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for Online Learning

Tolga Ergen , Ali H. Mirza, and Suleyman Serdar Kozat, Senior Member, IEEE

Abstract— We investigate variable-length data regression in an
online setting and introduce an energy-efficient regression struc-
ture build on long short-term memory (LSTM) networks. For
this structure, we also introduce highly effective online training
algorithms. We first provide a generic LSTM-based regression
structure for variable-length input sequences. To reduce the
complexity of this structure, we then replace the regular mul-
tiplication operations with an energy-efficient operator, i.e., the
ef-operator. To further reduce the complexity, we apply factor-
izations to the weight matrices in the LSTM network so that the
total number of parameters to be trained is significantly reduced.
We then introduce online training algorithms based on the sto-
chastic gradient descent (SGD) and exponentiated gradient (EG)
algorithms to learn the parameters of the introduced network.
Thus, we obtain highly efficient and effective online learning
algorithms based on the LSTM network. Thanks to our generic
approach, we also provide and simulate an energy-efficient gated
recurrent unit (GRU) network in our experiments. Through an
extensive set of experiments, we illustrate significant performance
gains and complexity reductions achieved by the introduced
algorithms with respect to the conventional methods.

Index Terms— ef-operator, exponentiated gradient (EG), gra-
dient descent, long short-term memory (LSTM), matrix
factorization.

I. INTRODUCTION

A. Preliminaries

NEURAL networks are extensively studied in
the literature thanks to their highly strong

modeling capabilities [1]–[4]. Especially, recurrent neural
networks (RNNs) are the main source of interest in these
studies due to their inherent memory unit that can store
time (or state) information, which boosts their capability to
model time series data [5]. However, due to lacking control
structures, basic RNNs might suffer from exponential growth
or decay in the norm of the gradient of their parameters
during training, which are also known as the exploding and
vanishing gradient problems [6], [7]. Thus, basic RNNs are
not usually able to capture long- and short-term dependences
present in the data [6]. To address these issues, an advanced
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RNN architecture, i.e., the long short-term memory (LSTM)
network, is introduced, which uses several information
gates to regulate the information flow [8]. However,
the LSTM networks have several additional nonlinear control
structures (gates) and parameters, which result in complexity
and training problems [8].

To this end, in this article, we investigate the efficient train-
ing of LSTM networks for data regression. In the literature,
the LSTM networks are usually trained in a batch setting,
where all data sequences are available and processed together
for training [9], [10]. However, in big data applications, such
approaches might cause storage problems due to the need
to store all data sequences at one place [5], [10], [11]. Fur-
thermore, in certain scenarios, we sequentially receive data
instances, which prevents training in a batch setting [10].
Hence, we investigate efficient training of the LSTM network
in an online setting, where we sequentially receive a data
sequence with its label to train the parameters of the LSTM
network and forget the data sequence after using it.

In the current literature, there exist several online training
methods for the LSTM network [5], [11]–[14]. Among these
methods, the first-order gradient-based algorithms are gener-
ally employed due to their computational efficiency in train-
ing the LSTM network [11], [12], [15], [16]. The first-order
gradient-based training algorithms usually perform additive
updates, i.e., each parameter is updated through an addi-
tion operation, e.g., the stochastic gradient descent (SGD)
algorithm [5], [11], [12]. However, such algorithms suffer
from slow convergence rate and poor performance, especially
when only a few components of the input data are related to the
desired label [17]. To circumvent these issues, the first-order
training method with multiplicative updates, i.e., the expo-
nentiated gradient (EG) algorithm, is introduced [17], [18].
However, since the EG algorithm employs multiplicative
updates, it requires more computational resources compared
with additive updates, which restricts its usage in real-life
applications [17], [19], [20].

Recently, many applications require LSTMs to be imple-
mented on embedded systems [21], [22]. However, since
embedded devices have constraints, e.g., power, resource,
and budget, it becomes either highly costly or impossible
to employ LSTMs in real-life applications [21]–[23]. In par-
ticular, LSTMs have several parameters to train and require
performing various arithmetic operations, which trigger its
complexity issues. Among arithmetic operations, since the
multiplication operation consumes more energy (or resources),
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it is the decisive factor to determine the computational com-
plexity of training LSTMs. To be more precise, [22] shows
that a multiplication operation consumes more than four times
the energy required by an addition operation. Thus, especially,
matrix-vector multiplications in LSTMs prohibit their imple-
mentation in real-life applications such as embedded devices.

In addition to the complexity and energy issues, the per-
formance of LSTMs might be degraded by multiplication
operations. Particularly, multiplicative terms in LSTMs might
cause the exploding and vanishing gradient problems [6], [7]
so that the gradient-based training methods, e.g., SGD, can
provide less than adequate training performance. Moreover,
training algorithms that employ multiplicative updates, e.g.,
EG [17], [18], exacerbate such problems even further.

In order to address these issues, we introduce a novel
energy-efficient LSTM network and the training methods
based on the EG [17] and SGD [11] algorithms. Particularly,
we first introduce an LSTM-based regression structure to
process variable-length input sequences. We then introduce
an energy-efficient LSTM network, which has a significantly
smaller number of multiplication operations (only required
for certain scaling operations) compared with the classical
LSTM network. In order to further reduce the complexity,
we also apply a matrix factorization method [24] to the LSTM
parameters, such that the number of parameters that needs
to be learned is significantly reduced. For this structure,
we also introduce online training algorithms based on the
EG and SGD algorithms. Thus, unlike the methods in the
literature [11], [25], we not only enjoy high performance
provided by the LSTM network but also achieve low com-
putational complexity in training. Here, thanks to our generic
approach, we also apply this approach to the gated recurrent
unit (GRU) network [26] in our experiments. Through an
extensive set of simulations, we illustrate significant perfor-
mance gains and complexity reductions with respect to the
conventional methods [11].

B. Prior Art and Comparisons

Various first-order gradient-based training algorithms have
been introduced to train the RNN architectures in an online
manner [11], [12], [25], [27]. These first-order gradient-based
training algorithms usually employ additive updates in
order not to exacerbate complexity issues, e.g., the SGD
algorithm [11], [17]. However, the training algorithms with
additive updates suffer from slow convergence and inadequate
performance, specifically when the input data contains sparse
information [17]. In addition, even the first-order algorithms
with additive updates might suffer from high complexity while
training certain complex RNN architectures, e.g., the LSTM
network [5], [12]. To mitigate the complexity issues, [24]
applies a matrix factorization method to the parameters of
the LSTM network. Thus, they significantly reduce the total
number of parameters to be learned. On the other hand,
[20], [23], and [28] replace the regular multiplication oper-
ation in neural networks with an energy-efficient operator,
i.e., the ef-operator. Unlike the regular multiplication oper-
ation, the ef-operator only requires sign multiplication and

addition, and thus, it significantly reduces the complexity of
neural networks [23], [28]. However, since both approaches
employ additive updates, they provide restricted performance
in certain tasks [17], [18].

To remedy the performance issues relevant to additive
updates, the first-order gradient-based algorithms with multi-
plicative updates, e.g., the EG algorithm, are introduced [17].
Although such algorithms provide higher performance and
faster convergence rate than the algorithms with additive
updates, they are highly complex due to the multiplicative
structure [19], [20]. As an example, Srinivasan et al. [25]
derived the backpropagation algorithm for a simple neural
network with one hidden layer using both the GD and EG algo-
rithms. Their calculations clearly illustrate high computational
complexity in the application of the EG algorithm. In order to
achieve high performance provided by multiplicative updates
while enjoying low computational complexity, in this arti-
cle, we introduce an energy-efficient LSTM network, where
we replace the regular multiplication operation with the ef-
operator [19]. To further reduce the computational complexity,
we also apply a matrix factorization method to the matrices in
the classical LSTM architecture [24]. Thus, we significantly
diminish the number of parameters to be trained in our LSTM
network. We then train the introduced network with a training
method based on the EG algorithm, as well as a training
method based on the SGD algorithm.

C. Contributions

Our main contributions are as follows.
1) As the first time in the literature, we introduce an

energy-efficient LSTM network, where we apply a
matrix factorization method to reduce the computational
complexity of our network. Here, we also replace each
regular multiplication operation with an energy-efficient
operator that only requires sign multiplication and addi-
tion to further reduce the computational complexity.

2) We introduce online training methods based on the
EG and SGD algorithms to train our energy-efficient
LSTM architecture, where we derive online updates
for each parameter. Here, the energy-efficient LSTM
network trained with our algorithms achieves substantial
performance gains with respect to the classical LSTM
architecture [8] trained with the conventional training
methods [11].

3) We achieve these substantial performance gains with a
computational complexity that is significantly less than
the conventional methods in the literature [11].

4) Through an extensive set of simulations, we demonstrate
significant performance improvements achieved by the
introduced methods with respect to the conventional
methods [11]. Moreover, since our approach is generic,
we also introduce an energy-efficient GRU network in
Section IV.

D. Organization of This Article

The organization of this article is as follows. We describe
the variable-length online regression problem and provide our
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LSTM-based structure in Section II. In Section III, we first
introduce the basic energy-efficient RNN and LSTM networks
using the ef-operator and then apply the matrix factorization
method to these networks, where we also introduce our
training methods based on the EG and SGD algorithms.
In Section IV, we demonstrate the merits of the introduced
energy-efficient networks and training algorithms through sev-
eral experiments, where we also provide an energy-efficient
GRU network. Finally, we present concluding remarks in
Section V.

II. MODEL AND PROBLEM DESCRIPTION

In this article, all vectors are column vectors and denoted
by boldface lowercase letters. Matrices are represented by
boldface uppercase letters. For a matrix U (or a vector u),
UT (or uT ) is its ordinary transpose. The time index is given
as subscript, e.g., ut is the vector at time t . For a vector u,
|u| is the �1-norm. For a vector ut , ut,i is the i th element of
that vector. Similarly, for a matrix U , ui j is the entry at the
i th row and j th column of U . Given a vector u, D(u) is the
diagonal matrix with the entries of u at its diagonal.

We sequentially receive {dt}t≥1, dt ∈ R, and matrices
{X t }t≥1, i.e., defined as X t = [xt,1, xt,2 . . . , xt,nt ], where
xt, j ∈ R

p,∀ j ∈ {1, 2, . . . , nt }, and nt ∈ Z
+ is the number

of columns in X t that may vary with respect to time t . Here,
we aim to find a relation between the desired label dt and the
corresponding input vector sequence X t . To find this relation,
after receiving each X t , we generate an estimate d̂t based on
the current and past observations. We then receive the desired
value dt and suffer the loss L(d̂t , dt ) based on our estimate.
This framework can be encountered in several machine learn-
ing and signal processing applications [29]. As an example,
in sequential prediction under the square loss, at each time t ,
we receive a set of features, i.e., X t in our case, related to
the desired label dt . We then generate the estimate through
a function, i.e., d̂t = κ(X t ). After the desired label dt is
observed, we suffer the square loss L(d̂t , dt ) = (dt − d̂t )

2.
In this article, we use RNNs to obtain d̂t . Since we have

variable-length data sequences, we use a structure as shown
in Fig. 1 to obtain fixed-length sequences. The basic RNN
architecture is defined by the following equations [10]:

ht, j = f (W xt, j + Rht, j−1) (1)

zt, j = g(Uht, j ) (2)

where xt, j ∈ R
p is the input vector, ht, j ∈ R

m is the state
vector, and zt, j ∈ R

m is the output vector for the j th RNN
unit. Here, f (·) and g(·) usually set to the hyperbolic tangent
function, and they apply to vectors pointwise. Moreover, W ,
R, and U are the parameters of the basic RNN architecture,
where the sizes are chosen according to the size of the input
and output vectors.

We use the LSTM network as a special variant of RNNs
to obtain d̂t . Among different implementations of LSTM,
we choose the most widely used one, i.e., the LSTM net-
work without peephole connections [12]. Since we receive
variable-length data sequence, we apply the LSTM network

Fig. 1. Detailed schematic of energy-efficient LSTM-based architecture.

to each column of X t as shown in Fig. 1, where the internal
LSTM equations for the j th unit are as follows [8], [12]:

c̃t, j = g(W (c̃)xt, j + R(c̃)ht, j−1 + b(c̃)) (3)

i t, j = σ(W (i)xt, j + R(i)ht, j−1 + b(i)) (4)

f t, j = σ(W ( f )xt, j + R( f )ht, j−1 + b( f )) (5)

ct, j = D(i)
t, j c̃t, j + D( f )

t, j ct, j−1 (6)

ot, j = σ(W (o)xt, j + R(o)ht, j−1 + b(o)) (7)

ht, j = D(o)
t, j g(ct, j ) (8)

where ct, j ∈ R
m is the state vector, xt, j ∈ R

p is the input
vector, ht, j ∈ R

m is the output vector. Here, i t, j , f t, j , and
ot, j are the input, forget, and output gates, respectively. The
function g(·) applies to vectors pointwise and commonly set to
tanh(·). Similarly, the sigmoid function σ(·) applies to vectors
pointwise. The sizes of the other matrices and vectors are
determined according to the size of the input and output vec-
tors. After the consecutive applications of the LSTM network
to each column as shown in Fig. 1, we take the average of the
outputs of the LSTM networks, i.e., the mean pooling method,
in order to obtain a fixed-length representation, i.e., denoted as
ht ∈ R

m at time t . Using the fixed-length vectors, we generate
the final estimate as

d̂t = wT
t ht (9)

where wt ∈ R
m represents the regression coefficients at time t .

In this framework, we aim to train the system parameters, such
that the total loss at time t , i.e.,

∑t
i=1 L(d̂i , di ), is minimized.

For the pooling operation in Fig. 1, we use the mean pooling
method to obtain the fixed-length output vectors as ht =
(1/nt )

∑nt
j=1 ht, j . However, there are certain other pooling

methods in the literature, and we can also employ them in
our approach. As an example, we can apply the max and last
pooling methods in our case by using ht = max j ht, j and
ht = ht,nt , respectively. With such changes, our derivations
can be extended to the other pooling methods.

III. ONLINE LEARNING WITH ENERGY-EFFICIENT

RNN ARCHITECTURES

In this section, we first apply the ef-operator to the
basic RNN and LSTM architectures. We then introduce
our energy-efficient RNN and LSTM architectures using the
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matrix factorization method along with the ef-operator. Finally,
we introduce online training algorithms based on the SGD and
EG algorithms, where we provide the required updates for each
parameter.

A. RNN With EF-Operator

In this section, we study a modified version of the basic
RNN architecture, where we replace the regular multiplication
operations with the ef-operator.

Let a, b ∈ R
p, and the ef-operator [19] on a and b is

defined as

a � b :=
p∑

i=1

sign(ai × bi )(|ai | + |bi |) (10)

where the sign(·) function returns the sign of its input.
Equation (10) can also be written as

a � b :=
p∑

i=1

sign(ai )bi + sign(bi )ai .

From the above-mentioned definition, it is obvious that the
ef-operator only uses addition and sign multiplications, which
are all energy-efficient operators.

In a similar manner, we define the ef-operator for matrix
multiplications as follows:

(A � B)i j = ai � b j

where ai and b j are the i th row of A and j th column of B,
respectively.

By applying the ef-operator, (1) can be written as

ht, j = f (ah � (W � xt, j ) + bh � (R � ht, j−1)) (11)

where ah ∈ R
m and bh ∈ R

m are the scaling coefficients intro-
duced in [23] and [28] and � is the element-by-element mul-
tiplication of two vectors of the same size. Here, the scaling
coefficients are the crucial factors to match the performance of
the classical multiplicative networks. In particular, even though
we eliminate several matrix-vector multiplications, which are
one of the main pillars of RNNs, these coefficients keep
the modeling capabilities of the network at the same level
by introducing an additional multiplicative term before the
nonlinear function is applied. In addition, note that the weight
matrices, i.e., W and R, in (1) and (11) are not necessarily the
same, however, their function is the same, i.e., both are weight
matrices that multiply the input vector. In (11), W � xt, j and
R � ht, j−1 are given as follows:

W � xt . j = [w1 � xt, j w2 � xt, j . . . wm � xt, j ]T

where wi represents the transpose of the i th row of W and
wi � xt, j is given as

wi � xt, j =
p∑

k=1

sign(xt, j k)wik + sign(wik)xt, j k

where xt, j k is the kth element of xt, j . Similarly

R � ht, j−1 = [r1 � ht, j−1 r2 � ht, j−1 . . . rm � ht, j−1]T

where r i represents the transpose of the i th row of R and
r i � ht, j is given as

r i � ht, j =
m∑

k=1

sign(ht, j k)rik + sign(rik )ht, j k

where ht, j k is the kth element of ht, j . Likewise, (2) is modified
as follows:

zt, j = g(bz � (U � ht, j )) (12)

where bz is the scaling coefficient.

B. LSTM With EF-Operator

In this section, we replace the regular multiplication oper-
ators in the classical LSTM architecture with the ef-operator,
as illustrated in Fig. 2. Based on this modification, (3)–(8) are
written as follows:
c̃t, j = g(ac̃ � (W (c̃) � xt, j ) + bc̃ � (R(c̃) � ht, j−1) + b(c̃))

(13)

i t, j = σ(ai � (W (i) � xt, j ) + bi � (R(i) � ht, j−1) + b(i))

(14)

f t, j = σ(a f � (W ( f ) � xt, j ) + b f � (R( f ) � ht, j−1) + b( f ))

(15)

ct, j = i t, j�c̃t, j + f t, j�ct, j−1

(16)

ot, j = σ(ao � (W (o) � xt, j ) + bo � (R(o) � ht, j−1) + b(o))

(17)

ht, j = ot, j�g(ct . j ) (18)

where a(·), b(·) ∈ R
m are the scaling coefficients and the �

operation is defined as follows:
a�b := [a1 � b1 a2 � b2 . . . ap � bp]T

:= sign(a) � b + sign(b) � a.

In (13), W (c̃) � xt, j is written as

W (c̃) � xt, j = [
w

(c̃)
1 � xt, j w

(c̃)
2 � xt, j . . .w(c̃)

m � xt, j
]T

(19)

where w
(c̃)
i � xt, j is given as

w
(c̃)
i � xt, j =

p∑

k=1

sign(xt, j k)w
(c̃)
ik + sign(w

(c̃)
ik )xt, j k

and

R(c̃)�ht, j−1 =[
r(c̃)

1 �ht, j−1 r(c̃)
2 � ht, j−1 . . . r(c̃)

m � ht, j−1
]T

(20)

where r(c̃)
i � ht, j is given as

r(c̃)
i � ht, j =

m∑

k=1

sign(ht, j k)r
(c̃)
ik + sign

(
r (c̃)

ik

)
ht, j k

where w
(c̃)
i and r(c̃)

i are the i th row of W (c̃) and R(c̃),
respectively.
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Fig. 2. Detailed schematic of energy-efficient LSTM block at time t . Note
that the solid lines represent the direct connections, while the dotted lines
represent the time-lagged connections. For the sake of simplicity, bias terms
are not shown in the figure.

For the other multiplications, we change the parameters
in either (19) or (20) according to the chosen coefficient
matrix. Other than that, we follow the same procedures in
(19) and (20).

Remark 1: Compared with the original LSTM network in
(3)–(8), we convert 4m(m + p) + 3m regular multiplication
operations into sign multiplication and addition operations
thanks to the ef-operator. However, due to the scaling factors
introduced in (13)–(15) and (17), we have 8m additional
regular multiplications. Overall, since for large m and p values
8m � 4m(m + p) + 3m, we significantly reduce the number
of regular multiplications. Thus, we provide a substantial
decrease in the computational complexity and energy con-
sumption compared with the classical LSTM network.

C. Energy-Efficient RNN With Weight Matrix Factorization

In this section, we apply the matrix factorization
method [24] to the weight matrices of the basic RNN architec-
ture in order to reduce the number of parameters to be trained.

We first factorize the weight matrices in (11) as W ≈ M N
and R ≈ P Q, where W ∈ R

m×p, M ∈ R
m×d , N ∈

R
d×p, R ∈ R

m×m , P ∈ R
m× f , and Q ∈ R

f ×m .
Remark 2: We factorize the RNN weight matrices into two

smaller matrices. The rank of these two smaller matrices is
selected, such that d, f � min(m, p). Thus, we significantly
reduce the number of parameters that needs to be learned, e.g.,
W has mp entries, while M and N have d(m + p) � mp.

The energy-efficient RNN with weight matrix factorization
can be written as

ht, j = f (ah � (M � N � xt, j ) + bh � (P � Q � ht, j−1)).

(21)

In (21), M � N � xt, j is given as follows:
M � N � xt, j = [μ1 � xt, j μ2 � xt, j . . .μm � xt, j ]T

where μi ∈ R
p is the i th row of M � N and μi � xt, j is given

as

μi � xt, j =
p∑

k=1

sign(xt, j k)μik + sign(μik )xt, j k (22)

and

P � Q � ht, j−1 = [ν1 � ht, j−1 ν2 � ht, j−1 . . . νm � ht, j−1]T

where ν i ∈ R
m is the i th row of P � Q and νi � ht, j is given

as

νi � ht, j =
m∑

k=1

sign(ht, j k)νik + sign(νik)ht, j k . (23)

In a similar manner, (12) is modified as follows:
zt, j = g(bz � (S � T � ht, j )) (24)

where we factorize the U matrix as U ≈ ST so that the
number of columns in S (or the number of rows in T ) is
significantly smaller than the number of rows in S (or the
number of columns in T ).

D. Energy-Efficient LSTM With Weight Matrix Factorization

In this section, we apply the matrix factorization
method [24] to the weight matrices of the LSTM network to
diminish the number of parameters in the network.

We factorize the LSTM neural network weight matrices
into two sub-matrices of lower rank as W (·) ≈ M(·)N(·) and
R(·) ≈ P(·) Q(·), where W (·) ∈ R

m×p, M (·) ∈ R
m×d , N (·) ∈

R
d×p, R(·) ∈ R

m×m , P (·) ∈ R
m× f , and Q(·) ∈ R

f ×m , such
that d, f � min(p, m). We then apply this factorization to
the LSTM neural network in (13)–(18) by replacing the weight
matrices with their factorized forms. The modifications for the
j th LSTM unit in Fig. 1 are as follows.

Here, M(c̃) � N(c̃) � xt, j is given as follows:
M(c̃) � N(c̃)�xt, j =

[
μ

(c̃)
1 � xt, j μ

(c̃)
2 � xt, j . . .μ(c̃)

m � xt, j
]T

(25)

where μi
(c̃) ∈ R

p is the i th row of M(c̃) � N (c̃) and μ
(c̃)
i � xt, j

is given as

μ
(c̃)
i � xt, j =

p∑

k=1

sign(xt, j k)μ
(c̃)
ik + sign

(
μ

(c̃)
ik

)
xt, j k

and

P(c̃) � Q(c̃) � ht, j−1 = [
ν

(c̃)
1 � ht, j−1 ν

(c̃)
2 � ht, j−1 . . .

ν(c̃)
m � ht, j−1

]T (26)

where ν
(c̃)
i ∈ R

m is the i th row of P (c̃) � Q(c̃) and ν
(c̃)
i � ht, j

is given as

ν
(c̃)
i � ht, j =

m∑

k=1

sign(ht, j k)ν
(c̃)
ik + sign(ν

(c̃)
ik )ht, j k.
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For the other weight matrices, we replace the factorized
form of the chosen weight matrix in (25) and (26). Then,
we follow the same operations in (25) and (26).

Remark 3: We reduce the total number of LSTM network
parameters by applying weight matrix factorization. In the
original LSTM equations in (3)–(8), we have 4m(m + p)
scalar parameters in the weight matrices, i.e., W (·) and R(·).
However, in our energy-efficient LSTM network, we have
4d(m + p)+8m f , which is significantly less than 4m(m + p),
provided that d, f � min(m, p).

E. Online Training Algorithms

In this section, we derive the online updates to train
the parameters of the introduced energy-efficient networks.
We first derive the online updates based on the SGD algorithm.
We then derive the online updates based on the EG algorithm.

We first employ the SGD algorithm [11] to obtain the
online updates for each parameter. For wt , the SGD update
is computed as follows:

wt+1 = wt − ηt∇wt L (27)

where ∇wt represents the gradient of a certain function with
respect to wt and ηt is the learning rate. Here, L is the
instantaneous loss, i.e., the squared error (dt − d̂t )

2, and we
denote it as L rather than L(d̂t , dt ) for notational simplicity.
Note that SGD updates, e.g., (27), are additive updates since
the gradient information is being added at each time step.

On the other hand, for wt , the EG update [17] is computed
as follows:

wt+1,i = wt,irt,i∑m
j=1 wt, j rt, j

(28)

where

rt,i = exp
( − ηt L 


wt,i

)

and wt,i is the i th component of wt and L 

wt,i

is the partial
derivative of the instantaneous loss function with respect to
wt,i . As seen in (28), EG updates are multiplicative updates
since the gradient information is encapsulated in the exponent
part and multiplied at each time step. In order to eliminate
the multiplication and exponentiation in (28), we use the
first-order Taylor series expansion along with the ef-operator
as follows:

wt+1,i = wt,i � r̂t,i∑m
j=1(wt, j � r̂t, j )

(29)

where

r̂t,i = 1 − ηt L 

wt,i

.

Note that since the division in (29) is the same for all possible
i values, it is just a scaling factor in the implementation
of the algorithm. Thus, this operation does not require high
amount of energy and computational resources unlike the
regular multiplication operation.

Remark 4: Since the weight vector wt might contain neg-
ative components, we use the slightly modified version of the
original EG algorithms, i.e., the EG+− algorithm [17], which

uses a weight vector w+
t − w−

t . In this algorithm, the weight
vector is updated as follows:

w+
t+1,i = w+

t,i � r̂+
t,i∑m

j=1

(
w+

t, j � r̂+
t, j + w−

t, j � r̂−
t, j

)

w−
t+1,i = w−

t,i � r̂−
t,i∑m

j=1

(
w+

t, j � r̂+
t, j + w−

t, j � r̂−
t, j

)

where

r̂+
t,i = 1 − ηt L 


w+
t,i

r̂−
t,i = 1 + ηt L 


w−
t,i

.

In Sections III-E1 and III-E2, we derive the updates for the
parameters of the proposed energy-efficient RNN and LSTM
networks.

1) Online Training of Energy-Efficient RNN: We compute
the first-order gradient of the loss function with respect to each
parameter in order to perform SGD and EG updates.

In the basic RNN architecture, we have zt = ∑nt
j=1 zt, j/nt

as the output at time t . Although our structure in Fig. 1 is
generic in the sense that it can process variable-length data
sequences, here, we only derive the equations for nt = 1 for
notational and presentation simplicity. However, at the end of
this section, we also provide the required extensions to obtain
the equations for generic nt values. With this modification,
we have zt = zt,1, and thus, we generate the estimate as
d̂t = wT

t zt,1.
Under the square loss, we compute the first-order derivative

of the loss function with respect to bzi , i.e., the i th element
of bz , as follows:
∂L

∂bzi
= ∂L

∂ d̂t

∂ d̂t

∂ zt,1

∂ zt,1

∂bzi
= −2(dt − d̂t )w

T
t

[
g
(ϕt ) � (

(ui � ht,1)ei + bz � λ
(Uh)
t

)]
(30)

where g
 is the derivative of g(·) with respect to its argument,
ei is a vector of zeros except a 1 at the i th index, and

ϕt = bz � (U � ht,1).

Moreover, for the i th element of λ
(Uh)
t = ∂(U � ht,1)/∂bzi ,

we use the following formula in (30):

λ
(Uh)
t,i =

m∑

j=1

(
ui j 2δ(ht,1 j )γ

(bz)
t,i j + sign(ui j )γ

(bz)
t,i j

)
(31)

where δ(·) is the dirac delta function, we compute the deriv-
ative of the sign function as d(sign(x))/dx = 2δ(x) [30] and

γ
(bz)
t,i j = ∂ht,1 j

∂bzi
= f 


j (θ t )bhjλ
(Rh)
t−1, j (32)

where f 

i is the derivative of the i th element of f (·) with

respect to its argument and

θ t = ah � (W � xt,1) + bh � (R � ht−1,1).
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Similarly, we have the following derivative for uik :
∂L

∂uik
= ∂L

∂ d̂t

∂ d̂t

∂ zt,1

∂ zt,1

∂uik

= −2(dt − d̂t )w
T
t

[
g
(ϕt ) � (

bzi(sign(ht,1k)

+ 2δ(uik)ht,1k)ei + bz � α
(Uh)
t

)]

(33)

where

α
(Uh)
t,i =

m∑

j=1

(
ui j 2δ(ht,1 j )γ

(uik )
t,i j + sign(ui j )γ

(uik )
t,i j

)
(34)

and

γ
(uik )
t,i j = ∂ht,1 j

∂uik
= f 


j (θ t )bhjα
(Rh)
t−1, j .

Remark 5: When we take the derivative of L with respect to
the other parameters, the position of the term with ei changes.
As an example, for the derivative of L with respect to bhi ,
the r i � ht−1,1 term appears in (32) when j = i ; otherwise,
(32) does not change. If we write (32) in a vector form,
the contribution of r i �ht−1,1 can be written as (R�ht−1,1)ei .
As seen in this case, for the other derivatives, the position and
the form of the term with ei slightly change; other than that,
we follow the same procedure in (30)–(34).

Remark 6: For the other nt values, i.e., nt �= 1, the recur-
sion in (32) is performed through the outputs of the different
RNN blocks at a certain time t , as shown in Fig. 1. Thus,
rather than having t − 1 in (32), we have multiple recursions
based on another index at time t . Besides this slight change,
all of our derivations hold for generic nt values.

Remark 7: For the energy-efficient RNN architecture with
weight matrix factorization, we take the derivative of the loss
function with respect to the parameters of each factorized
matrix. As an example, in (33), instead of only taking the
derivative with respect to the parameters of U , we compute
the derivatives of the loss with respect to the entries of both
S and T , i.e., the factorized versions of U . Other than such
changes, we follow the same procedures in (30)–(34).

With the derived gradients, we can update each parameter
of the basic RNN architecture as in (27) and (29).

2) Online Training of Energy-Efficient LSTM: Here,
we derive the first-order gradient of the loss function with
respect to each LSTM parameter to obtain the online updates
based on the SGD and EG algorithms. We again derive the
derivatives for the nt = 1 case for notational and presentation
simplicity. However, at the end of this section, we also provide
the required extensions to obtain the equations for generic nt

values. With this modification, we have ht = ht,1, and hence,
we generate the estimate d̂t = wT

t ht,1.
We first compute the derivative of L with respect to w

(c̃)
i j ,

i.e., the element at the i th row and the j th column of W (c̃),
as follows:
∂L

∂w
(c̃)
i j

= ∂L

∂ d̂t

∂ d̂t

∂ht,1

∂ht,1

∂w
(c̃)
i j

= −2(dt − d̂t )w
T
t

∂(ot,1�g(ct,1))

∂w
(c̃)
i j

.

(35)

In (35), we calculate the partial derivative as

∂(ot,1�g(ct,1))

∂w
(c̃)
i j

= ∂ot,1

∂w
(c̃)
i j

� sign(g(ct,1))

+ ot,1 � 2δ(g(ct,1)) � g
(ct,1) � ∂ct,1

∂w
(c̃)
i j

+ 2δ(ot,1) � ∂ot,1

∂w
(c̃)
i j

� g(ct,1)

+ sign(ot,1) � g
(ct,1) � ∂ct,1

∂w
(c̃)
i j

. (36)

For (36), we now compute the derivatives of ot,1 and ct,1

with respect to w
(c̃)
i j . With λ

(R(o)h)
t−1 = ∂(R(o) � ht−1,1)/∂w

(c̃)
i j

as in (31), the derivative of (17) is as follows:
∂ot,1

∂w
(c̃)
i j

= D(σ 
(ζ (o)))
t,1

(
bo � λ

(R(o)h)
t−1

)
(37)

where

ζ
(o)
t,1 = ao � (W (o) � xt,1) + bo � (R(o) � ht−1,1) + b(o).

(38)

In order to calculate (36), we also compute the derivative of
ct,1 with respect to w

(c̃)
i j . For this derivative, we obtain the

following recursive relation from (16):
∂ct,1

∂w
(c̃)
i j

= sign(c̃t,1) � ∂ i t,1

∂w
(c̃)
i j

+ 2δ(c̃t,1) � ∂ c̃t,1

∂w
(c̃)
i j

� i t,1

+ sign(i t,1) � ∂ c̃t,1

∂w
(c̃)
i j

+ 2δ(i t,1) � ∂ i t,1

∂w
(c̃)
i j

� c̃t,1

+ sign(ct−1,1) � ∂ f t,1

∂w
(c̃)
i j

+ 2δ(ct−1,1) � ∂ct−1,1

∂w
(c̃)
i j

� f t,1

+ sign( f t,1) � ∂ct−1,1

∂w
(c̃)
i j

+ 2δ( f t,1) � ∂ f t,1

∂w
(c̃)
i j

� ct−1,1.

(39)

For (39), we compute the derivatives of (13)–(15) with respect
to w

(c̃)
i j as follows:
∂ i t,1

∂w
(c̃)
i j

= D(σ 
(ζ (i)))
t,1

(
bi � λ

(R(i)h)
t−1

)
(40)

∂ f t,1

∂w
(c̃)
i j

= D(σ 
(ζ ( f )))
t,1

(
b f � λ

(R( f )h)
t−1

)
(41)

∂ c̃t,1

∂w
(c̃)
i j

= D(g
(ζ (c̃)))
t,1

((
sign(xt,1 j ) + 2δ

(
w

(c̃)
i j

)
xt,1 j

)
ei

+ bc̃ � λ
(R(c̃)h)
t−1

)
. (42)

Using (40)–(42), we compute (39). Then, we compute (36)
using (39) and (37) in order to calculate (35). After obtain-
ing (35), we update the parameter using the SGD- and
EG-based algorithms as in (27) and (29).
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Fig. 3. Daily stock price prediction performances of the algorithms with the
SGD updates on the Alcoa Corporation stock price data set.

As in Remark 5, when we take the derivative with respect
to the other parameters, only the location of the term with ei

changes. Similar to the RNN case, when nt �= 1, the recursion
in (39) is performed through the outputs of the different LSTM
blocks at a certain time t , as shown in Fig. 1. Moreover, for the
factorized LSTM network, we compute the derivatives of the
loss function with respect to each factorized matrix parameter
as in Remark 7.

With the derived gradients, we can update each parameter
of the energy-efficient LSTM architecture as in (27) and (29).

IV. SIMULATIONS

In this section, we illustrate the performances of our algo-
rithms on various data sets under different scenarios. We first
compare the regression performances of our algorithms on
a financial data set, i.e., the Alcoa Corporation stock price
rate data set [31]. We then evaluate the regression perfor-
mances on the real-life data sets, i.e., the kinematic [32]
and elevators [33] data sets. Since our approach is generic,
we also compare the performances of our training algorithms
on two different RNNs, i.e., the LSTM and GRU neural
networks. We then compare the structural complexity of our
energy-efficient algorithms with the conventional structures.

Throughout this section, “Model 1” represents the conven-
tional LSTM network (LSTM). Similarly, “Model 2” rep-
resents the introduced LSTM network with the ef-operator
(ef-LSTM), and “Model 3” represents the introduced LSTM
network with the ef-operator and weight matrix factorization
(ef-WMF-LSTM).

A. Financial Data Set

In this section, we compare the performances of our algo-
rithms on a financial data set. We consider the Alcoa Corpo-
ration stock price data set [31], for which we have the daily
stock price values. In this case, our aim is to predict future
stock prices based on the past prices, where we examine the
past five days for prediction. Here, we evaluate the regression

Fig. 4. Daily stock price prediction performances of the algorithms with the
EG updates on the Alcoa Corporation stock price data set.

Fig. 5. Comparison of all the algorithms with the SGD and EG updates on
the Alcoa Corporation stock price data set.

performance of Model 1 and consider this performance to
be a benchmark for our proposed models, i.e., Model 2 and
Model 3. To provide a fair setup, we select the same values
for the common parameters of all the models. In addition,
for Model 3, we set the rank of factorized LSTM weight
matrices as 2 based on our observations in Section IV-C.
For all these experiments, we perform 100 trials and plot the
averaged curves. Moreover, we set the learning rate as η = 0.1,
X t ∈ R

5, and the output dimensionality as m = 5.
Since Model 2 and Model 3 have an additive structure,

the gradient of each parameter becomes more robust to the
vanishing and exploding gradient problems. Thus, in Fig. 3,
Model 2 and Model 3 outperform Model 1 in terms of the error
performance. Although both the models, i.e., Model 2 and
Model 3, perform similarly, we consider Model 3 as superior
due to having a smaller number of network parameters to be
trained (see details in Section IV-E). Likewise, in Fig. 4, Model
2 and Model 3 have smaller error than Model 1. In Fig. 5,
we evaluate the combined results of all the models with both
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Fig. 6. Distance prediction performances of the algorithms with the SGD
updates on the kinematic data set.

the SGD and EG updates. Model 2 and Model 3 with the SGD
updates provide slightly smaller steady-state errors compared
with all other models. Overall, Model 3 with the SGD updates
outperforms its competitors in terms of both error performance
and complexity issues.

B. Real-Life Data Sets

In this section, we compare the performances of our algo-
rithms using two real-life data sets, i.e., the kinematic [32]
and elevators [33] data sets. We first evaluate the performances
of the models on the kinematic data set [32], which contains
the data related to a realistic simulation of the forward
dynamics of an eight-link all-revolute robot arm. Our aim
is to predict the distance of the end-effector from a target.
In order to provide a fair experimental environment, we select
the same common parameters for all the models. For this
data set, the input vector is X t ∈ R

8, m = 8, and the
learning rate for all the models is η = 0.1. For Model 3,
we select the rank of network matrices as 2. As shown
in Fig. 6, all the models perform similarly. However, in terms
of computational complexity and the total number of network
parameters, Model 3 has the lowest complexity and the total
number of parameters. In Fig. 7, Model 3 outperforms all
other models thanks to having a smaller number of parameters
and less complicated optimization problem for the parameters.
In Fig. 8, we compare the models with both the SGD and
EG updates. We observe that Model 1 with the SGD updates
achieves a slightly smaller error compared with Model 2 and
Model 3.

In addition to the kinematic data set, we also evaluate
the performances on the elevators data set [33], which is
obtained from the movements of an F16 aircraft, and we aim
to predict the variable that expresses the movements of the
aircraft. In this case, we have X t ∈ R

18, m = 18, and select
the learning rate as η = 0.1. The rank for Model 3 is 2.
In Fig. 9, all the models using the EG updates outperform
the models using the SGD updates, which arises from the

Fig. 7. Distance prediction performances of the algorithms with the EG
updates on the kinematic data set.

Fig. 8. Comparison of sequential prediction performances of the algorithms
on the kinematic data set.

sparseness of X t unlike the previous experiments. Among the
models with the SGD updates, Model 3 has the smallest error,
and for the EG updates, all the models provide comparable
performances. Although all the models perform similarly,
Model 3 is the ideal choice because of having less complexity
and a smaller number of network parameters compared with
the other models.

C. Rank Effect on WMF

In this section, we illustrate the effects of the rank on
the performances of the introduced models. For this purpose,
we use the Alcoa Corporation stock price data set. In Table I,
we observe that as the rank decreases, the training time also
decreases for the LSTM-based WMF models with both the
SGD and EG updates, and the errors stay approximately the
same. From this fact, we conclude that we can use lower rank
weight matrices for our proposed models and still get the same
performance in less amount of time. Thus, with our approach,
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Fig. 9. Comparison of Movement prediction performances of the algorithms
on the elevators data set.

TABLE I

TRAINING TIMES (IN s) FOR ONE TRIAL AND TIME ACCUMULATED
ERRORS FOR THE WMF ALGORITHMS USING DIFFERENT RANK

WEIGHT MATRICES ON THE ALCOA CORPORATION STOCK PRICE

DATA SET. NOTE THAT THIS EXPERIMENT IS PERFORMED
WITH A COMPUTER THAT HAS I5-6400 PROCESSOR,

2.7-GHZ CPU, AND 16-GB RAM

one can significantly reduce the number of parameters to be
trained in an LSTM network while enjoying high performance.
Based on these observations, in all experiments, we select the
rank as 2. Note that we do not reduce the rank to 1 since
WMF significantly degrades the performance in that case.

D. LSTM and GRU Neural Networks

In this section, we evaluate the performances of the algo-
rithms on the real-life and financial data sets. Since our
approach is generic, in the sense, that it can be applied to any
RNN structure, we also include the GRU-based algorithms to
provide comparative analysis. The GRU network is defined by
the following equations [26]:

z̃t, j = σ(W (z̃)xt, j + R(z̃)ht, j−1) (43)

r t, j = σ(W (r)xt, j + R(r)ht, j−1) (44)

ỹt, j = g(W (y)xt, j + r t, j � (R(y)ht, j−1)) (45)

yt, j = ỹt, j � z̃t, j + yt, j−1 � (1 − z̃t, j ) (46)

where xt, j ∈ R
p is the input vector and yt, j ∈ R

m is
the output vector. Here, z̃t, j and r t, j are the update and
reset gates, respectively. The functions g(·) and σ(·) apply to
vectors pointwise and commonly set to the tanh(·) and sigmoid
functions, respectively. In order to obtain an energy-efficient
version of the GRU network, we apply the matrix factorization
method and the ef-operator as in the LSTM case.

Fig. 10. Comparison of energy-efficient LSTM and GRU networks on the
Alcoa Corporation data set.

TABLE II

RELATIVE ENERGY CONSUMPTIONS (IN pJ) OF THE INTRODUCED RNN
NETWORKS AT EACH TIME STEP. HERE, WE USE THE ENERGY

CONSUMPTION DATA OF ARITHMETIC OPERATIONS FOR A 45-nm
CMOS PROCESS [34]

Here, we select the same parameters with
Sections IV-A–IV-C. Since Model 3 provides the best
performance in Sections IV-A–IV-C, we compare the LSTM
and GRU Networks on three data sets using Model 3. For
the Alcoa Corporation stock price data set, the LSTM-based
algorithm with the SGD updates achieves the smallest
steady-state error, as shown in Fig. 10. In Fig. 11, the GRU-
based algorithm with the SGD updates outperforms the
other network models. For the elevators data set, the LSTM-
based algorithm with the EG updates achieves the smallest
steady-state error among all the network models, as shown
in Fig. 12. Overall, since the LSTM architecture has an output
gate to control its memory content unlike the GRU network,
it generally outperforms the GRU network on various real-life
scenarios.

Moreover, in order to illustrate the energy efficiency of the
introduced architectures, we provide energy consumption data
for each data set in Table II. We observe that our approach
almost halves the energy consumption for each case, and as the
dimensionality of the data set increases, the provided energy
efficiency even further increases.

E. Training Times and Structural Complexity

In this section, we first provide the training times (in s)
of all the LSTM network-based models with both the SGD
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TABLE III

TRAINING TIMES (IN s FOR ONE TRIAL) OF THE INTRODUCED ENERGY-EFFICIENT LSTM NETWORKS

TABLE IV

TIME ACCUMULATED ERRORS OF THE INTRODUCED ALGORITHMS

TABLE V

TOTAL NUMBER OF PARAMETERS TO BE LEARNED FOR THE INTRODUCED NETWORKS

Fig. 11. Comparison of energy-efficient LSTM and GRU networks on the
kinematic data set.

and EG updates. We then give the total number of network
parameters for each model, i.e., the structural complexity of
the corresponding model. Finally, we compare all the models
based on the training times, the number of network parameters,
and error performance.

In Table III, we provide the training times of all the
network models for each data set. Note that all the experiments
are performed with a computer that has i5-6400 processor,
2.7-GHz CPU, and 16-GB RAM. Among all the network
models, Model 1 has the fastest training performance when the
data size is small, and however, it does not have the smallest

Fig. 12. Comparison of energy-efficient LSTM and GRU networks on the
elevators data set.

time accumulated errors, i.e., defined as

T∑

t=1

(dt − d̂t )
2

for a data set with T samples, as stated in Table IV. Model 3
achieves intermediate training times (and the fastest training
when the data size is large as in the elevators data set) and the
smallest cumulative errors, as shown in Tables III and IV,
respectively. In Table V, we provide the total number of
network parameters for each model. We observe that Model 3
has the smallest number of network parameters among all
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other models thanks to the weight matrix factorization. Over-
all, based on training times, error performances, and the
number of network parameters, Model 3 is the best choice
among all the models.

V. CONCLUSION

In this article, we have studied the variable-length data
regression in an online framework and introduced an
energy-efficient regression structure based on the LSTM net-
work. In particular, we have introduced a generic LSTM-based
regression structure to obtain fixed-length representations from
variable-length data sequences. In order to reduce the com-
plexity of this structure, we first eliminate the regular multi-
plications by replacing them with an energy-efficient operator,
i.e., the ef-operator. We then apply a factorization method to all
the matrices in the classical LSTM network in order to dimin-
ish the total number of parameters. For this energy-efficient
and factorized LSTM network, we have introduced the online
training algorithms based on the SGD [11] and EG [17] algo-
rithms. Hence, we obtain highly efficient and effective online
learning algorithms based on the LSTM network. Thanks to
the generic structure of our approach, we have also intro-
duced an energy-efficient GRU network in our simulations.
Through several experiments involving real and financial data,
we demonstrate significant performance improvements and
complexity reductions achieved by the introduced algorithms
with respect to the conventional methods.
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