Such approaches only
aim to regularize the parameters [28]. However, for RNNs,
we may also encounter exponential growth or decay in the
norm of the gradients while training the parameters, which
significantly degrades capabilities of these architectures to
capture time dependencies [27], [28]. Moreover, (9) also
regularizes the parameters by bounding the norm of each
column of the coefficient matrices as one. Thus, in this article,
we put the constraint (9) in order to regularize the parameters
while improving the capabilities of the LSTM architecture in
capturing time dependencies [27], [28].

1) Quadratic Programming-Based Training Algorithm:
Here, we introduce a training approach based on quadratic
programming for the optimization problem in (7)–(9), where
we perform consecutive updates for the LSTM and SVM
parameters. For this purpose, we first convert the optimization
problem to a dual form in the following. We then provide the
consecutive updates for each parameter.

We have the following Lagrangian for the SVM parameters:
L(w, ξ, ρ, ν, α) = �w�2

2
+ 1

nλ

n�
i=1

ξi − ρ −
n�

i=1

νiξi

−
n�

i=1

αi (w
T h̄i − ρ + ξi ) (12)
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where νi , αi ≥ 0 are the Lagrange multipliers. Taking
derivative of (12) with respect to w, ξ , and ρ and then setting
the derivatives to zero give

w =
n�

i=1

αi h̄i (13)

n�
i=1

αi = 1 and αi = 1/(nλ) − νi ∀i. (14)

Note that at the optimum, the inequalities in (8) become
equalities if αi and νi are nonzero, i.e., 0 < αi < 1/(nλ) [6].
With this relation, we compute ρ as

ρ =
n�

j=1

α j h̄
T
j h̄i for 0 < αi < 1/(nλ). (15)

By substituting (13) and (14) into (12), we obtain the
following dual problem for the constrained minimization
in (7)–(9):

min
θ∈R

nθ ,α∈Rn

1

2

n�
i=1

n�
j=1

αiα j h̄
T
i h̄ j (16)

s. t.:
n�

i=1

αi = 1 and 0 ≤ αi ≤ 1/(nλ) ∀i (17)

W (·)T W (·) = I, R(·)T R(·) = I

and b(·)T b(·) = 1 (18)

where α ∈ R
n is a vector representation for αi ’s. Since the

LSTM parameters are unknown, we also put the minimization
term for θ into (16) as in (7). By substituting (13) into (10),
we have the following scoring function for the dual problem:

l(X i ) = sgn

⎛
⎝ n�

j=1

α j h̄
T
j h̄i − ρ

⎞
⎠ (19)

where we calculate ρ using (15).
In order to find the optimal θ and α for the optimization

problem in (16)–(18), we employ the following procedure.
We first select a certain set of the LSTM parameters, i.e., θ0.
Based on θ0, we find the minimizing α values, i.e., α1, using
the sequential minimal optimization (SMO) algorithm [30].
Now, we fix α as α1 and then update θ from θ0 to θ1 using
the algorithm for optimization with orthogonality constraints
in [31]. We repeat these consecutive update procedures until
α and θ converge [32]. Then, we use the converged values
in order to evaluate (19). Although the convergence of the
algorithm is not guaranteed, it can be obtained by carefully
tuning certain parameters, e.g., the learning rate, in most of
real-life applications [32]. In the following, we explain these
procedures in detail.

Based on θ k , i.e., the LSTM parameter vector at the
kth iteration, we update αk , i.e., the α vector at the kth iteration,
using the SMO algorithm due to its efficiency in solving
quadratic constrained optimization problems [30]. In the SMO
algorithm, we choose a subset of parameters to minimize and
fix the rest of parameters. In the extreme case, we choose only
one parameter to minimize, however, due to (17), we must

choose at least two parameters. To illustrate how the SMO
algorithm works in our case, we choose α1 and α2 to update
and fix the rest of the parameters in (16). From (17), we have

α1 = 1 − S − α2, where S =
n�

i=3

αi . (20)

We first replace α1 in (16) with (20). We then take the
derivative of (16) with respect to α2 and equate the derivative
to zero. Thus, we obtain the following update for α2 at the
kth iteration:

αk+1,2 = (αk,1 + αk,2)(K11 − K12) + M1 − M2

K11 + K22 − 2K12
(21)

where Kij � h̄
T
i h̄ j , Mi �

�n
j=3 αk, j Ki j and αk,i represents

the i th element of αk . Due to (17), if the updated value of α2 is
outside of the region [0, 1/(nλ)], we project it to this region.
Once α2 is updated as αk+1,2, we obtain αk+1,1 using (20).
For the rest of the parameters, we repeat the same procedure,
which eventually converges to a certain set of parameters [30].
In this way, we obtain αk+1, i.e., the minimizing α for θ k .

Following the update of α, we update θ based on the
updated αk+1 vector. For this purpose, we employ the opti-
mization method in [31]. Since we have αk+1 that satisfies
(17), we reduce the dual problem to

min
θ

κ(θ ,αk+1) = 1

2

n�
i=1

n�
j=1

αk+1,iαk+1, j h̄
T
i h̄ j (22)

s.t.:W (·)T W (·) = I, R(·)T R(·) = I and b(·)T b(·) = 1. (23)

For (22) and (23), we update W (·) as follows:

W (·)
k+1 =

	
I + μ

2
Ak


−1	
I − μ

2
Ak



W (·)

k (24)

where the subscripts represent the current iteration index, μ is
the learning rate, Ak = Gk(W (·)

k )T −W (·)
k GT

k , and the element
at the i th row and the j th column of G is defined as

Gi j � ∂κ(θ,αk+1)

∂W (·)
i j

. (25)

Remark 3: For R(·) and b(·), we first compute the gradient
of the objective function with respect to the chosen parameter
as in (25). We then obtain Ak according to the chosen para-
meter. Using Ak , we update the chosen parameter as in (24).

With these updates, we obtain a quadratic programming-
based training algorithm (see Algorithm 1 for the pseudocode)
for our LSTM-based anomaly detector.

2) Gradient-Based Training Algorithm: Although the
quadratic programming-based training algorithm directly opti-
mizes the original OC-SVM formulation without requiring any
approximation, since it depends on the separated consecutive
updates of the LSTM and OC-SVM parameters, it might not
converge to even a local minimum [32]. In order to resolve this
issue, in this section, we introduce a training method based on
only the first-order gradients, which updates the parameters at
the same time. However, since we require an approximation
to the original OC-SVM formulation to apply this method,
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Algorithm 1 Quadratic Programming-Based Training for the
Anomaly Detection Algorithm Based on OC-SVM
1: Initialize the LSTM parameters as θ0 and the dual

OC-SVM parameters as α0
2: Determine a threshold � as convergence criterion
3: k = −1
4: do
5: k = k + 1
6: Using θ k , obtain {h̄}n

i=1 according to Fig. 2
7: Find optimal αk+1 for {h̄}n

i=1 using (20) and (21)
8: Based on αk+1, obtain θ k+1 using (24) and Remark 3
9: while

�
κ(θk+1,αk+1) − κ(θk,αk)

�2
> �

10: Detect anomalies using (19) evaluated at θ k and αk

we also prove the convergence of the approximated formula-
tion to the original OC-SVM formulation in this section.

Considering (8), we write the slack variable in a different
form as follows:

G(βw,ρ(h̄i )) � max{0, βw,ρ(h̄i )} ∀i (26)

where

βw,ρ(h̄i ) � ρ − wT h̄i .

By substituting (26) into (7), we remove the constraint (8) and
obtain the following optimization problem:

min
w∈Rm,ρ∈R,θ∈R

nθ

�w�2

2
+ 1

nλ

n�
i=1

G(βw,ρ(h̄i )) − ρ (27)

s.t.: W (·)T W (·) = I, R(·)T R(·) = I and b(·)T b(·) =1.

(28)

Since (26) is not a differentiable function, we are unable to
solve the optimization problem in (27) using gradient-based
optimization algorithms. Hence, we employ a differentiable
function

Sτ (βw,ρ(h̄i )) = 1

τ
log

	
1 + eτβw,ρ (h̄i )



(29)

to smoothly approximate (26), where τ > 0 is the smoothing
parameter and log represents the natural logarithm. In (29),
as τ increases, Sτ (·) converges to G(·) (see Fig. 3); hence,
we choose a large value for τ .

Proposition 1: As τ increases, Sτ (βw,ρ(h̄i )) uniformly
converges to G(βw,ρ(h̄i )). As a consequence, our approxi-
mation Fτ (w, ρ, θ ) converges to the SVM objective function
F(w, ρ, θ ), i.e., defined as

F(w, ρ, θ ) � �w�2

2
+ 1

nλ

n�
i=1

G(βw,ρ(h̄i )) − ρ.

Proof of Proposition 1: The proof of the proposition is
given in Appendix A. �

With (29), we modify our optimization problem as follows:

min
w∈Rm ,ρ∈R,θ∈R

nθ

Fτ (w, ρ, θ ) (30)

s.t.: W (·)T W (·) = I, R(·)T R(·) = I and b(·)T b(·) =1

(31)

Fig. 3. Comparison of (26) with its smooth approximations.

where Fτ (·, ·, ·) is the objective function of our optimization
problem and defined as

Fτ (w, ρ, θ ) � �w�2

2
+ 1

nλ

n�
i=1

Sτ (βw,ρ(h̄i )) − ρ.

To obtain the optimal parameters for (30) and (31), we update
w, ρ and θ until they converge to a local or global opti-
mum [31], [33]. For the update of w and ρ, we use the
gradient descent algorithm [33], where we compute the first-
order gradient of the objective function with respect to each
parameter. We first compute the gradient for w as follows:

∇w Fτ (w, ρ, θ ) = w + 1

nλ

n�
i=1

−h̄i e
τβw,ρ (h̄i )

1 + eτβw,ρ (h̄i )
. (32)

Using (32), we update w as

wk+1 = wk − μ∇w Fτ (w, ρ, θ )



w=wk
ρ=ρk
θ=θ k

(33)

where the subscript k indicates the value of any parameter at
the kth iteration. Similarly, we calculate the derivative of the
objective function with respect to ρ as follows:

∂ Fτ (w, ρ, θ )

∂ρ
= 1

nλ

n�
i=1

eτβw,ρ (h̄i )

1 + eτβw,ρ (h̄i )
− 1. (34)

Using (34), we update ρ as

ρk+1 = ρk − μ
∂ Fτ (w, ρ, θ )

∂ρ




w=wk
ρ=ρk
θ=θ k

. (35)

For the LSTM parameters, we use the method for optimization
with orthogonality constraints in [31] due to (31). To update
W (·), we calculate the gradient of the objective function as

∂ Fτ (w, ρ, θ )

∂W (·)
i j

= 1

nλ

n�
i=1

−wT
�
∂ h̄i/∂W (·)

i j

�
eτβw,ρ (h̄i )

1 + eτβw,ρ (h̄i )
. (36)

We then update W (·) using (36) as

W (·)
k+1 =

	
I + μ

2
Bk


−1	
I − μ

2
Bk



W (·)

k (37)
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where Bk = Mk(W (·)
k )T − W (·)

k MT
k and

M i j � ∂ Fτ (w, ρ, θ )

∂W (·)
i j

. (38)

Remark 4: For R(·) and b(·), we first compute the gradient
of the objective function with respect to the chosen parameter
as in (38). We then obtain Bk according to the chosen
parameter. Using Bk , we update the chosen parameter as
in (37).

Remark 5: In the semisupervised framework, we have
the following optimization problem for our SVM-based
algorithms [34]:

min
θ ,w,ξ,η,γ,ρ

	�l
i=1 ηi + �l+k

j=l+1 min(γ j , ξ j )

(1/C)



+ �w� (39)

s.t.: yi (w
T h̄i + ρ) ≥ 1 − ηi , ηi ≥ 0, i = 1, . . . , l

(40)

wT h̄ j − ρ ≥ 1 − ξ j , ξ j ≥ 0 j = l + 1, . . . , l + k (41)

−wT h̄ j + ρ ≥ 1 − γ j , γ j ≥ 0 j = l + 1, . . . , l + k (42)

W (·)T W (·) = I, R(·)T R(·) = I and b(·)T b(·) = 1

(43)

where γ ∈ R and η ∈ R are slack variables as ξ , C is a tradeoff
parameter, l and k are the number of the labeled and unlabeled
data instances, respectively, and yi ∈ {−1,+1} represents the
label of the i th data instance.

For the application of quadratic programming-based training
method in the semisupervised case, we apply all the steps
from (12) to (25) for the optimization problem in (39)–(43).
Similarly, we modify the equations from (26) to (38) accord-
ing to (39)–(43) in order to get the gradient-based training
method in the semisupervised framework. For the supervised
implementations, we follow the same procedures with the
semisupervised implementations for k = 0 case.

Hence, we complete the required updates for each
parameter. The complete algorithm is also provided in
Algorithm 2 as a pseudocode. Moreover, we illustrate the
convergence of our approximation (29)–(26) in Proposition 1.
Using Proposition 1, we then demonstrate the convergence
of the optimal values for our objective function (30) to the
optimal values of the actual SVM objective function (27)
in Theorem 1.

Theorem 1: Let wτ and ρτ be the solutions of (30) for
any fixed θ . Then, wτ and ρτ are unique and Fτ (wτ , ρτ , θ)
converges to the minimum of F(w, ρ, θ ).

Proof of Theorem 1: The proof of the theorem is given in
Appendix B. �

B. Anomaly Detection With the SVDD Algorithm

In this section, we introduce an anomaly detection algorithm
based on the SVDD formulation and provide the joint updates
in order to learn both the LSTM and SVDD parameters.
However, since the generic formulation is the same with the
OC-SVM case, we only provide the required and distinct
updates for the parameters and proof for the convergence of
the approximated SVDD formulation to the actual one.

Algorithm 2 Gradient-Based Training for the Anomaly Detec-
tion Algorithm Based on OC-SVM
1: Initialize the LSTM parameters as θ0 and the OC-SVM

parameters as w0 and ρ0
2: Determine a threshold � as convergence criterion
3: k = −1
4: do
5: k = k + 1
6: Using θ k , obtain {h̄}n

i=1 according to Fig. 2
7: Obtain wk+1, ρk+1 and θ k+1 using (33), (35), (37) and

Remark 4
8: while

�
Fτ (wk+1, ρk+1, θ k+1) − Fτ (wk, ρk, θ k)

�2
> �

9: Detect anomalies using (10) evaluated at wk , ρk and θk

In the SVDD algorithm, we aim to find a hypersphere that
encloses the normal data while leaving the anomalous data
outside the hypersphere [7]. For the sequence {h̄i }n

i=1, we have
the following SVDD optimization problem [7]:

min
θ∈R

nθ ,c̃∈Rm,ξ∈R,R∈R

R2 + 1

nλ

n�
i=1

ξi (44)

s. t.: �h̄i − c̃�2 − R2 ≤ ξi , ξi ≥ 0 ∀i (45)

W (·)T W (·) = I, R(·)T R(·) = I and b(·)T b(·) = 1 (46)

where λ > 0 is a tradeoff parameter between R2 and the
total misclassification error, R is the radius of the hypersphere,
and c̃ is the center of the hypersphere. In addition, θ and ξ
represent the LSTM parameters and the slack variable, respec-
tively, as in the OC-SVM case. After solving the constrained
optimization problem in (44)–(46), we detect anomalies using
the following scoring function:

l(X i ) = sgn(R2 − �h̄i − c̃�2). (47)

1) Quadratic Programming-Based Training Algorithm:
In this section, we introduce a training algorithm based on
quadratic programming for (44)–(46). As in the OC-SVM
case, we first assume that the LSTM parameters are fixed and
then perform optimization over the SVDD parameters based
on the fixed LSTM parameters. For (44) and (45), we have
the following Lagrangian:

L(c̃, ξ, R, ν, α) = R2 + 1

nλ

n�
i=1

ξi −
n�

i=1

νiξi

−
n�

i=1

αi (ξi − �h̄i − c̃�2 + R2) (48)

where νi , αi ≥ 0 are the Lagrange multipliers. Taking
derivative of (48) with respect to c̃, ξ , and R and then setting
the derivatives to zero yields

c̃ =
n�

i=1

αi h̄i (49)

n�
i=1

αi = 1 and αi = 1/(nλ) − νi ∀i. (50)
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Putting (49) and (50) into (48), we obtain a dual form for
(44) and (45) as follows:

min
θ∈Rnθ ,α∈Rn

n�
i=1

n�
j=1

αiα j h̄
T
i h̄ j −

n�
i=1

αi h̄
T
i h̄i (51)

s. t.:
n�

i=1

αi = 1 and 0 ≤ αi ≤ 1/(nλ) ∀i (52)

W (·)T W (·) = I, R(·)T R(·) = I and b(·)T b(·) =1.

(53)

Using (49), we modify (47) as

l(X i ) = sgn

⎛
⎝R2 −

n�
k=1

n�
j=1

αkα j h̄
T
k h̄ j

+ 2
n�

j=1

α j h̄
T
j h̄i − h̄

T
i h̄i

⎞
⎠. (54)

In order to solve the constrained optimization problem in
(51)–(53), we employ the same approach as in the OC-SVM
case. We first fix a certain set of the LSTM parameters θ .
Based on these parameters, we find the optimal α using
the SMO algorithm. After that, we fix α to update θ using
the algorithm for optimization with orthogonality constraints.
We repeat these procedures until we reach convergence.
Finally, we evaluate (54) based on the converged parameters.

Remark 6: In the SVDD case, we apply the SMO algorithm
using the same procedures with the OC-SVM case. In partic-
ular, we first choose two parameters, e.g., α1 and α2, to mini-
mize and fix the other parameters. Due to (52), the chosen
parameters must obey (20). Hence, we have the following
update rule for α2 at the kth iteration:

αk+1,2 = 2(1 − S)(K11 − K12) + K22 − K11 + M1 − M2

2(K11 + K22 − 2K12)

where S = �n
j=3 αk, j and the other definitions are the same

with the OC-SVM case. We then obtain αk+1,1 using (20).
By this, we obtain the updated values αk+1,2 and αk+1,1.
For the remaining parameters, we repeat this procedure until
reaching convergence.

Remark 7: For the SVDD case, we update W (·) at the
kth iteration as in (24). However, instead of (25), we have
the following definition for G:

Gi j = ∂π(θ ,αk+1)

∂W (·)
i j

where

π(θ,αk+1) �
n�

i=1

n�
j=1

αk+1,iαk+1, j h̄
T
i h̄ j −

n�
i=1

αk+1,i h̄
T
i h̄i

at the kth iteration. For the remaining parameters, we follow
the procedure in Remark 3.

Hence, we obtain a quadratic programming-based training
algorithm for our LSTM-based anomaly detector, which is also
described in Algorithm 3 as a pseudocode.

Algorithm 3 Quadratic Programming-Based Training for the
Anomaly Detection Algorithm Based on SVDD
1: Initialize the LSTM parameters as θ0 and the dual SVDD

parameters as α0
2: Determine a threshold � as convergence criterion
3: k = −1
4: do
5: k = k + 1
6: Using θ k , obtain {h̄}n

i=1 according to Fig. 2
7: Find optimal αk+1 for {h̄}n

i=1 using the procedure in
Remark 6

8: Based on αk+1, obtain θk+1 using Remark 7
9: while

�
π(θ k+1,αk+1) − π(θ k,αk)

�2
> �

10: Detect anomalies using (54) evaluated at θ k and αk

2) Gradient-Based Training Algorithm: In this section,
we introduce a training algorithm based on only the first-order
gradients for (44)–(46). We again use the G(·) function in (26)
in order to eliminate the constraint in (45) as follows:

min
θ∈R

nθ ,c̃∈Rm,R∈R

R2 + 1

nλ

n�
i=1

G(�R,c̃(h̄i )) (55)

s.t.: W (·)T W (·) = I, R(·)T R(·) = I

and b(·)T b(·) = 1 (56)

where

�R,c̃(h̄i ) � �h̄i − c̃�2 − R2.

Since the gradient-based methods cannot optimize (55) due to
the nondifferentiable function G(·), we employ Sτ (·) instead
of G(·) and modify (55) as

min
θ∈R

nθ ,c̃∈Rm ,R∈R

Fτ (c̃, R, θ ) = R2+ 1

nλ

n�
i=1

Sτ (�R,c̃(h̄i )) (57)

s.t.: W (·)T W (·) = I, R(·)T R(·) = I and b(·)T b(·) = 1 (58)

where Fτ (·, ·, ·) is the objective function of (57). To obtain the
optimal values for (57) and (58), we update c̃, R, and θ till
we reach either a local or a global optimum. For the updates
of c̃ and R, we employ the gradient descent algorithm, where
we use the following gradient calculations. We first compute
the gradient of c̃ as

∇c̃Fτ (c̃, R, θ ) = 1

nλ

n�
i=1

2(c̃ − h̄i )e
τ�c̃,R

(h̄i )

1 + e
τ�c̃,R

(h̄i )
. (59)

Using (59), we have the following update:
c̃k+1 = c̃k − μ∇c̃Fτ (c̃, R, θ )




 c̃=c̃k
R2=R2

k
θ=θ k

(60)

where the subscript k represents the iteration number.
Likewise, we compute the derivative of the objective function
with respect to R2 as

∂ Fτ (c̃, R, θ)

∂ R2 = 1 + 1

nλ

n�
i=1

−e
τ�c̃,R

(h̄i )

1 + e
τ�c̃,R

(h̄i )
. (61)
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With (61), we update R2 as

R2
k+1 = R2

k − μ
∂ Fτ (c̃, R, θ)

∂ R2




 c̃=c̃k
R2=R2

k
θ=θ k

. (62)

For θ , the gradient calculation is as follows:

∂ Fτ (c̃, R, θ )

∂W (·)
i j

=
n�

i=1

2
�
∂ h̄i/∂W (·)

i j

�T
(h̄i − c̃)e

τ�c̃,R
(h̄i )

nλ
�
1 + e

τ�c̃,R
(h̄i )� .

(63)

Using (63), we have the following update:

W (·)
k+1 =

	
I + μ

2
Bk


−1	
I − μ

2
Bk



W (·)

k (64)

where Bk = Mk(W (·)
k )T − W (·)

k MT
k and

M i j � ∂ Fτ (c̃, R, θ )

∂W (·)
i j

. (65)

Remark 8: For R(·) and b(·), we first compute the gradient
of the objective function with respect to the chosen parameter
as in (65). We then obtain Bk according to the chosen para-
meter. Using Bk , we update the chosen parameter as in (64).

Remark 9: In the semisupervised framework, we have
the following optimization problem for our SVDD-based
algorithms [35]:

min
θ ,c̃,R,ξ,γ ,η

R2 − C1γ + C2

l�
i=1

ξi + C3

l+k�
j=l+1

η j (66)

s.t.: �h̄i − c̃�2 − R2 ≤ ξi , ξi ≥ 0 ∀ l
i=1 (67)

y j (�h̄ j − c̃�2 − R2) ≤ −γ + η j η j ≥ 0 ∀ l+k
j=l+1

(68)

W (·)T W (·) = I, R(·)T R(·) = I and b(·)T b(·) = 1

(69)

where η ∈ R is a slack variable as ξ , γ ∈ R is the margin of the
labeled data instances, C1, C2, and C3 are tradeoff parameters,
k and l are the number of the labeled and unlabeled data
instances, respectively, and y j ∈ {−1,+1} represents the label
of the j th data instance.

For the quadratic programming-based training method,
we modify all the steps from (48) to (54), Remark 6 and
Remark 7 with respect to (66)–(69). In a similar manner,
we modify the equations from (55) to (65) according to
(66)–(69) in order to obtain the gradient-based training method
in the semisupervised framework. For the supervised imple-
mentations, we follow the same procedures with the semisu-
pervised implementations for l = 0 case.

The complete algorithm is provided in Algorithm 4. In the
following, we provide the convergence proof as in the
OC-SVM case.

Theorem 2: Let c̃τ and R2
τ be the solutions of (57) for

any fixed θ . Then, c̃τ and R2
τ are unique and Fτ (c̃τ , Rτ , θ)

Algorithm 4 Gradient-Based Training for the Anomaly
Detection Algorithm Based on SVDD
1: Initialize the LSTM parameters as θ0 and the SVDD

parameters as c̃0 and R2
0

2: Determine a threshold � as convergence criterion
3: k = −1
4: do
5: k = k + 1
6: Using θ k , obtain {h̄}n

i=1 according to Fig. 2
7: Obtain c̃k+1, R2

k+1 and θ k+1 using (60), (62), (64) and
Remark 8

8: while (Fτ (c̃k+1, Rk+1, θ k+1) − Fτ (c̃k, Rk, θ k))
2 > �

9: Detect anomalies using (47) evaluated at c̃k , R2
k and θ k

converges to the minimum of F(c̃, R, θ ), i.e., defined as

F(c̃, R, θ ) � R2 + 1

nλ

n�
i=1

G(�R,c̃(h̄i )).

Proof of Theorem 2: The proof of the theorem is given
in Appendix C. �

IV. SIMULATIONS

In this section, we demonstrate the performances of the
algorithms on several different data sets. We first evaluate
the performances on a data set that contains variable length
data sequences, i.e., the digit data set [36]. We then com-
pare the anomaly detection performances on several differ-
ent benchmark real data sets such as the occupancy [37],
Hong Kong Exchange (HKE) rate [38], http [39], and Alcoa
stock price [40] data sets. While performing experiments on
real benchmark data sets, we also include the GRU-based
algorithms in order to compare their performances with the
LSTM-based ones. Moreover, we also measure the training
times of the algorithms and perform an experiment to observe
the effects of the orthogonality constraint in this section. Note
that since the introduced algorithms have bounded functions,
e.g., the sigmoid function in the LSTM architecture, for all
the experiments in this section, we normalize each dimension
of the data sets into [−1, 1].

Throughout this section, we denote the LSTM-based
OC-SVM anomaly detectors that are trained with the gradi-
ent and quadratic programming-based algorithms as “LSTM-
GSVM” and “LSTM-QPSVM,” respectively. In a similar
manner, we use “LSTM-GSVDD” and “LSTM-QPSVDD” for
the SVDD-based anomaly detectors. Moreover, for the labels
of the GRU-based algorithms, we replace the LSTM prefix
with GRU.

A. Anomaly Detection for Variable Length Data Sequences

In this section, we first evaluate the performances of the
introduced anomaly detectors on the digit data set [36].
In this data set, we have the pixel samples of digits, which
were written on a tablet by several different authors [36].
Since the speed of writing varies from person to person,
the number of samples for a certain digit might significantly
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Fig. 4. ROC curves of the algorithms for the digit data set, where we consider digit “0” as normal and digit “9” as anomaly (a) for the SVM-based algorithms
and (b) for the SVDD-based algorithms.

differ. The introduced algorithms are able to process such
kind of sequences, thanks to their generic structure in Fig. 2.
However, the conventional OC-SVM and SVDD algorithms
cannot directly process these sequences [6], [7]. For these
algorithms, we take the mean of each sequence to obtain
a fixed-length vector sequence, i.e., 2-D in this case (two
coordinates of a pixel). In order to evaluate the performances,
we first choose a digit as normal and another digit as an
anomaly. We emphasize that we randomly choose digits for
illustration and obtain similar performances for the other
digits. We then divide the samples of these digits into training
and test parts, where we allocate 60% of the samples for the
training part and 40% for the test part. In both the training and
test parts, we select the samples so that 10% of the samples
are anomalies. Then, using the training part, we optimize
the parameters of each algorithm using twofold cross valida-
tion, where we also select a certain crucial parameter, e.g., μ.
This procedure results in μ = 0.05, 0.001, 0.05, and
0.01 for LSTM-GSVM, LSTM-QPSVM, LSTM-GSVDD, and
LSTM-QPSVDD, respectively. Furthermore, we select the
output dimension of the LSTM architecture as m = 2 and the
regularization parameter as λ = 0.5 for all the algorithms. For
the implementation of the conventional OC-SVM and SVDD
algorithms, we use the LIBSVM library and their parameters
are selected in a similar manner via built-in optimization tools
of LIBSVM [41].

Here, we use the area under the receiver operating charac-
teristic (ROC) curve as a performance metric [42]. In a ROC
curve, we plot a true positive rate (TPR) as a function of false
positive rate (FPR). Area under this curve, i.e., also known
as AUC, is a well-known performance measure for anomaly
detection tasks [42]. In Fig. 4(a) and (b), we illustrate the ROC
curves and provide the corresponding AUC scores, where we
label digit “0” and “9” as normal and anomaly, respectively.
For the OC-SVM and SVDD algorithms, since we directly
take the mean of variable length data sequences to obtain fixed-
length sequences, they achieve significantly lower AUC scores

compared to the introduced LSTM-based methods. Among
the LSTM-based methods, LSTM-GSVM slightly outperforms
LSTM-QPSVM. On the other hand, LSTM-GSVDD achieves
significantly higher AUC than LSTM-QPSVDD. Since the
quadratic programming-based training method depends on the
separated consecutive updates of the LSTM and SVM (or
SVDD) parameters, it might not converge to even a local
minimum. However, the gradient-based method can guarantee
convergence to at least a local minimum given a proper choice
of the learning rate [33]. Thus, although these methods might
provide similar performances as in Fig. 4(a), it is also expected
to obtain much higher performance from the gradient-based
method for certain cases as shown in Fig. 4(b). However,
overall, the introduced algorithms provide significantly higher
AUC than the conventional methods.

Besides the previous scenario, we also consider a scenario,
where we label digit “1” and “7” as normal and anomaly,
respectively. In Fig. 5(a) and (b), we illustrate the ROC curves
and provide the corresponding AUC scores. As in the previous
scenario, for both the SVM and SVDD cases, the intro-
duced algorithms achieve higher AUC scores than the conven-
tional algorithms. Among the introduced algorithms, LSTM-
GSVM and LSTM-GSVDD achieve the highest AUC scores
for the SVM and SVDD cases, respectively. Furthermore,
the AUC score of each algorithm is much lower compared
to the previous case due to the similarity between digits “1”
and “7.”

In addition to the digit data set, we perform another experi-
ment that handles variable length data sequences. In this exper-
iment, we evaluate the anomaly detection performances of the
algorithms on a financial data set, i.e., the Ford stock price
data set [43]. Here, we have daily stock price values. For our
anomaly detection framework, we first artificially introduce
anomalies via a Gaussian distribution with the mean and ten
times the variance of the training data. We then select certain
parts of the time series data by applying a variable length
time windowing operation, thus we obtain variable length data
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Fig. 5. ROC curves of the algorithms for the digit data set, where we consider digit “1” as normal and digit “7” as anomaly (a) for the SVM-based algorithms
and (b) for the SVDD-based algorithms.

Fig. 6. ROC curves of the stock price data set for (a) SVM-based algorithms and (b) SVDD-based algorithms.

sequences. Moreover, unlike the previous cases, we choose
μ = 0.01, 0.001, 0.001, and 0.005 for LSTM-GSVM, LSTM-
QPSVM, LSTM-GSVDD, and LSTM-QPSVDD, respectively.

In Fig. 6, we observe that the LSTM-based algorithms
achieve considerably higher AUC scores than the SVM and
SVDD algorithms. Among the LSTM-based methods, LSTM-
GSVM slightly outperforms LSTM-QPSVM. Similarly,
LSTM-GSVDD achieves slightly higher AUC than LSTM-
QPSVDD. Moreover, as in the previous experiments, the
gradient-based training method provides higher performance
compared to the quadratic programming-based method, thanks
to its learning capabilities.

B. Benchmark Real Data sets

In this section, we compare the AUC scores of each
algorithm on several different real benchmark data sets.
Moreover, we provide the training times and evaluate the
effects of the orthogonality constraint on these data sets. Since

our approach in this article is generic, in addition to the
LSTM-based algorithms, we also implement our approach
on the recently introduced RNN architecture, i.e., the GRU
architecture, which is defined by the following equations [21]:

z̃i, j = σ(W (z̃)xi, j + R(z̃)hi, j−1) (70)

r i, j = σ(W (r)xi, j + R(r)hi, j−1) (71)

h̃i, j = g(W (h̃)xi, j + r i, j � (R(h̃)hi, j−1)) (72)

hi, j = h̃i, j � z̃i, j + hi, j−1 � (1 − z̃i, j ) (73)

where hi, j ∈ R
m is the output vector and xi, j ∈ R

p is the
input vector. Furthermore, W (·) and R(·) are the parameters
of the GRU, where the sizes are selected according to the
dimensionality of the input and output vectors. We then
replace (1)–(6) with (70)–(73) in Fig. 2 to obtain GRU-based
anomaly detectors. Note that in this section, we also include
the LSTM-based anomaly detection approach in [10] and [25]
as another benchmark performance criterion, especially for the
experiments with time series data.
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TABLE I

AUC SCORES OF THE ALGORITHMS FOR THE OCCUPANCY, HKE RATE, HTTP, AND ALCOA STOCK PRICE DATA SETS

1) Occupancy Detection: We first evaluate the perfor-
mances of the algorithms on the occupancy data set [37].
In this data set, we have five features, which are relative
humidity percentage, light (in lux), carbon dioxide level
(in ppm), temperature (in Celsius), and humidity ratio, and our
aim is to determine whether an office room is occupied or not
based on the features. Here, we use the same procedure with
Section IV-A to separate the test and training data. Moreover,
using the training data, we select μ = 0.05, 0.05, 0.001,
and 0.01 for LSTM-GSVM, LSTM-QPSVM, LSTM-GSVDD,
and LSTM-QPSVDD, respectively. Note that, for the GRU-
based algorithms in this section, we use the same parame-
ter setting with the LSTM-based algorithms. Furthermore,
we choose m = 5 and λ = 0.5 for all of the experiments
in this section in order to maximize the performances of the
algorithms.

As can be seen in Table I, due to their inherent memory,
both the LSTM- and GRU-based algorithms achieve consid-
erably high-AUC scores compared to the conventional SVM
and SVDD algorithms. Moreover, GRU-GSVDD achieves the
highest AUC score among all the algorithms, where the
LSTM-based algorithms (LSTM-GSVM and LSTM-QPSVM)
also provide comparable AUC scores. Here, we also observe
that the gradient-based training method provides higher AUC
scores compared to the quadratic programming-based training
method, which might stem from its separated update proce-
dure that does not guarantee convergence to a certain local
minimum.

2) Anomalous Exchange Rate Detection: Other than the
occupancy data set, we also perform an experiment on the
HKE rate data set in order to examine the performances for
a real-life financial scenario. In this data set, we have the
amount of Hong Kong dollars that one can buy for one US
dollar each day. In order to introduce anomalies to this data
set, we artificially add samples from a Gaussian distribution
with the mean and ten times the variance of the training data.
Furthermore, using the training data, we select μ = 0.01,
0.005, 0.05, and 0.05 for LSTM-GSVM, LSTM-QPSVM,
LSTM-GSVDD, and LSTM-QPSVDD, respectively.

In Table I, we illustrate the AUC scores of the algorithms
on the HKE rate data set. Since we have time-series data, both
the LSTM- and GRU-based algorithms naturally outperform
the conventional methods, thanks to their inherent memory,
which preserves sequential information. Moreover, since the
LSTM architecture also controls its memory content via an
output gate unlike the GRU architecture [21], we obtain the
highest AUC scores from LSTM-GSVM. As in the previous

cases, the gradient-based training method provides better per-
formance than the quadratic programming-based training.

3) Network Anomaly Detection: We also evaluate the AUC
scores of the algorithms on the http data set [39]. In this
data set, we have 4 features, which are duration (number of
seconds of the connection), network service, number of bytes
from source to destination and from destination to source.
Using these features, we aim to distinguish normal connections
from network attacks. In this experiment, we select μ = 0.01,
0.05, 0.001, and 0.01 for LSTM-GSVM, LSTM-QPSVM,
LSTM-GSVDD, and LSTM-QPSVDD, respectively.

We demonstrate the performances of the algorithms on the
http data set in Table I. Even though all the algorithms achieve
high-AUC scores on this data set, we still observe that the
LSTM- and GRU-based algorithms have higher AUC scores
than the conventional SVM and SVDD methods. Overall,
GRU-QPSVDD achieves the highest AUC score and the
quadratic programming-based training methods perform better
than the gradient-based training method on this data set.
However, since the AUC scores are very high and close to
each other, we observe only slight performance improvement
for our algorithms in this case.

4) Anomalous Stock Price Detection: As the last exper-
iment, we evaluate the anomaly detection performances of
the algorithms on another financial data set, i.e., the Alcoa
stock price data set [40]. In this data set, we have daily
stock price values. As in the HKE rate data set, we again
artificially introduce anomalies via a Gaussian distribution
with the mean and ten times the variance of the training data.
Moreover, we choose μ = 0.01, 0.001, 0.001, and 0.005 for
LSTM-GSVM, LSTM-QPSVM, LSTM-GSVDD, and LSTM-
QPSVDD, respectively.

In Table I, we illustrate the AUC scores of the algorithms
on the Alcoa stock price data set. Here, we observe that the
GRU- and LSTM-based algorithms achieve considerably
higher AUC scores than the conventional methods, thanks to
their memory structure. Although the LSTM-based algorithms
have higher AUC scores in general, we obtain the highest
AUC score from GRU-QPSVDD. Moreover, as in the previ-
ous experiments, the gradient-based training method provides
higher performance compared to the quadratic programming-
based method thanks to its learning capabilities.

5) Constraint and Time Complexity Analysis: In Table II,
we compare the performance of LSTM-GSVM under three
different scenarios, i.e., using the orthogonality constraint,
using the conventional �2 norm regularization constraint and
a case without constraint. Note that since LSTM-GSVM
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TABLE II

AUC SCORES OF LSTM-GSVM FOR THE ORTHOGONALITY CONSTRAINT
IN (9), �2 NORM REGULARIZATION CONSTRAINT IN (11),

AND NO CONSTRAINT CASES

TABLE III

TRAINING TIMES (IN SECONDS) OF THE ALGORITHMS. FOR THIS
EXPERIMENT, WE USE A COMPUTER THAT HAS I5-6400

PROCESSOR, 2.7 GHz CPU, AND 16 GB RAM

provides high AUC scores for all the experiments, we choose
it to perform this experiment. We observe that the case with
the orthogonality constraint outperforms the other cases. Thus,
we use it to improve our detection performance in this article.
In addition to this, we measure the training times of the
algorithms for all the data sets. In Table III, we observe
that the gradient-based algorithms achieve significantly faster
training performance compared to the quadratic programming-
based methods due to the highly complicated structure of the
quadratic programming optimization method.

V. CONCLUDING REMARKS

In this article, we study anomaly detection in an unsu-
pervised framework and introduce LSTM-based algorithms.
In particular, we have introduced a generic LSTM-based
structure in order to process variable-length data sequences.
After obtaining fixed-length sequences via our LSTM-based
structure, we introduce a scoring function for our anomaly
detectors based on the OC-SVM [6] and SVDD [7] algorithms.
As the first time in the literature, we jointly optimize the
parameters of both the LSTM architecture and the final scoring
function of the OC-SVM (or SVDD) formulation. To jointly
optimize the parameters of our algorithms, we have also
introduced gradient and quadratic programming-based training
methods with different algorithmic merits, where we extend
our derivations for these algorithms to the semisupervised and
fully supervised frameworks. In order to apply the gradient-
based training method, we modify the OC-SVM and SVDD
formulations and then provide the convergence results of the
modified formulations to the actual ones. Therefore, we obtain
highly effective anomaly detection algorithms, especially for
time series data, that are able to process variable length data
sequences. In our simulations, due to the generic structure of
our approach, we have also introduced GRU-based anomaly
detection algorithms. Through an extensive set of experiments,
we illustrate significant performance improvements achieved
by our algorithms with respect to the conventional meth-

ods [6], [7], [10] over several different real and simulated
data sets.

APPENDIX A
PROOF OF PROPOSITION I

In order to simplify our notation, for any given w, θ , X i ,
and ρ, we denote βw,ρ(h̄i ) as �. We first show that Sτ (�) ≥
G(�), ∀τ > 0. Since

Sτ (�) = 1

τ
log(1 + eτ�)

≥ 1

τ
log(eτ�)

= �

and Sτ (�) ≥ 0, we have Sτ (�) ≥ G(�) = max{0,�}. Then,
for any � ≥ 0, we have

∂Sτ (�)

∂τ
= −1

τ 2 log(1 + eτ�) + 1

τ

�eτ�

1 + eτ�

<
−1

τ
� + 1

τ

�eτ�

1 + eτ�

≤ 0

and for any � < 0, we have

∂Sτ (�)

∂τ
= −1

τ 2 log(1 + eτ�) + 1

τ

�eτ�

1 + eτ�

< 0,

thus, we conclude that Sτ (�) is a monotonically decreasing
function of τ . As the last step, we derive an upper bound for
the difference Sτ (�)− G(�). For � ≥ 0, the derivative of the
difference is as follows:

∂(Sτ (�) − G(�))

∂�
= eτ�

1 + eτ�
− 1 < 0,

hence, the difference is a decreasing function of � for � ≥ 0.
Therefore, the maximum value is log(2)/τ and it occurs at
� = 0. Similarly, for � < 0, the derivative of the difference
is positive, which shows that the maximum for the difference
occurs at � = 0. With this result, we obtain the following
bound:

log(2)

τ
= max

�

�
Sτ (�) − G(�)

�
. (74)

Using (74), for any � > 0, we can choose τ sufficiently large
so that Sτ (�) − G(�) < �. Hence, as τ increases, Sτ (�)
uniformly converges to G(�). By averaging (74) over all the
data points and multiplying with 1/λ, we obtain

log(2)

λτ
= max

w,ρ,θ

�
Fτ (w, ρ, θ ) − F(w, ρ, θ )

�

which proves the uniform convergence of Fτ (·, ·, ·) to
F(·, ·, ·).
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APPENDIX B
PROOF OF THEOREM I

We have the following Hessian matrix of Fτ (w, ρ, θ ) with
respect to w:

∇2
w Fτ (w, ρ, θ ) = I + τ

nλ

n�
i=1

eτβw,ρ (h̄i )

(1 + eτβw,ρ (h̄i ))2
h̄i h̄

T
i ,

which satisfies vT ∇2
w Fτ (w, ρ, θ )v > 0 for any nonzero

column vector v. Hence, the Hessian matrix is positive definite,
which shows that Fτ (w, ρ, θ) is strictly convex function of w.
Consequently, the solution wτ is both global and unique given
any ρ and θ . In addition, we have the following second-order
derivative for ρ:

∂2 Fτ (w, ρ, θ )

∂ρ2 = τ

nλ

n�
i=1

eτβw,ρ (h̄i )

(1 + eτβw,ρ (h̄i ))2
> 0,

which implies that Fτ (w, ρ, θ ) is strictly convex function of ρ.
As a result, the solution ρτ is both global and unique for any
given w and θ .

Let w∗ and ρ∗ be the solutions of (27) for any fixed θ .
From the proof of Proposition 1, we have

Fτ (w
∗, ρ∗, θ) ≥ Fτ (wτ , ρτ , θ) ≥ F(wτ , ρτ , θ)

≥ F(w∗, ρ∗, θ). (75)

Using the convergence result in Proposition 1 and (75),
we have

lim
τ→∞ Fτ (wτ , ρτ , θ) ≤ lim

τ→∞ Fτ (w
∗, ρ∗, θ) = F(w∗, ρ∗, θ)

lim
τ→∞ Fτ (wτ , ρτ , θ) ≥ F(w∗, ρ∗, θ)

which proves the following equality:
lim

τ→∞ Fτ (wτ , ρτ , θ) = F(w∗, ρ∗, θ).

APPENDIX C
PROOF OF THEOREM II

We have the following Hessian matrix of Fτ (c̃, R, θ ) with
respect to c̃:

∇2
c̃Fτ (c̃, R, θ )=

n�
i=1

2I(�i +�2
i )+4τ�i(c̃ − h̄i )(c̃− h̄i )

T

nλ
�
1 + �i

�2 ,

where �i = e
τ�c̃,R

(h̄i ), which implies vT ∇2
c̃Fτ (c̃, R, θ )

v > 0 for any nonzero column vector v. Thus, the Hessian
matrix is positive definite, which shows that Fτ (w, ρ, θ ) is
strictly convex function of c̃. As a result, the solution c̃τ is
both global and unique given any R and θ . In addition to this,
we have the following second-order derivative for R2:

∂2 Fτ (c̃, R, θ)

∂(R2)2 = τ

nλ

n�
i=1

e
τ�c̃,R

(h̄i )

�
1 + e

τ�c̃,R
(h̄i )�2

> 0,

which implies that Fτ (c̃, R, θ ) is strictly convex function
of R2. Therefore, the solution R2

τ is both global and unique
for any given c̃ and θ .

The convergence proof directly follows the proof of
Theorem 1.
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