Sequential Warped Products: Curvature and conformal vector fields

Uday Chand De ${ }^{\text {a }}$, Sameh Shenawy ${ }^{\text {b }}$, Bülent Ünal ${ }^{\text {c }}$
${ }^{\text {a }}$ D epartment of Pure M athematics, U niversity of Calcutta, 35 Ballygaunge Circular Road, K olkata 700019, West Bengala, India
${ }^{\text {b }}$ Basic Science D epartment, M odern A cademy for Engineering and Technology, M aadi, Egypt
${ }^{\text {c }}$ D epartment of M athematics, Bilkent U niversity, Bilkent, 06800 A nkara, Turkey

Abstract

In this note, we introduce a new type of warped products called as sequential warped products to cover a wider variety of exact solutions to Einstein's field equation. First, we study the geometry of sequential warped products and obtain covariant derivatives, curvature tensor, Ricci curvature and scalar curvature formulas. Then some important consequences of these formulas are also stated. We provide characterizations of geodesics and two different types of conformal vector fields, namely, Killing vector fields and concircular vector fields on sequential warped product manifolds. Finally, we consider the geometry of two classes of sequential warped product space-time models which are sequential generalized Robertson-Walker space-times and sequential standard static space-times.

1. Introduction

O'N eill and Bishop defined warped product manifoldsto construct Riemannian manifolds with negative sectional curvature [9]. Since then this notion has played some important roles in differential geometry as well as in physics becausewarped product space-timemodels areused to obtain exact solutions to Einstein's equation [1-3, 7, 8, 17, 20].

Doubly and multiply warped productmanifoldsaregeneral izationsof (singly) warped product manifolds[13, 26, 27]. In this article, we define a new class of warped product manifolds, called as sequential warped products where the base factor of the warped product is itself a new warped product manifold. Sequential warped products can be considered as a generalization of singly warped products. There are many space-times where base, fiber or both are expressed as a warped product manifolds. Among many such examples, we would like to mention especially non-trivial ones such as Taub-N ut and stationary metrics (see [25]) also Schwarzschild and generalized Riemannian anti de Sitter \mathbb{T}^{2} black hole metrics (see§3.2 of [5] for details). M oreover, some base conformal warped product space-times can be expressed as a sequential warped product (see [14]).

We first introduce fundamental definitions about the new concept and state some related remarks.
Definition 1.1. Let M_{i} be three pseudo-Riemannian manifolds with metrics g_{i} for $i=1,2$, 3. Let $f: M_{1} \rightarrow(0, \infty)$ and $h: M_{1} \times M_{2} \rightarrow(0, \infty)$ be two smooth positive functions on M_{1} and $M_{1} \times M_{2}$, respectively. Then the sequential

[^0]warped product manifold, denoted by $\left(M_{1} \times X_{2}\right) \times_{h} M_{3}$, is the triple product manifold $\bar{M}=\left(M_{1} \times M_{2}\right) \times M_{3}$ furnished with the metric tensor
$$
\bar{g}=\left(g_{1} \oplus \mathrm{f}^{2} g_{2}\right) \oplus \mathrm{h}^{2} g_{3}
$$

The functions f and h are called warping functions.
N ote that if $\left(M_{i}, g_{i}\right)$ are all Riemannian manifolds for any $i=1,2,3$, then the sequential warped product manifold $\left(M_{1} \times{ }_{f} M_{2}\right) \times_{h} M_{3}$ is also a Riemannian manifold.

Remark 1.2. The warped product of the form $M_{1} \times_{f_{1}}\left(M_{2} \times_{f_{2}} M_{3}\right)$ furnished by the metric

$$
g=g_{1}+\mathrm{f}_{1}^{2}\left(g_{2}+\mathrm{f}_{2}^{2} g_{3}\right)
$$

is called the iterated warped product manifold of themanifolds M_{1}, M_{2} and M_{3}. A s a metric space, the iterated warped product manifold is equal to the sequential warped product $\left(M_{1} \times_{f} M_{2}\right) \times{ }_{h} M_{3}$ where $f=f_{1}$ and $h=f_{1} f_{2}$. Similarly, a sequential warped product $\left(M_{1} \times_{f} M_{2}\right) \times_{h} M_{3}$ with a separable function $h: M_{1} \times M_{2} \rightarrow \mathbb{R}$ is equal as a metric space to the iterated warped product manifold.

Remark 1.3. If the warping function h of the sequential warped product $\left(M_{1} \times_{f} M_{2}\right) \times_{h} M_{3}$ is defined only on M_{1}, then we have a multiply warped product manifold $M_{1} \times{ }_{f} M_{2} \times_{h} M_{3}$ with two fibers.

Remark 1.4. A multiply warped product manifold of the form $M_{1} \times f_{1} M_{2} \times f_{2} M_{3}$ is the sequential warped product manifold $\left(M_{1} \times_{f_{1}} M_{2}\right) \times_{f_{2}} M_{3}$ equipped with the metric

$$
g=\left(g_{1}+\mathrm{f}_{1}^{2} g_{2}\right)+\mathrm{f}_{2}^{2} g_{3}
$$

where both f_{1} and f_{2} are positive functions defined on M_{1}.
N ow, wewould liketo explain how to extend a generalized Robertson-Walker space-timeand a standard static space-time within the framework of sequential warped products.

Let $\left(\mathrm{M}_{\mathrm{i}}, g_{\mathrm{i}}\right)$ be two n_{i}-dimensional Riemannian manifolds for any $\mathrm{i}=1,2$. Suppose that I is an open, connected subinterval of \mathbb{R} and dt^{2} is the Euclidean metric tensor on 1 . Then

- An $\left(n_{1}+n_{2}+1\right)$ - dimensional product manifold $I \times\left(M_{1} \times M_{2}\right)$ furnished with the metric tensor

$$
\begin{equation*}
\bar{g}=-h^{2} \mathrm{dt}^{2} \oplus\left(g_{1} \oplus \mathrm{f}^{2} g_{2}\right) \tag{1}
\end{equation*}
$$

is a sequential standard static space-time and is denoted by $\bar{M}=I_{h} \times\left(M_{1} \times{ }_{f} M_{2}\right)$ whereh : $M_{1} \times M_{2} \rightarrow(0, \infty)$ and $f: M_{1} \rightarrow(0, \infty)$ are two smooth functions.

N ote that standard static space-times can be considered as a generalization of the Einstein static universe[2-4, 8, 12, 23, 24]. Obviously, one can obtain a standard static space-time from a sequential standard static space-time by taking M_{2} to be a singleton.

- An $\left(n_{1}+n_{2}+1\right)$ - dimensional product manifold $\left(I \times M_{1}\right) \times M_{2}$ furnished with the metric tensor

$$
\begin{equation*}
\bar{g}=-\mathrm{dt}^{2} \oplus \mathrm{~h}^{2}\left(g_{1} \oplus \mathrm{f}^{2} g_{2}\right) \tag{2}
\end{equation*}
$$

is a sequential generalized Robertson-Walker space-time is denoted by $M=I \times_{h}\left(M_{1} \times{ }_{f} M_{2}\right)$ whereh :I \rightarrow $(0, \infty)$ and $f: M_{1} \rightarrow(0, \infty)$ are two smooth functions.

N otethat generalized Robertson-Walker space-times can beconsidered as a generalization of RobertsonWalker space-time [21, 22]. As in the case of sequential standard static space-times, one can obtain a
generalized Robertson-Walker space-time from a sequential generalized Robertson-Walker space-time by taking M_{2} to be the empty set a singleton.

In [25], there are many exact solutions of Einstein field equation where the space-time may be written of the form $1 \times\left(\mathrm{M}_{1} \times \mathrm{M}_{2}\right)$ with metrics of the form (1) or (2).

Notice also that $\mathrm{S}_{1}^{n} \times \mathrm{F}$ or $\mathbb{H}_{1}^{n} \times \mathrm{F}$ are standard models in string theory where F is a Calabi-Yau, Ricci flat Riemannian Manifold and Φ_{1}^{n} is the de Sitter and also \mathbb{H}_{1}^{n} is the anti-de Sitter manifold both of which are warped product manifolds (see page 183 of [6]). Thus sequential warped product spacetimes play important role not only in the theory of general relativity but also in the string theory.

In this article, we study some geometric concepts such as curvature, geodesics, Killing vector fields and concircular vector fields on sequential warped products. In section 2 , we derive covariant derivative formulas for sequential warped product manifolds. Then we derive many curvature formulas such as Ricci curvature and scalar curvatureformulas. In section 3, wederivea characterization of two disjoint classes of conformal vector fields on sequential warped product manifolds. In the last section, we apply our results presented in Section 2 and Section 3, to sequential standard space-times and generalized Robertson-Walker spacetimes.

Before we begin to state our main results, we would like to fix notations used throughout the entire article.

Notation 1.5. Let $\bar{M}=\left(M_{1} \times_{f} M_{2}\right) \times_{h} M_{3}$ be a sequential warped product manifold with metric $\bar{g}=\left(g_{1} \oplus f^{2} g_{2}\right) \oplus$ $h^{2} g_{3}$ where $\mathrm{f}: \mathrm{M}_{1} \rightarrow(0, \infty)$ and $\mathrm{h}: \mathrm{M}_{1} \times \mathrm{M}_{2} \rightarrow(0, \infty)$. Then

- $\mathrm{M}=\mathrm{M}_{1} \times \mathrm{f}_{\mathrm{f}} \mathrm{M}_{2}$ is a warped product with the metric tensor $g=g_{1} \oplus \mathrm{f}^{2} g_{2}$.
- $\operatorname{grad}^{1} \mathrm{f}$ is the gradient of f on M_{1} and $\left\|\operatorname{grad}^{1} \mathrm{f}\right\|^{2}=g_{1}\left(\operatorname{grad}^{1} \mathrm{f}, \operatorname{grad}^{1} \mathrm{f}\right)$.
- gradh is the gradient of h on M and $\|$ gradh $\|^{2}=g$ (gradh, gradh).
- The same notation is used to den ote a vector field and its lift to the sequential warped product manifold.

2. Curvature of Sequential Warped Product Manifolds

In this section, we will explorethegeometry of sequential warped products of theform $\left(M_{1} x_{f} M_{2}\right) x_{h} M_{3}$ by providing the covariant derivative, curvature tensor, Ricci and scalar curvature formulas. The proofs that are straightforward can be obtained by applying similar results on singly warped products twice.

Proposition 2.1. Let $\left.\bar{M}=\left(M_{1} \times X_{f}\right)^{2}\right)_{h} M_{3}$ bea sequential warped product manifold with metric $\bar{g}=\left(g_{1} \oplus f^{2} g_{2}\right) \oplus$ $h^{2} g_{3}$ and also let $X_{i}, Y_{i} \in \mathfrak{X}\left(M_{i}\right)$ for any $i=1,2,3$. Then

1. $\bar{\nabla}_{X_{1}} Y_{1}=\nabla_{X_{1}}^{1} Y_{1}$
2. $\bar{\nabla}_{X_{1}} X_{2}=\bar{\nabla}_{\mathrm{X}_{2}} \mathrm{X}_{1}=\mathrm{X}_{1}(\ln \mathrm{f}) \mathrm{X}_{2}$
3. $\bar{\nabla}_{\mathrm{X}_{2}} \mathrm{Y}_{2}=\nabla_{\mathrm{X}_{2}}^{2} \mathrm{Y}_{2}-\mathrm{f}_{2}\left(\mathrm{X}_{2}, \mathrm{Y}_{2}\right) \mathrm{grad}^{1} \mathrm{f}$
4. $\bar{V}_{x_{3}} X_{1}=\bar{\nabla}_{x_{1}} X_{3}=X_{1}(\operatorname{lnh}) X_{3}$
5. $\bar{\nabla}_{x_{2}} X_{3}=\bar{\nabla}_{x_{3}} X_{2}=X_{2}(\operatorname{lnh}) X_{3}$
6. $\bar{\nabla}_{X_{3}} Y_{3}=\nabla_{X_{3}}^{3} Y_{3}-h g_{3}\left(X_{3}, Y_{3}\right)$ gradh

Proposition 2.2. Let $\bar{M}=\left(M_{1} \times \times_{f} M_{2}\right) \times_{h} M_{3}$ bea sequential warped product manifold with metric $\bar{g}=\left(g_{1} \oplus f^{2} g_{2}\right) \oplus$ $h^{2} g_{3}$ and also let $X_{i}, Y_{i}, Z_{i} \in \mathfrak{X}\left(M_{i}\right)$ for any $i=1,2,3$. Then

1. $\dot{R}\left(X_{1}, Y_{1}\right) Z_{1}=R^{1}\left(X_{1}, Y_{1}\right) Z_{1}$
2. $\bar{R}\left(X_{2}, Y_{2}\right) Z_{2}=R^{2}\left(X_{2}, Y_{2}\right) Z_{2}-\left\|\operatorname{grad}^{1} f\right\|^{2}\left[g_{2}\left(X_{2}, Z_{2}\right) Y_{2}-g_{2}\left(Y_{2}, Z_{2}\right) X_{2}\right]$
3. $\tilde{R}\left(X_{1}, Y_{2}\right) Z_{1}=\frac{-1}{f} H_{1}^{f}\left(X_{1}, Z_{1}\right) Y_{2}$
4. $\bar{R}\left(X_{1}, Y_{2}\right) Z_{2}=f g_{2}\left(Y_{2}, Z_{2}\right) \nabla_{X_{1}}^{1} \operatorname{grad}^{1} f$
5. $\bar{R}\left(X_{1}, Y_{2}\right) Z_{3}=0$
6. $R\left(X_{i}, Y_{i}\right) Z_{j}=0, i \neq j$
7. $\bar{R}\left(X_{i}, Y_{3}\right) Z_{j}=\frac{-1}{h} H^{h}\left(X_{i}, Z_{j}\right) Y_{3}, i, j=1,2$
8. $\bar{R}\left(X_{i}, Y_{3}\right) Z_{3}=h g_{3}\left(Y_{3}, Z_{3}\right) \nabla_{X_{i}}$ gradh, $i=1,2$
9. $\bar{R}\left(X_{3}, Y_{3}\right) Z_{3}=R^{3}\left(X_{3}, Y_{3}\right) Z_{3}-\|\operatorname{gradh}\|^{2}\left[g_{3}\left(X_{3}, Z_{3}\right) Y_{3}-g_{3}\left(Y_{3}, Z_{3}\right) X_{3}\right]$

Now consider theRicci curvaturedenoted by Ric of a sequential warped product of theform $\left(M_{1} \times_{f} M_{2}\right) \times_{h}$ M_{3}.
Proposition 2.3. Let $\bar{M}=\left(M_{1} \times_{f} M_{2}\right) \times{ }_{h} M_{3}$ bea sequential warped product manifold with metric $\bar{g}=\left(g_{1} \oplus f^{2} g_{2}\right) \oplus$ $h^{2} g_{3}$ and also let $X_{i}, Y_{i}, Z_{i} \in \mathfrak{X}\left(M_{i}\right)$ for any $i=1,2,3$. Then

1. $\overline{\operatorname{Ric}}\left(X_{1}, Y_{1}\right)=\operatorname{Ric}^{1}\left(X_{1}, Y_{1}\right)-\frac{n_{2}}{f} H_{1}^{f}\left(X_{1}, Y_{1}\right)-\frac{n_{3}}{h} H^{h}\left(X_{1}, Y_{1}\right)$
2. $\overline{\operatorname{Ric}}\left(X_{2}, Y_{2}\right)=\operatorname{Ric}^{2}\left(X_{2}, Y_{2}\right)-f^{\sharp} g_{2}\left(X_{2}, Y_{2}\right)-\frac{n_{3}}{h} H^{h}\left(X_{2}, Y_{2}\right)$
3. $\operatorname{Ric}\left(X_{3}, Y_{3}\right)=\operatorname{Ric}^{3}\left(X_{3}, Y_{3}\right)-h^{\sharp} g_{3}\left(X_{3}, Y_{3}\right)$
4. $\overline{\operatorname{Ric}}\left(X_{i}, Y_{j}\right)=0, i \neq j$
where $f^{\sharp}=f \Delta^{1} f+\left(n_{2}-1\right)\left\|\operatorname{grad}^{1} f\right\|^{2}$ and $h^{\sharp}=h \Delta h+\left(n_{3}-1\right)\|\operatorname{gradh}\|^{2}$
We now apply the last result to establish conditions for a sequential warped product to be Einstein.
Theorem 2.4. The sequential warped product $\left(M_{1} \times_{f} M_{2}\right) \times_{h} M_{3}$ is Einstein with $\bar{R} i c=\lambda \bar{g}$ if and only if
5. Ric $^{1}=\lambda g_{1}+\frac{\mathrm{n}_{2}}{\mathrm{f}} \mathrm{H}_{1}^{\mathrm{f}}+\frac{\mathrm{n}_{3}}{\mathrm{~h}} \mathrm{H}^{\mathrm{h}}$
6. $\operatorname{Ric}^{2}=\left(\lambda f^{2}+f^{\sharp}\right) g_{2}+\frac{n_{3}}{h} H^{h}$
7. M_{3} is Einstein with $\operatorname{Ric}^{3}=\left(\lambda h^{2}+h^{\sharp}\right) g_{3}$.

In [11], F. Dobarro and E. Lamí Dozo established a relationship between the scalar curvature of a warped product of the form $M \times_{f} N$ and that of its base and fiber manifolds M and N. In the following theorem we derive a quite different result for a sequential warped product manifold.
Theorem 2.5. Let $\bar{M}=\left(M_{1} \times_{f} M_{2}\right) \times_{h} M_{3}$ be a sequential warped product manifold with metric $\bar{g}=\left(g_{1} \oplus f^{2} g_{2}\right) \oplus$ $h^{2} g_{3}$ and let r_{i} be the scal ar curvature of $M_{i}, i=1,2,3$. Then the scal ar curvature r of M is given by

$$
r=r_{1}+\frac{r_{2}}{f^{2}}+\frac{r_{3}}{h^{2}}-\frac{2 n_{2}}{f} \Delta^{1} f-\frac{2 n_{3}}{h} \Delta h-\frac{n_{2}\left(n_{2}-1\right)}{f^{2}}\left\|\operatorname{grad}^{1} f\right\|^{2}-\frac{n_{3}\left(n_{3}-1\right)}{h^{2}}\|\operatorname{gradh}\|^{2}
$$

Proof. Let $\left\{e_{1}, e_{2}, \ldots, e_{n_{1}}\right\},\left\{e_{n_{1}+1}, e_{n_{1}+2}, \ldots, e_{n_{1}+n_{2}}\right\}$ and $\left\{e_{n_{1}+n_{2}+1}+e_{n_{1}+n_{2}+2}, \ldots, e_{n}\right\}$ be three frames over M_{1}, M_{2} and M_{3} respectively. The scalar curvaturer of M is given by

$$
\begin{aligned}
r= & \sum_{i=1}^{n_{1}} \overline{\operatorname{Ric}}\left(e_{1}, e_{i}\right)+\frac{1}{f^{2}} \sum_{i=n_{1}+1}^{n_{1}+n_{2}} \overline{\operatorname{Ric}}\left(e_{1}, e_{i}\right)+\frac{1}{h^{2}} \sum_{i=n_{1}+n_{2}+1}^{n_{1}+n_{2}+n_{3}} \overline{\operatorname{Ric}}\left(e_{i}, e_{i}\right) \\
= & r_{1}-\frac{n_{2}}{f} \Delta^{1} f-\frac{n_{3}}{h} \sum_{i=1}^{n_{1}} H^{h}\left(e_{i}, e_{i}\right)+\frac{1}{f^{2}} r_{2}-\frac{n_{2}}{f^{2}} f^{\sharp}-\frac{1}{f^{2}} \frac{n_{3}}{h} \sum_{i=n_{1}+1}^{n_{1}+n_{2}} H^{h}\left(e_{i}, e_{i}\right) \\
& +\frac{1}{h^{2}}\left[r_{3}-h^{\sharp} n_{3}\right] \\
= & r_{1}+\frac{1}{f^{2}} r_{2}+\frac{1}{h^{2}} r_{3}-\frac{n_{2}}{f} \Delta^{1} f-\frac{n_{3}}{h} \Delta h-\frac{n_{2}}{f^{2}} f^{\sharp}-\frac{n_{3}}{h^{2}} h^{\sharp} \\
= & r_{1}+\frac{r_{2}}{f^{2}}+\frac{r_{3}}{h^{2}}-\frac{2 n_{2}}{f} \Delta^{1} f-\frac{2 n_{3}}{h} \Delta h-\frac{n_{2}\left(n_{2}-1\right)}{f^{2}}\left\|\operatorname{grad}^{1} f\right\|^{2}-\frac{n_{3}\left(n_{3}-1\right)}{h^{2}} \| \text { gradh } \|^{2}
\end{aligned}
$$

Suppose that $\bar{M}=\left(M_{1} \times_{f} M_{2}\right) \times_{h} M_{3}$ has a constant sectional curvature κ. Then the first item of Proposition (2.2) yields

$$
\begin{aligned}
& \bar{R}\left(X_{1}, Y_{1}\right) Z_{1}=\kappa\left\{g_{1}\left(X_{1}, Z_{1}\right) Y_{1}-g_{1}\left(Y_{1}, Z_{1}\right) X_{1}\right\} \\
& \bar{R}\left(X_{1}, Y_{1}\right) Z_{1}=R^{1}\left(X_{1}, Y_{1}\right) Z_{1}
\end{aligned}
$$

Thus M_{1} has a constant sectional curvature $\kappa_{1}=\kappa$. The second item implies that

$$
\begin{aligned}
\bar{R}\left(X_{2}, Y_{2}\right) Z_{2} & =\kappa\left\{g\left(X_{2}, Z_{2}\right) Y_{2}-g\left(Y_{2}, Z_{2}\right) X_{2}\right\} \\
& =\kappa f^{2}\left\{g_{2}\left(X_{2}, Z_{2}\right) Y_{2}-g_{2}\left(Y_{2}, Z_{2}\right) X_{2}\right\} \\
\bar{R}\left(X_{2}, Y_{2}\right) Z_{2} & =R^{2}\left(X_{2}, Y_{2}\right) Z_{2}-\left\|\operatorname{grad}^{1} f\right\|^{2}\left\{g_{2}\left(X_{2}, Z_{2}\right) Y_{2}-g_{2}\left(Y_{2}, Z_{2}\right) X_{2}\right\}
\end{aligned}
$$

Therefore, Shur's Lemma implies that M_{2} has a constant sectional curvature κ_{2} given by

$$
\kappa_{2}=\kappa f^{2}+\left\|\operatorname{grad}^{1} f\right\|^{2}
$$

for $n_{2} \geq 3$. Similarly, M_{3} has a constant sectional curvature curvature κ_{3} given by

$$
\kappa_{3}=\kappa h^{2}+\|\operatorname{gradh}\|^{2}
$$

for $n_{3} \geq 3$.
Theorem 2.6. Let $\bar{M}=\left(M_{1} \times_{f} M_{2}\right) \times_{h} M_{3}$ be a sequential warped product manifold with metric $\bar{g}=\left(g_{1} \oplus f^{2} g_{2}\right) \oplus$ $\mathrm{h}^{2} g_{3}$ and let $\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{i}} \in \mathfrak{X}\left(\mathrm{M}_{\mathrm{i}}\right)$ for any $\mathrm{i}=1,2,3$. A ssume that M^{-}has a constant sectional curvature κ. Then

1. M_{1} has a costant sectional curvature $\kappa_{1}=\kappa$,
2. M_{2} has a costant sectional curvature $\kappa_{2}=\kappa f^{2}+\left\|\operatorname{grad}^{1} f\right\|^{2}$ for $n_{2} \geq 3$, and
3. M_{3} has a costant sectional curvature $\kappa_{3}=k h^{2}+\|$ gradh $\|^{2}$ for $n_{3} \geq 3$.

3. Conformal vector fields

Conformal vector fields have well-known geometrical and physical interpretations and have been studied for a long time by geometers and physicists on Riemannian and pseudo-Riemannian manifolds. Killing vector fields are conformal vector fields on (pseudo-) Riemannian manifolds that preserve metric, i.e, under the flow of a Killing vector field the metric does not change. The set of all Killing vector fields on a connected Riemannian manifold forms a Lie algebra over the set of real numbers.[7, 8, 16-19, 23]

In [12], theauthors studied Killing vector fields of warped product manifolds specially on standard static space-times. They prove some global characterization of the Killing vector fields of a standard static spacetime. More explicitly, they obtain a form of a Killing vector field on this class of space-times. Moreover, a characterization of the Killing vector fields on a standard static space-time with compact Riemannian parts and many other interesting results are given. In this section, we study the concept of conformal vector fields on sequential warped product manifolds.

A vector field ζ on a Riemannian manifold (M, g) is conformal if

$$
\begin{equation*}
\mathcal{L}_{\zeta} g=\rho g \tag{3}
\end{equation*}
$$

where \mathcal{L}_{ζ} is the Lie derivative in direction of the vector field ζ. Moreover, ζ is called a Killing vector field if $\rho=0$. This is equivalent to say that ζ is Killing if

$$
\begin{equation*}
g\left(\nabla_{X} \zeta, Y\right)+g\left(X, \nabla_{Y} \zeta\right)=0 \tag{4}
\end{equation*}
$$

for any vector fields $X, Y \in \mathfrak{X}(M)$. By symmetry of the above equation, ζ is Killing if

$$
\begin{equation*}
g\left(\nabla_{x} \zeta, X\right)=0 \tag{5}
\end{equation*}
$$

for any vector field $X \in \mathfrak{X}(M)$.
From now on $\bar{M}=\left(M_{1} \times{ }_{f} M_{2}\right) \times_{h} M_{3}$ denotes a sequential warped product manifold with metric $\bar{g}=\left(g_{1} \oplus f^{2} g_{2}\right) \oplus h^{2} g_{3}$.

Theorem 3.1. A vector field $\zeta \in \mathfrak{X}\left(\left(M_{1} \times{ }_{f} M_{2}\right) \times_{h} M_{3}\right)$ is Killing if

1. ζ_{i} is Killing on M_{i}, for every $i=1,2,3$
2. $\zeta_{1}(f)=0$
3. $\left(\zeta_{1}+\zeta_{2}\right) h=0$

Proof. The vector field $\zeta \in \mathfrak{X}(\bar{M})$ is Killing by equation (5) if and only if

$$
\bar{g}\left(\bar{\nabla}_{x} \zeta, x\right)=0
$$

for any vector field $X \in \mathfrak{X}(\bar{M})$. It is clear that

$$
\begin{aligned}
\bar{g}\left(\bar{\nabla}_{x} \zeta, x\right)= & \bar{g}\left(\bar{\nabla}_{x_{1}} \zeta_{1}+\bar{\nabla}_{x_{1}} \zeta_{2}+\bar{\nabla}_{x_{1}} \zeta_{3}, x\right) \\
& +\bar{g}\left(\bar{\nabla}_{x_{2}} \zeta_{1}+\bar{\nabla}_{x_{2}} \zeta_{2}+\bar{\nabla}_{x_{2}} \zeta_{3}, x\right) \\
& +\bar{g}\left(\bar{\nabla}_{x_{3}} \zeta_{1}+\bar{\nabla}_{x_{3}} \zeta_{2}+\bar{\nabla}_{x_{3}} \zeta_{3}, x\right)
\end{aligned}
$$

Now using Proposition (2.1) we have

$$
\begin{aligned}
& \bar{g}\left(\bar{\nabla}_{\mathrm{x}} \zeta, \mathrm{X}\right) \\
= & \bar{g}\left(\nabla_{\mathrm{X}_{1}}^{1} \zeta_{1}+\mathrm{X}_{1}(\ln \mathrm{f}) \zeta_{2}+\mathrm{X}_{1}(\operatorname{lnh}) \zeta_{3}, \mathrm{X}\right) \\
& +\bar{g}\left(\zeta_{1}(\ln \mathrm{f}) \mathrm{X}_{2}+\nabla_{\mathrm{X}_{2}}^{2} \zeta_{2}-\mathrm{f} g_{2}\left(\zeta_{2}, \mathrm{X}_{2}\right) \operatorname{grad}^{1} \mathrm{f}+\mathrm{X}_{2}(\operatorname{lnh}) \zeta_{3}, \mathrm{X}\right) \\
& +\bar{g}\left(\zeta_{1}(\operatorname{lnh}) \mathrm{X}_{3}+\zeta_{2}(\operatorname{lnh}) \mathrm{X}_{3}+\nabla_{\mathrm{X}_{3}}^{3} \zeta_{3}-\mathrm{h} g_{3}\left(\zeta_{3}, \mathrm{X}_{3}\right) \text { gradh, } \mathrm{X}\right) \\
= & g_{1}\left(\nabla_{\mathrm{X}_{1}}^{1} \zeta_{1}, \mathrm{X}_{1}\right)+\mathrm{f}^{2} g_{2}\left(\nabla_{\mathrm{X}_{2}}^{2} \zeta_{2}, \mathrm{X}_{2}\right)+\mathrm{h}^{2} g_{3}\left(\nabla_{\mathrm{X}_{3}}^{3} \zeta_{3}, \mathrm{X}_{3}\right) \\
& +\mathrm{f} \zeta_{1}(\mathrm{f}) g_{2}\left(\mathrm{X}_{2}, \mathrm{X}_{2}\right)+\mathrm{h}\left(\zeta_{1}+\zeta_{2}\right)(\mathrm{h}) g_{3}\left(\mathrm{X}_{3}, \mathrm{X}_{3}\right)
\end{aligned}
$$

From this equation one can easily deduce the result.
The following result will enable us to discuss the converse of the above result.
Proposition 3.2. A vector field $\zeta \in \mathfrak{X}\left(\left(M_{1} x_{f} M_{2}\right) \times_{h} M_{3}\right)$ satisfies

$$
\begin{align*}
\left(\mathcal{L}_{\zeta} g\right)(X, Y)= & \left(\mathcal{L}_{\zeta_{1}}^{1} g_{1}\right)\left(X_{1}, Y_{1}\right)+\mathrm{f}^{2}\left(\mathcal{L}_{\zeta_{2}}^{2} g_{2}\right)\left(X_{2}, Y_{2}\right)+h^{2}\left(\mathcal{L}_{\zeta_{3}}^{3} g_{3}\right)\left(X_{3}, Y_{3}\right) \\
& +2 f \zeta_{1}(\mathrm{f}) g_{2}\left(\mathrm{X}_{2}, Y_{2}\right)+2 h\left(\zeta_{1}+\zeta_{2}\right)(\mathrm{h}) g_{3}\left(\mathrm{X}_{3}, Y_{3}\right) \tag{6}
\end{align*}
$$

for any vector fields $X, Y \in \mathfrak{X}\left(\left(M_{1} x_{f} M_{2}\right) x_{h} M_{3}\right)$.
Theorem 3.3. Let $\zeta \in \mathfrak{X}\left(\left(M_{1} \times_{f} M_{2}\right) \times_{h} M_{3}\right)$ be a Killing vector field. Then

1. ζ_{1} is Killing on M_{1},
2. ζ_{2} is conformal on M_{2} with conformal factor $-2 \zeta_{1}(\ln f)$,
3. ζ_{3} is conformal on M_{3} with conformal factor $-2\left(\zeta_{1}+\zeta_{2}\right)$ (Inh).

Proof. Consider equation (6). We have the following cases. By substituting $X=X_{1}$ and $Y=Y_{1}$, we obtain

$$
\left(\mathcal{L}_{\zeta_{1}}^{1} g_{1}\right)\left(\mathrm{X}_{1}, Y_{1}\right)=0
$$

and thus ζ_{1} is Killing. Now, let $X=X_{2}$ and $Y=Y_{2}$, be then we have

$$
\begin{aligned}
0 & =\mathrm{f}^{2}\left(\mathcal{L}_{\zeta_{2}}^{2} g_{2}\right)\left(\mathrm{X}_{2}, \mathrm{Y}_{2}\right)+2 \mathrm{f} \zeta_{1}(\mathrm{f}) g_{2}\left(\mathrm{X}_{2}, \mathrm{Y}_{2}\right) \\
\left(\mathcal{L}_{\zeta_{2}}^{2} g_{2}\right)\left(\mathrm{X}_{2}, \mathrm{Y}_{2}\right) & =-2 \zeta_{1}(\ln \mathrm{f}) g_{2}\left(\mathrm{X}_{2}, \mathrm{Y}_{2}\right)
\end{aligned}
$$

and thus ζ_{2} is conformal. Finally, if $X=X_{3}$ and $Y=Y_{3}$, then

$$
\begin{aligned}
0 & =h^{2}\left(\mathcal{L}_{\zeta_{3}}^{3} g_{3}\right)\left(X_{3}, Y_{3}\right)+2 h\left(\zeta_{1}+\zeta_{2}\right)(h) g_{3}\left(X_{3}, Y_{3}\right) \\
\left(\mathcal{L}_{\zeta_{3}}^{3} g_{3}\right)\left(X_{3}, Y_{3}\right) & =-2\left(\zeta_{1}+\zeta_{2}\right)(\operatorname{lnh}) g_{3}\left(X_{3}, Y_{3}\right)
\end{aligned}
$$

and thus ζ_{3} is conformal.
Theorem 3.4. Let $\zeta \in \mathfrak{X}\left(\left(M_{1} \times_{f} M_{2}\right) \times_{h} M_{3}\right)$ be a vector field on a sequential warped product manifold. A ssume that

1. ζ_{i} is conformal on M_{i} with factor ρ_{i} for each i ,
2. $\rho_{1}=\rho_{2}+2 \zeta_{1}(\ln f)$,
3. $\rho_{1}=\rho_{3}+2\left(\zeta_{1}+\zeta_{2}\right)(\operatorname{lnh})$.

Then ζ is conformal on M.
Now, we will study the geodesic curves and their equations on a sequential warped product. In a sequential warped product of the form $\left(M_{1} x_{f} M_{2}\right) x_{h} M_{3}$, as product manifold, a curve $\alpha(t)$ can be written as $\alpha(\mathrm{t})=\left(\alpha_{1}(\mathrm{t}), \alpha_{2}(\mathrm{t}), \alpha_{3}(\mathrm{t})\right)$ with $\alpha_{\mathrm{i}}(\mathrm{t})$ the projections of α into M_{i} for any $\mathrm{i}=1,2,3$.

Lemma 3.5. Let $\alpha(\mathrm{t})=\left(\alpha_{1}(\mathrm{t}), \alpha_{2}(\mathrm{t}), \alpha_{3}(\mathrm{t})\right)$ be a smooth curve on a sequential warped product of the form $\mathrm{M}^{-}=$ $\left(M_{1} \times f M_{2}\right) \times_{h} M_{3}$ with metric $\bar{g}=\left(g_{1} \oplus f^{2} g_{2}\right) \oplus h^{2} g_{3}$. Then α is a geodesic in \bar{M} if and only if

1. $\nabla_{\dot{\alpha}_{1}}^{1} \dot{\alpha}_{1}=\mathrm{f}\left\|\dot{\alpha}_{2}\right\|_{2}^{2} \operatorname{grad}^{1} \mathrm{f}+\mathrm{h}\left\|\dot{\alpha}_{3}\right\|_{3}^{2}(\mathrm{gradh})^{\top}$ on M_{1}
2. $\nabla_{\dot{\alpha}_{2}}^{2} \dot{\alpha}_{2}=-2 \dot{\alpha}_{1}(\ln \mathrm{f}) \dot{\alpha}_{2}+\mathrm{h}\left\|\dot{\alpha}_{3}\right\|_{3}^{2}(\mathrm{gradh})^{\perp}$ on M_{2}
3. $\nabla_{\dot{\alpha}_{3}}^{3} \dot{\alpha}_{3}=-2 \dot{\alpha}_{1}(\operatorname{lnh}) \dot{\alpha}_{3}-2 \dot{\alpha}_{2}(\operatorname{lnh}) \dot{\alpha}_{3}$ on M_{3}

Proof. Then $\alpha_{i}(\mathrm{t})$ is regular hence we can suppose $\alpha_{\mathrm{i}}(\mathrm{t})$ is an integral curve of $\dot{\alpha}_{\mathrm{i}}$ on M_{i} and so $\alpha(\mathrm{t})$ is an integral curve of $\dot{\alpha}=\dot{\alpha}_{1}+\dot{\alpha}_{2}+\dot{\alpha}_{3}$. Thus

$$
\begin{aligned}
\bar{\nabla}_{\dot{\alpha}} \dot{\alpha}= & \bar{\nabla}_{\dot{\alpha}_{1}} \dot{\alpha}_{1}+\bar{\nabla}_{\dot{\sigma}_{1}} \dot{\alpha}_{2}+\bar{\nabla}_{\dot{\alpha}_{1}} \dot{\alpha}_{3} \\
& +\bar{\nabla}_{\dot{\alpha}_{2}} \dot{\alpha}_{1}+\bar{\nabla}_{\dot{\alpha}_{2}} \dot{\alpha}_{2}+\bar{\nabla}_{\dot{d}_{2}} \dot{\alpha}_{3} \\
& +\bar{\nabla}_{\alpha_{3}} \dot{\alpha}_{1}+\bar{\nabla}_{\dot{\alpha}_{3}} \dot{\alpha}_{2}+\bar{\nabla}_{\dot{\alpha}_{3}} \dot{\alpha}_{3}
\end{aligned}
$$

Now we apply Proposition (2.1) to get

$$
\begin{aligned}
\bar{\nabla}_{\dot{\alpha}} \dot{\alpha}= & \nabla_{\dot{\alpha}_{1}}^{1} \dot{\alpha}_{1}+2 \dot{\alpha}_{1}(\ln \mathrm{f}) \dot{\alpha}_{2}+2 \dot{\alpha}_{1}(\operatorname{lnh}) \dot{\alpha}_{3} \\
& +2 \dot{\alpha}_{2}(\operatorname{lnh}) \dot{\alpha}_{3}+\nabla_{\dot{\alpha}_{2}}^{2} \dot{\alpha}_{2}-f g_{2}\left(\dot{\alpha}_{2}, \dot{\alpha}_{2}\right) \operatorname{grad}^{1} \mathrm{f} \\
& +\nabla_{\dot{\alpha}_{3}}^{3} \dot{\alpha}_{3}-\mathrm{h} g_{3}\left(\dot{\alpha}_{3}, \dot{\alpha}_{3}\right) \operatorname{gradh}
\end{aligned}
$$

This equation implies that

$$
\begin{aligned}
\bar{\nabla}_{\dot{\alpha}} \dot{\alpha}= & \nabla_{\dot{\dot{c}}_{1}}^{1} \dot{\alpha}_{1}-f g_{2}\left(\dot{\alpha}_{2}, \dot{\alpha}_{2}\right) \operatorname{grad}^{1} \mathrm{f}-\mathrm{h} g_{3}\left(\dot{\alpha}_{3}, \dot{\alpha}_{3}\right)(\mathrm{gradh})^{\top} \\
& +\nabla_{\dot{\alpha}_{2}}^{2} \dot{\alpha}_{2}+2 \dot{\alpha}_{1}(\ln \mathrm{f}) \dot{\alpha}_{2}-\mathrm{h} g_{3}\left(\dot{\alpha}_{3}, \dot{\alpha}_{3}\right)(\mathrm{gradh})^{\perp} \\
& +\nabla_{\dot{\alpha}_{3}}^{3} \dot{\alpha}_{3}+2 \dot{\alpha}_{1}(\operatorname{lnh}) \dot{\alpha}_{3}+2 \dot{\alpha}_{2}(\operatorname{lnh}) \dot{\alpha}_{3}
\end{aligned}
$$

Theorem 3.6. Let $\zeta \in \mathfrak{X}\left(\left(M_{1} \times_{f} M_{2}\right) \times_{h} M_{3}\right)$ be a Killing vector field. Then $g(\zeta, X)$ is constant along the integral curve $\alpha(\mathrm{t})=\left(\alpha_{1}(\mathrm{t}), \alpha_{2}(\mathrm{t}), \alpha_{3}(\mathrm{t})\right)$ of X if

1. $\nabla_{\mathrm{X}_{1}}^{1} \mathrm{X}_{1}=\mathrm{f}\left\|\dot{\alpha}_{2}\right\|_{2}^{2} \operatorname{grad}^{1} \mathrm{f}+\mathrm{h}\left\|\dot{\alpha}_{3}\right\|_{3}^{2}(\text { gradh })^{\top}$ on M_{1}
2. $\nabla_{X_{2}}^{2} X_{2}=-2 X_{1}(\ln f) X_{2}+h\left\|\dot{\alpha}_{3}\right\|_{3}^{2}(\operatorname{gradh})^{\perp}$ on M_{2}
3. $\nabla_{X_{3}}^{3} X_{3}=-2 X_{1}(\ln h) X_{3}-2 X_{2}(\ln h) X_{3}$ on M_{3}.

Proof. The conditions (1-3) imply that $\alpha(\mathrm{t})$ is a geodesic and so $\nabla_{X} X=0$ (see Lemma 3.5). Thus $g(\zeta, X)$ is constant al ong the integral curve of X.

A vector field ζ on a Riemannian manifold M is called concircular vector field if

$$
\nabla_{X} \zeta=\mu X
$$

for any vector field X where μ is function defined on M. It is clear that

$$
\left(\mathcal{L}_{\zeta} g\right)(\mathrm{X}, \mathrm{Y})=2 \mu g(\mathrm{X}, \mathrm{Y})
$$

i.e. any concircular vector field is a conformal vector field. Concircular vector fields havemany applications in geometry and physics[10]. A concircular vector field is sometimes called a closed conformal vector field.

Theorem 3.7. Let $\zeta \in \mathfrak{X}\left(\left(M_{1} \times_{f} M_{2}\right) \times_{h} M_{3}\right)$ be a concircular vector field on $\bar{M}=\left(M_{1} \times_{f} M_{2}\right) \times_{h} M_{3}$. Then each ζ_{i} is a non-zero concircular vector field on M_{i} for any $i=1,2,3$ if and only if both f and h are constant functions.

Proof. Using the definition of concircular vector fields and Theorem 2.1, we obtain that

$$
\begin{aligned}
\nabla_{\mathrm{x}} \zeta= & \nabla_{\mathrm{x}_{1}} \zeta_{1}+\nabla_{\mathrm{x}_{1}} \zeta_{2}+\nabla_{\mathrm{x}_{1}} \zeta_{3}+\nabla_{\mathrm{x}_{2}} \zeta_{1}+\nabla_{\mathrm{x}_{2}} \zeta_{2}+\nabla_{\mathrm{x}_{2}} \zeta_{3}+\nabla_{\mathrm{x}_{3}} \zeta_{1}+\nabla_{\mathrm{x}_{3}} \zeta_{2}+\nabla_{\mathrm{x}_{3}} \zeta_{3} \\
\mu \mathrm{X}= & \nabla_{\mathrm{x}_{1}}^{1} \zeta_{1}+\mathrm{X}_{1}(\mathrm{f}) \zeta_{2}+\mathrm{X}_{1}(\mathrm{~h}) \zeta_{3}+\zeta_{1}(\mathrm{f}) \mathrm{X}_{2}+\nabla_{\mathrm{x}_{2}}^{2} \zeta_{2}-\mathrm{f} g_{2}\left(\mathrm{X}_{2} \zeta_{2}\right) \mathrm{grad}^{1} \mathrm{f} \\
& +\mathrm{X}_{2}(\mathrm{~h}) \zeta_{3}+\zeta_{1}(\mathrm{~h}) \mathrm{X}_{3}+\zeta_{2}(\mathrm{~h}) \mathrm{X}_{3}+\nabla_{\mathrm{x}_{3}}^{3} \zeta_{3}-\mathrm{h} g_{3}\left(\mathrm{X}_{3}, \zeta_{3}\right) \text { gradh }
\end{aligned}
$$

Suppose that both f and h are constant functions, then

$$
\begin{align*}
\nabla_{\mathrm{X}_{1}}^{1} \zeta_{1}-\mathrm{f} g_{2}\left(\mathrm{X}_{2}, \zeta_{2}\right) \operatorname{grad}^{1} \mathrm{f}-\mathrm{h} g_{3}\left(\mathrm{X}_{3}, \zeta_{3}\right)(\mathrm{gradh})^{\top} & =\mu \mathrm{X}_{1} \\
\nabla_{\mathrm{X}_{2}}^{2} \zeta_{2}+\mathrm{X}_{1}(\mathrm{f}) \zeta_{2}+\zeta_{1}(\mathrm{f}) \mathrm{X}_{2}-\mathrm{h} g_{3}\left(\mathrm{X}_{3}, \zeta_{3}\right)(\mathrm{gradh})^{\perp} & =\mu \mathrm{X}_{2} \tag{7}\\
\nabla_{\mathrm{X}_{3}}^{3} \zeta_{3}+\mathrm{X}_{1}(\mathrm{~h}) \zeta_{3}+\mathrm{X}_{2}(\mathrm{~h}) \zeta_{3}+\zeta_{1}(\mathrm{~h}) \mathrm{X}_{3}+\zeta_{2}(\mathrm{~h}) \mathrm{X}_{3} & =\mu \mathrm{X}_{3}
\end{align*}
$$

Now, suppose that both f and h are constant functions, then

$$
\begin{aligned}
& \nabla_{\mathrm{X}_{1}}^{1} \zeta_{1}=\mu \mathrm{X}_{1} \\
& \nabla_{\mathrm{X}_{2}}^{2} \zeta_{2}=\mu \mathrm{X}_{2} \\
& \nabla_{\mathrm{X}_{3}}^{3} \zeta_{3}=\mu \mathrm{X}_{3}
\end{aligned}
$$

i.e., each ζ_{i} is concircular on M_{i} for $i=1,2,3$. Conversely, we suppose that

$$
\begin{aligned}
& \nabla_{X_{1}}^{1} \zeta_{1}=\mu_{1} X_{1} \\
& \nabla_{X_{2}}^{2} \zeta_{2}=\mu_{2} X_{2} \\
& \nabla_{X_{3}}^{3} \zeta_{3}=\mu_{3} X_{3}
\end{aligned}
$$

Hence Equation 7 becomes

$$
\begin{aligned}
\mu_{1} X_{1}-f g_{2}\left(X_{2}, \zeta_{2}\right) \operatorname{grad}^{1} f-h g_{3}\left(X_{3}, \zeta_{3}\right)(\operatorname{gradh})^{\top} & =\mu X_{1} \\
\mu_{2} X_{2}+X_{1}(f) \zeta_{2}+\zeta_{1}(f) X_{2}-h g_{3}\left(X_{3}, \zeta_{3}\right)(\operatorname{gradh})^{\perp} & =\mu X_{2} \\
\mu_{3} X_{3}+X_{1}(h) \zeta_{3}+X_{2}(h) \zeta_{3}+\zeta_{1}(h) X_{3}+\zeta_{2}(h) X_{3} & =\mu X_{3}
\end{aligned}
$$

$$
\begin{align*}
\bar{\mu}_{1} X_{1}-f g_{2}\left(X_{2}, \zeta_{2}\right) \operatorname{grad}^{1} f-h g_{3}\left(X_{3}, \zeta_{3}\right)(\operatorname{gradh})^{\top} & =0 \tag{8}\\
\bar{\mu}_{2} X_{2}+X_{1}(f) \zeta_{2}+\zeta_{1}(f) X_{2}-h g_{3}\left(X_{3}, \zeta_{3}\right)(\text { gradh })^{\perp} & =0 \tag{9}\\
\bar{\mu}_{3} X_{3}+X_{1}(h) \zeta_{3}+X_{2}(h) \zeta_{3}+\zeta_{1}(h) X_{3}+\zeta_{2}(h) X_{3} & =0 \tag{10}
\end{align*}
$$

These equations must be satisfied by any arbitrary vector field X. Let us put $X_{3}=0$ in Equation 10 , then

$$
\left(X_{1}+X_{2}\right)(h) \zeta_{3}=0
$$

Since ζ_{3} does not vanish, $\left(X_{1}+X_{2}\right)(h)=0$ for any vector field $X_{1}+X_{2}$ and so h is constant. Now, Equations 8 and 9 become

$$
\begin{aligned}
\bar{\mu}_{1} X_{1}-f g_{2}\left(X_{2}, \zeta_{2}\right) \operatorname{grad}^{1} f & =0 \\
\bar{\mu}_{2} X_{2}+X_{1}(f) \zeta_{2}+\zeta_{1}(f) X_{2} & =0
\end{aligned}
$$

Similarly, we can prove that f is constant.
The converse of the above result is considered in the following theorem.
Theorem 3.8. A vector field $\zeta=\zeta_{1} \in \mathfrak{X}\left(\left(M_{1} \times_{f} M_{2}\right) \times_{h} M_{3}\right)$ is a concircular vector field if ζ_{1} is a concircular vector field with factor $\mu_{1}=\zeta_{1}(\ln f)=\zeta_{1}(\operatorname{lnh})$.

4. Geometry of Sequential Warped Product Space-times

We will state basic geometric formulas of two types sequential warped product space-times, namely sequential generalized Robertson-Walker and sequential standard static space-times. These results can be obtained by direct applications of the results presented in Section 2.
4.1. Sequential Generalized Robertson-W alker Space-times

Proposition 4.1. Let $\bar{M}=\left(I \times_{f} M_{2}\right) \times_{h} M_{3}$ be a sequential generalized Robertson-W alker space-time with metric $g=\left(-\mathrm{dt}^{2} \oplus \mathrm{f}^{2} g_{2}\right) \oplus \mathrm{h}^{2} g_{3}$ and al so let $\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}} \in \mathfrak{X}\left(\mathrm{M}_{\mathrm{i}}\right)$ for any $\mathrm{i}=2$, 3 . Then

1. $\bar{\nabla}_{\partial_{\mathrm{t}}} \partial_{\mathrm{t}}=0$
2. $\bar{\nabla}_{\partial_{\mathrm{t}}} X_{i}=\bar{\nabla}_{\mathrm{X}_{\mathrm{i}}} \partial_{\mathrm{t}}=\frac{f}{f} X_{i}, i=2,3$
3. $\bar{\nabla}_{x_{2}} Y_{2}=\nabla_{X_{2}}^{2} Y_{2}-f f g_{2}\left(X_{2}, Y_{2}\right) \partial_{t}$
4. $\bar{\nabla}_{X_{2}} X_{3}=\bar{\nabla}_{X_{3}} X_{2}=X_{2}(\ln h) X_{3}$
5. $\bar{\nabla}_{X_{3}} Y_{3}=\nabla_{X_{3}}^{3} Y_{3}-h g_{3}\left(X_{3}, Y_{3}\right)$ gradh

Proposition 4.2. Let $\bar{M}=\left(I \times_{f} M_{2}\right) \times_{h} M_{3}$ be a sequential generalized Robertson-W alker space-time with metric $\bar{g}=\left(-\mathrm{dt}^{2} \oplus \mathrm{f}^{2} g_{2}\right) \oplus \mathrm{h}^{2} g_{3}$ and also let $\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}}, \mathrm{Z}_{\mathrm{i}} \in \mathfrak{X}\left(\mathrm{M}_{\mathrm{i}}\right)$. Then

1. $\bar{R}\left(\partial_{t}, \partial_{t}\right) \partial_{t}=\bar{R}\left(\partial_{t}, \partial_{t}\right) Z_{j}=\bar{R}\left(X_{i}, Y_{i}\right) Z_{j}=\bar{R}\left(\partial_{t}, Y_{2}\right) Z_{3}=0, i \neq j$
2. $\bar{R}\left(X_{2}, Y_{2}\right) Z_{2}=R^{2}\left(X_{2}, Y_{2}\right) Z_{2}+f^{2}\left[g_{2}\left(X_{2}, Y_{2}\right) Y_{2}-g_{2}\left(Z_{2}, Y_{2}\right) X_{2}\right]$,
3. $\bar{R}\left(\partial_{t}, Y_{2}\right) \partial_{t}=\frac{f_{f}^{\prime}}{f} Y_{2}$,
4. $\bar{R}\left(\partial_{t}, Y_{3}\right) \partial_{t}=\frac{1}{f} \frac{\partial^{2} h}{\partial t^{2}} Y_{3}, i, j=1,2$
5. $\bar{R}\left(\partial_{t}, Y_{2}\right) Z_{2}=f \dot{f} g_{2}\left(Y_{2}, Z_{2}\right) \partial_{t}$
6. $\bar{R}\left(X_{2}, Y_{3}\right) Z_{2}=\frac{-1}{h} H^{h}\left(X_{2}, Z_{2}\right) Y_{3}$,
7. $\bar{R}\left(\partial_{t}, Y_{3}\right) Z_{3}=h g_{3}\left(Y_{3}, Z_{3}\right) \nabla_{\partial_{t}}$ gradh,
8. $\bar{R}\left(X_{2}, Y_{3}\right) Z_{3}=h g_{3}\left(Y_{3}, Z_{3}\right) \nabla_{X_{2}}$ gradh
9. $\bar{R}\left(X_{3}, Y_{3}\right) Z_{3}=R^{3}\left(X_{3}, Y_{3}\right) Z_{3}-\|\operatorname{gradh}\|^{2}\left[g_{3}\left(X_{3}, Y_{3}\right) Y_{3}-g_{3}\left(Z_{3}, Y_{3}\right) X_{3}\right]$

Now we consider the Ricci curvature Ric of a sequential generalized Robertson-Walker space-time of the form $M^{-}=\left(I \times_{f} M_{2}\right) \times_{h} M_{3}$.

Proposition 4.3. Let $\bar{M}=\left(I \times_{f} M_{2}\right) \times_{h} M_{3}$ be a sequential $G R W$ space-time with metric $\bar{g}=\left(-\mathrm{dt}^{2} \oplus \mathrm{f}^{2} g_{2}\right) \oplus \mathrm{h}^{2} g_{3}$ and al so let $X_{i}, Y_{i}, Z_{i} \in \mathfrak{X}\left(M_{i}\right)$. Then

1. $\overline{\operatorname{Ric}}\left(\partial_{\mathrm{t}}, \partial_{\mathrm{t}}\right)=\frac{\mathrm{n}_{2}}{\mathrm{f}} \ddot{f}+\frac{\mathrm{n}_{3}}{\mathrm{~h}} \frac{\partial^{2} \mathrm{~h}}{\partial t^{2}}$
2. $\operatorname{Ric}\left(X_{2}, Y_{2}\right)=\operatorname{Ric}^{2}\left(X_{2}, Y_{2}\right)-g_{2}\left(X_{2}, Y_{2}\right) f^{\#}-\frac{n_{3}}{h} H^{h}\left(X_{2}, Y_{2}\right)$
3. $\operatorname{Ric}\left(X_{3}, Y_{3}\right)=\operatorname{Ric}^{3}\left(X_{3}, Y_{3}\right)-g_{3}\left(X_{3}, Y_{3}\right) h^{\#}$
4. $\overline{\operatorname{Ric}}\left(X_{i}, Y_{j}\right)=0, i \neq j$

$$
\text { where } f^{\sharp}=-f \ddot{f}-\left(n_{2}-1\right) f^{2} \text { and } h^{\sharp}=h \Delta h+\left(n_{3}-1\right)\|\operatorname{gradh}\|^{2}
$$

A sequential GRW space-time $\bar{M}=\left(I \times_{f} M_{2}\right) \times_{h} M_{3}$ is Einstein if

$$
\overline{\operatorname{Ric}}(X, Y)=\mu \bar{g}(X, Y)
$$

We have the following cases. The first case is

$$
\begin{aligned}
\overline{\operatorname{Ric}}\left(\partial_{\mathrm{t}}, \partial_{\mathrm{t}}\right) & =\mu \bar{g}\left(\partial_{\mathrm{t}}, \partial_{\mathrm{t}}\right) \\
\frac{\mathrm{n}_{2}}{\mathrm{f}} \ddot{\mathrm{f}}+\frac{\mathrm{n}_{3}}{\mathrm{~h}} \frac{\partial^{2} \mathrm{~h}}{\partial \mathrm{t}^{2}} & =-\mu
\end{aligned}
$$

and the second case is

$$
\operatorname{Ric}^{2}\left(X_{2}, Y_{2}\right)-g_{2}\left(X_{2}, Y_{2}\right) f^{\sharp}-\frac{n_{3}}{h} H^{h}\left(X_{2}, Y_{2}\right)=\mu f^{2} g_{2}\left(X_{2}, Y_{2}\right)
$$

and so

$$
\operatorname{Ric}^{2}\left(X_{2}, Y_{2}\right)=\frac{n_{3}}{h} H^{h}\left(X_{2}, Y_{2}\right)+\left(\mu f^{2}+f^{\sharp}\right) g_{2}\left(X_{2}, Y_{2}\right)
$$

and finally we have

$$
\operatorname{Ric}^{3}\left(X_{3}, Y_{3}\right)=\left(\mu h^{2}+h^{\sharp}\right) g_{3}\left(X_{3}, Y_{3}\right)
$$

Theorem 4.4. Let $\bar{M}=\left(I \times_{f} M_{2}\right) \times_{h} M_{3}$ bean Einstein sequential GRW space-timewith metric $\bar{g}=\left(-d^{2} \oplus f^{2} g_{2}\right) \oplus$ $h^{2} g_{3}$. Then,

1. $\mu=-\left(\frac{\mathrm{n}_{2}}{\mathrm{f}} \mathrm{f}+\frac{\mathrm{n}_{3}}{\mathrm{~h}} \frac{\partial^{2 \mathrm{~h}}}{\partial \mathrm{t}^{2}}\right)$
2. $\left(\mathrm{M}_{2}, g_{2}\right)$ is Einstein with factor $\left(\mu f^{2}+f^{\sharp}\right)$ if $H^{h}\left(X_{2}, Y_{2}\right)=0$ for any $X_{2}, Y_{2} \in \mathfrak{X}\left(M_{2}\right)$ and
3. $\left(\mathrm{M}_{3}, g_{3}\right)$ is Einstein with factor $\left(\mu \mathrm{h}^{2}+\mathrm{h}^{\sharp}\right)$.

Corollary 4.5. Let $\bar{M}=\left(I \times_{f} M_{2}\right) \times{ }_{h} M_{3}$ bean Einstein sequential GRW spacetimewith metric $\bar{g}=\left(-\mathrm{dt}^{2} \oplus \mathrm{f}^{2} g_{2}\right) \oplus$ $h^{2} g_{3}$ and factor μ. Then

1. (\bar{M}, \vec{g}) is Ricci flat if $n_{2} h f \ddot{f}+n_{3} f \frac{\partial^{2} h}{\partial t^{2}}=0$,
2. $\left(\mathrm{M}_{2}, g_{2}\right)$ is Ricci flat if $\mu \mathrm{f}^{2}+\mathrm{f}^{\sharp}=0$ and $H^{h}\left(X_{2}, Y_{2}\right)=0$ for any $X_{2}, Y_{2} \in \mathfrak{X}\left(\mathrm{M}_{2}\right)$ and
3. $\left(\mathrm{M}_{3}, g_{3}\right)$ is Ricci flat if $\mu \mathrm{h}^{2}+\mathrm{h}^{\sharp}=0$.

The converse of the above theorem is considered in the following result.
Theorem 4.6. Let $\bar{M}=\left(I \times_{f} M_{2}\right) \times{ }_{h} M_{3}$ be a sequential GRW space-time with metric $\bar{g}=\left(-d t^{2} \oplus f^{2} g_{2}\right) \oplus h^{2} g_{3}$. Then (\bar{M}, \bar{g}) is Einstein with factor μ if

1. $H^{h}\left(X_{2}, Y_{2}\right)=0$ for any $X_{2}, Y_{2} \in \mathfrak{X}\left(M_{2}\right)$,
2. $\left(\mathrm{M}_{\mathrm{i}}, g_{\mathrm{i}}\right)$ is Einstein with factor $\mu_{\mathrm{i}}, \mathrm{i}=2,3$,
3. $\mu_{2}+f f^{\ddot{f}}+\left(n_{2}-1\right) f^{\dot{2}}=\mu f^{2}$
4. $\mu_{3}+h \frac{\partial^{2} h}{\partial t^{2}}-\left(n_{3}-1\right) \|$ gradh $\|^{2}=\mu h^{2}$
5. $\frac{\mathrm{n}_{2}}{\mathrm{f}} \mathrm{f}+\frac{\mathrm{n}_{3}}{\mathrm{~h}} \frac{\partial^{2} \mathrm{~h}}{\partial \mathrm{t}^{2}}=-\mu$

4.2. Sequential Standard Static Space-times

Theorem 4.7. Let $\bar{M}=\left(M_{1} \times{ }_{f} M_{2}\right) \times_{h} I$ be a sequential standard static space-time with metric $\bar{g}=\left(g_{1} \oplus f^{2} g_{2}\right) \oplus$ $h^{2}\left(-d t^{2}\right)$ and also let $X_{i}, Y_{i} \in \mathfrak{X}\left(M_{i}\right)$. Then

1. $\bar{\nabla}_{X_{1}} Y_{1}=\nabla_{X_{1}}^{1} Y_{1}$
2. $\bar{\nabla}_{X_{1}} X_{2}=\bar{\nabla}_{X_{2}} X_{1}=X_{1}(\ln f) X_{2}$
3. $\bar{\nabla}_{X_{2}} Y_{2}=\nabla_{X_{2}}^{2} Y_{2}-f g_{2}\left(X_{2}, Y_{2}\right) \operatorname{grad}^{1} f$
4. $\bar{\nabla}_{\mathrm{X}_{\mathrm{i}}} \partial_{\mathrm{t}}=\bar{\nabla}_{\partial_{\mathrm{t}}} \mathrm{X}_{\mathrm{i}}=\mathrm{X}_{\mathrm{i}}(\operatorname{lnh}) \partial_{\mathrm{t}} \mathrm{i}=1,2$
5. $\bar{\nabla}_{\partial_{\mathrm{t}}} \partial_{\mathrm{t}}=$ hgradh

Theorem 4.8. Let $\bar{M}=\left(M_{1} \times{ }_{f} M_{2}\right) \times_{h} I$ be a sequential standard static space-time with metric $\bar{g}=\left(g_{1} \oplus f^{2} g_{2}\right) \oplus$ $h^{2}\left(-d t^{2}\right)$ and also let $X_{i}, Y_{i}, Z_{i} \in \mathfrak{X}\left(M_{i}\right)$. Then

1. $\bar{R}\left(X_{1}, Y_{1}\right) Z_{1}=R^{1}\left(X_{1}, Y_{1}\right) Z_{1}$
2. $R^{-}\left(X_{2}, Y_{2}\right) Z_{2}=R^{2}\left(X_{2}, Y_{2}\right) Z_{2}-\left\|\operatorname{grad}^{1} f\right\|^{2}\left[g_{2}\left(X_{2}, Y_{2}\right) Y_{2}-g_{2}\left(Z_{2}, Y_{2}\right) X_{2}\right]$
3. $\bar{R}\left(X_{1}, Y_{2}\right) Z_{1}=\frac{-1}{f} H_{1}^{f}\left(X_{1}, Z_{1}\right) Y_{2}$
4. $\bar{R}\left(X_{1}, Y_{2}\right) Z_{2}=f g_{2}\left(Y_{2}, Z_{2}\right) \nabla_{X_{1}}^{1} \operatorname{grad}^{1} f$
5. $\bar{R}\left(X_{1}, Y_{2}\right) \partial_{t}=\bar{R}\left(\partial_{t}, \partial_{t}\right) \partial_{t}=\bar{R}\left(X_{i}, Y_{i}\right) Z_{j}=0, i \neq j$
6. $\bar{R}\left(X_{i}, \partial_{t}\right) Z_{j}=\frac{-1}{h} H^{h}\left(X_{i}, Z_{j}\right) \partial_{t}, i, j=1,2$
7. $\bar{R}\left(X_{i}, \partial_{t}\right) \partial_{t}=-h \nabla_{X_{i}}$ gradh $, i=1,2$

N ow consider theRicci curvature $\bar{R} i c$ of a sequential standard static space-time of theform $\left(M_{1} \times_{f} M_{2}\right) \times_{h}$ I.

Theorem 4.9. Let $\bar{M}=\left(M_{1} \times_{f} M_{2}\right) \times_{h} I$ be a sequential standard static space-time with metric $\bar{g}=\left(g_{1} \oplus f^{2} g_{2}\right) \oplus$ $h^{2}\left(-d t^{2}\right)$ and also let $X_{i}, Y_{i}, Z_{i} \in \mathfrak{X}\left(M_{i}\right)$. Then

1. $\overline{\operatorname{Ric}}\left(X_{1}, Y_{1}\right)=\operatorname{Ric}^{1}\left(X_{1}, Y_{1}\right)-\frac{n_{2}}{f} H_{1}^{f}\left(X_{1}, Y_{1}\right)-\frac{1}{h} H^{h}\left(X_{1}, Y_{1}\right)$
2. $\overline{\operatorname{Ric}}\left(X_{2}, Y_{2}\right)=\operatorname{Ric}^{2}\left(X_{2}, Y_{2}\right)-g_{2}\left(X_{2}, Y_{2}\right) f^{\sharp}-\frac{1}{h} H^{h}\left(X_{2}, Y_{2}\right)$
3. $\overline{\operatorname{Ric}}\left(\partial_{\mathrm{t}}, \partial_{\mathrm{t}}\right)=h \Delta h$
4. $\overline{\operatorname{Ric}}\left(X_{i}, Y_{j}\right)=0, i \neq j$
where $f^{\sharp}=f \Delta^{1} f+\left(n_{2}-1\right)\left\|\operatorname{grad}^{1} f\right\|^{2}$.
A sequential standard static space-time $\left(M_{1} x_{f} M_{2}\right) x_{h} I$ is Einstein with factor μ if

$$
\begin{equation*}
\overline{\operatorname{Ric}}(X, Y)=\mu \bar{g}(X, Y) \tag{11}
\end{equation*}
$$

In this case

$$
\mu=-\frac{\Delta h}{\mathrm{~h}}
$$

But taking the trace of equation (11) we get that

$$
\mu=\frac{r}{n_{1}+n_{2}+1}
$$

wherer is the scalar curvature i.e.

$$
r=-\frac{\Delta h}{h}\left(n_{1}+n_{2}+1\right)
$$

Moreover,

$$
\operatorname{Ric}^{1}\left(X_{1}, Y_{1}\right)-\frac{n_{2}}{f} H_{1}^{f}\left(X_{1}, Y_{1}\right)-\frac{1}{h} H^{h}\left(X_{1}, Y_{1}\right)=\mu g_{1}\left(X_{1}, Y_{1}\right)
$$

and

$$
\operatorname{Ric}^{2}\left(X_{2}, Y_{2}\right)-g_{2}\left(X_{2}, Y_{2}\right) f^{\sharp}-\frac{1}{h} H^{h}\left(X_{2}, Y_{2}\right)=\mu f^{2} g_{2}\left(X_{2}, Y_{2}\right)
$$

Corollary 4.10. Let $\bar{M}=\left(M_{1} \times{ }_{f} M_{2}\right) \times_{h} I$ be an Einstein sequential standard static space-time with metric $\bar{g}=$ $\left(g_{1} \oplus f^{2} g_{2}\right) \oplus h^{2}\left(-d t^{2}\right)$. Then the scalar curvaturer of $M \bar{M}$ is given by

$$
r=-\frac{\Delta h}{h}\left(n_{1}+n_{2}+1\right)
$$

Corollary 4.11. Let $\bar{M}=\left(M_{1} \times{ }_{f} M_{2}\right) \times_{h} I$ be an Einstein sequential standard static space-time with metric $\bar{g}=$ $\left(g_{1} \oplus \mathrm{f}^{2} g_{2}\right) \oplus \mathrm{h}^{2}\left(-\mathrm{dt}{ }^{2}\right)$. Then

1. $\left(\mathrm{M}_{1}, g_{1}\right)$ is Einstein with factor μ if $\mathrm{n}_{2} \mathrm{hH}_{1}^{f}\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right)-\mathrm{fH} \mathrm{H}^{\mathrm{h}}\left(\mathrm{X}_{1}, \mathrm{Y}_{1}\right)=0$,
2. $\left(\mathrm{M}_{2}, g_{2}\right)$ is Einstein with factor $\mu \mathrm{f}^{2}+\mathrm{f}^{\sharp}$ if $\mathrm{H}^{\mathrm{h}}\left(\mathrm{X}_{2}, \mathrm{Y}_{2}\right)=0$

References

[1] P. S. A postolopoulos and J. G. Carot, Conformal symmetries in warped manifolds, Journal of Physics: Conference Series 8 (2005), 28-33.
[2] D.E. Allison, Energy conditions in standard static space-times, General Relativity and Gravitation, 20(1998), No. 2, 115-122.
[3] D.E. Allison, Geodesic Completeness in Static Space-times, Geometriae Dedicata, 26 (1988), 85-97.
[4] D.E. Allison and B. Ünal, Geodesic Structure of Standard Static Space-times, Journal of Geometry and Physics, 46(2003), No.2, 193-200.
[5] M.T. A nderson, P. T. Chrusciel and E. Delay, N on-trivial, static, geodesically complete, vacuum space-times with a negative cosmological constant, J. High Energy Phys. 10(2002).
[6] J. K. Beem, P. E. Ehrlich and K. L. Easley, Global Lorentzian Geometry, (2nd Ed.), Marcel Dekker, New York, 1996.
[7] V. N. Berestovskii, Yu. G. Nikonorov, Killing vector fields of constant length on Riemannian manifolds, Siberian Mathematical Journal, 49(2008), Issue 3 , pp 395-407
[8] A. L. Besse, Einstein M anifolds, Classics in Mathematics, Springer-Verlag, Berlin, 2008.
[9] R. L. Bishop and B. O'Neill, M anifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1-49.
[10] B. Y. Chen, A simple characterization of generalized Robertson-W alker spacetimes, General Relativity and Gravitation, 46(2014), 1833-1839
[11] F. Dobarro E. Lamí Dozo, Scalar Curvature and Warped Products Of Riemann M anifolds, Trans. Amer. Math. Soc. 303 (1987), no. 1, 161-168.
[12] F. Dobarro and B. Ünal, Characterizing killing vector fields of standard static spacetimes, J. Geom. Phys. 62 (2012), 1070-1087.
[13] F. Dobarro, B. Ünal, Curvature of multiply warped products, Journal of Geometry and Physics, 51(2005), no. 1, 75-106.
[14] F. Dobarro, B. Unal, Curvature in special base conformal warped products, A cta A ppl. Math. 104(2008), no. 1, 1-46.
[15] D. Dumitru, On multiply Einstein warped products, Annals of the Alexandru Ioan Cuza University - Mathematics, to appear.
[16] K. L. Duggal and R. Sharma,Conformal killing vector fields on spacetime solutions of Einstein's equations and initial data, Nonlinear Analysis 63 (2005) e447-e454.
[17] V. G. Ivancevic and T. T. Ivancevic, A pplied Differential Geometry: A M odern Introduction, World Scientific Publishing Co. Ltd, London, 2007.
[18] W. Kuhnel and H. Rademacher, Conformal vector fields on pseudo-Riemannian spaces, Journal of Geometry and its Applications, 7(1997), 237-250.
[19] T. Oprea, 2-Killing Vector Fields on Riemannian M anifolds, Balkan Journal of Geometry and Its A pplications, 13(2008), No.1, 87-92.
[20] B. O'Neill, Semi-Riemannian Geometry with A pplications to Relativity, A cademic Press Limited, London, 1983.
[21] M. Sánchez, On the Geometry of Generalized R obertson-W alker Spacetimes: Curvature and Killing fields, J. Geom. Phys., 31 (1999), no.1, 1-15.
[22] M. Sánchez, On the Geometry of Generalized Robertson-W alker Spacetimes: geodesics, Gen. Relativ. Gravitation, 30 (1998), no.6, 915-932.
[23] S. Shenawy and B. Ünal, 2-Killing vector fields on warped product manifolds, International Journal of Mathematics, 26(2015), 17 pages.
[24] S. Shenawy and B. Ünal, The W 2 -curvature tensor on warped product manifolds and applications, International Journal of Geometric Methods in M odern Physics, 13(2016), No. 07, 1650099 (14 pages).
[25] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, and E. Herlt, Exact Solutions of Einstein's Field Equations. Second Edition, Cambridge University Press, Cambridge, 2003.
[26] B. Ünal, M ultiply warped products, Journal of Geometry and Physics, 34(2001), no. 3-4, 287-301.
[27] B. Unal, D oubly warped products, Differential Geometry and its A pplications 15 (2001), 253-263.

[^0]: 2010 M athematics Subject Classification. Primary 53C21, 53C25; Secondary 53C50, 53C80
 Keywords. Warped product manifold, space-times, curvature, Killing vector fields, geodesics, concircular vector fields
 Received: dd Month yyyy; A ccepted: dd Month yyyy
 Communicated by (name of the Editor, mandatory)
 Email addresses: uc_de@yahoo.com (Uday Chand De), drshenawy@mail.com (Sameh Shenawy), bulentunal@mail.com (Bülent Ünal)

