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Abstract
With a view to application to meso–macro decoupled two-scale draping simulations of dry woven fabrics, the method of
isogeometric analysis (IGA) is applied to the numerical plate testing (NPT) for their periodic unit structures involving frictional
contact at meso-scale. The meso-structure having periodicity only in in-plane directions is identified with a representative
volume element to characterize themacroscopicmechanical behavior that reflects the interfacial frictional contact phenomenon
between fiber bundles. NURBS basis functions are utilized to accurately solve macro-scale frictional contact problems and
the mortar-based knot-to-surface algorithms are employed to evaluate the contact- and friction-related variables. A weaving
process is simulated as a preliminary analysis to obtain the initial state of an in-plane unit cell that is subjected to bending
of fiber bundles contacting with each other. Several numerical examples are presented to demonstrate the performance and
capability of the proposed method of IGA-based NPT for characterizing the macroscopic structural responses of dry woven
fabrics that can be substituted by macroscopic ‘inelastic material’ behaviors.

Keywords Isogeometric analysis · Frictional contact · Numerical plate testing · Dry woven fabric · Homogenization

1 Introduction

Owing to the superior performance while being light-weight,
composite materials typified by fiber-reinforced plastics are
widely used in various engineering fields such as aviation
and automobile industries. At the same time, as various
macroscopic material responses can be achieved according
to the mechanical characteristics, distribution morphology
and blend ratio of fiber and matrix materials, the concept
of computer-aided engineering (CAE) has been introduced
in the tailoring process of the macroscopic material proper-
ties by designing the micro-structures. The underlying idea
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to bridge between micro- and macro-structures goes back
a long way and related methodologies are wide-ranging.
But, in view of the characterization of various nonlinear
behavior of composite materials within the CAE frame-
work, the superiority of the computational homogenization,
which is based on mathematical homogenization theory
[1,2], must be obvious [3,4]; see also some comprehensive
review articles [5,6]. Despite the outstanding technological
advances in the computational homogenization made during
the 1990’s and 2000’s, considerable attention is still being
paid to its extensive applications in practice. Among them,
themicro–macro coupling scheme, whichwas first presented
by Terada and Kikuchi [7,8] and is often called FE2 method
[9,10], is still an important subject for study, as it does not
require explicit function forms of macroscopic constitutive
laws.

Although the micro–macro coupled computational homo-
genization is attractive because of its versatility for a variety
of nonlinear problems, it seems unfortunately difficult to
implement the method into existing general-purpose finite
element (FE) programs and to take it to the market. To
overcome the difficulty, Terada et al. [11] reconsidered the
underlying theory [12] and proposed a micro–macro decou-
pling scheme, with which micro- and macro-scale analyses
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are separately conducted. In this method, a series of numer-
ical analyses of a periodic micro-structure (unit cell), which
is called numerical material testing (NMT), just provides
numerical relationships between macroscopic stresses and
strains under the assumption that a function form of the
macroscopic constitutive equation can be determined with
reference to the ones employed for the constituent materi-
als at micro-scale. Then, by the identification of its material
parameters with some optimization scheme, the homoge-
nization procedure is completed. The localization analysis
after macroscopic analyses is also possible within the limit
of accuracy of the assumed macroscopic constitutive law.
Although the decoupling method makes a sacrifice of ver-
satility, nonlinear two-scale analyses can be realized with
significantly low cost in comparison with the coupling
scheme. For this reason, a cooperative system organized by
the second author has successfully placed it into commercial
use [13–17].

The decoupling method has recently been extended for
composite plates, whose micro-structure have periodicity
only in in-plane directions [18]. In this method, a series
of microscopic analyses, called the numerical plate testing
(NPT), is performed on the micro-structure having in-plane
periodicity, called in-plane unit cell, to obtain the relation-
ships betweenmacroscopic resultant stresses and generalized
strains; see also a similar approach in [19] in considera-
tion of geometrically nonlinear effect on local buckling. The
present study is for the application of the method of iso-
geometric analysis (IGA) to mesoscopic models, which
are predominantly governed by contact behavior, so that it
can be incorporated into the aforementioned micro–macro
decoupling scheme. While nonlinear homogenization for
composite plates and shells has been widely studied with
a special interest in computational aspects [20,21] and some
peculiar mechanical behavior such as local buckling [22] and
damage [23], most of the developments are presented within
the FE2 framework and not intended to enhance mesoscopic
analyses of composite plates and shells within the decoupling
framework equipped with IGA.

The method of IGA proposed by Hughes [24] falls in the
scope of FEM, but its numerical models have strict con-
formity with CAD models. Also, it enhances the existing
FE methodology so as to accommodate spline functions
such as NURBS for discretization of variables. Moreover,
in IGA, an arbitrary order of continuity can be guaranteed
at any point of the analysis domain and both mesh refine-
ment and order elevation of spline functions are relatively
easy tasks. Owing to these advantages, the method of IGA
is applied to not only structural analyses with solid and shell
elements [25,26], but also various analyses in electromag-
netic [27], damage/fracture [28] and structural optimization
[29,30] problems. In particular, since the higher-order conti-
nuity of spline functions can be of advantage in dealing with

frictional contact problems, the method of IGA drew intense
research interest in its performance for accuracy, computa-
tional efficiency and so on; see intensive investigations in
[31–37]. In fact, since the shape representation of the bound-
ary surface of elements is C0-continuous in the standard
FEM, the variation of a outward normal vector on the sur-
face is discontinuous and therefore can cause convergence
problems in the case of frictional sliding on it. This kind
of difficulty can be overcome in IGA, because the smooth
representation of the surface is possible. In addition, non-
negativity of spline basis functions is also advantageous for
discretization of contact variables in an mortar-based set-
ting.

In spite of these advantages, only few attempts have so
far been made at computational homogenization along with
the method of IGA to the best of the author’s knowledge.
The first trial in this context is carried out by Matsub-
ara et al. [38], who discuss the points of attention inmodeling
multiple patches for multiple materials and in treating con-
straint conditions unique to NMT and NPT. However, it does
not necessarily state their belief in the superiority of IG-
based computational homogenization over FE-based one.
The advantage of IGA-based surface representation was
first utilized by Temizer [39] to establish the computational
contact homogenization of soft matter friction involving
micro-scale asperities. The effective use of IGA in micro-
scale frictional contact problems is a good example of IG
homogenization analysis (IGHA), but limited to the char-
acterization of macroscopic friction behavior, and neither
works on the volumetric homogenization nor reflects the
interfacial frictional contact within a unit cell in the macro-
scopic friction coefficients.

With the above-mentionedbackground, this paper presents
a method of IGA-based NPT for solving frictional contact
problems inmeso-structures of drywoven fabricswith a view
to application to meso–macro decoupled two-scale draping
simulations. Although computational homogenization of dry
woven fabrics itself has formed one field of study, there are a
variety of topics of key interest. For instance, Fillep et al. for-
mulate the two-scale model of a dry woven fabric with finite
deformation kinematics to conduct FE2 and database-based
methods; see [40,41], respectively. Also, some researchers
pay attention to the modeling and analysis of the mesostruc-
tures of drywoven fabrics, because the evaluation of damages
of fibers in a bundle and fiber bundles subjected to frictional
contact conditionsmust be an important issue in viewofman-
ufacturing process. To name a few, and [42] make a study on
the determination of appropriate boundary conditions for a
mesostructure, while Durville [43,44] incorporate the effect
of frictional contacts into their direct numerical simulations
of a mesostructure of a dry woven fabric. Despite the consid-
erations of frictional contact between adjacent fiber bundles,

123



Computational Mechanics (2019) 64:211–229 213

all these previous studies have not been enriched by the use
of IGA.

In our approach, the virtual specimen in NPT is an in-
plane unit cell composed of woven fiber bundles only,
which contact with each other, and is identified with a
representative volume element (RVE) to characterize the
macroscopic mechanical behavior that reflects the interfa-
cial frictional contact phenomenon between fiber bundles.
If we consider a matrix part together with fiber bundles,
some special techniques such as hierarchical splines and
adaptive remeshing are needed [45] because of its compli-
cated interface conditions. Also, to improve the accuracy
in solving frictional contact between fiber bundles, it has
been confirmed that adaptive remeshing techniques would
be effect [46,47]. Nonetheless, taking different views from
NPTs, we confine ourselves solely to the use of the stan-
dard NURBS basis functions in the IG discretization for
solving meso-scale frictional contact problems defined in an
in-plane unit cell to characterize the macroscopic responses
of dry woven fabrics. The penalty method and the mortar-
based knot-to-surface (KTS) [32–34] algorithm, which
avoids the locking and over-constraining caused by the
penalty parameter, are employed to satisfy the contact
constraints. We also discuss the use of an in-plane sub-
unit cell, which is a one quarter of an in-plane unit cell,
along with special constraint conditions to stabilize NPT
analyses. Furthermore, virtual in-plane sub-unit cells are
introduced to deal with in case of in-plane shear deforma-
tions, since contact surfaces are possibly outside the analysis
domain.

Several numerical examples are presented to demonstrate
the performance and capability of the proposed method of
IGA-based NPT for characterizing the macroscopic struc-
tural responses of dry woven fabrics that can be substituted
bymacroscopic ‘inelastic material’ behaviors. After a simple
numerical test for computational efficiency is conducted to
demonstrate the performance of the IGA with the NURBS
basis functions in solving frictional contact problems for
fiber-bundles during NPT, a weaving process is simulated as
a preliminary analysis to obtain the initial state of an in-plane
unit cell that is subjected to bending of fiber bundles contact-
ingwith each other. Then,we exemplify the IGA-basedNPTs
by characterizing the macroscopic in-plane and out-of-plane
mechanical behaviors of dry woven fabrics with a view to
application to decoupled two-scale analyses. In particular,
in-plane shear deformations of dry woven fabrics, which are
subjected to pre-tensioning stress [48,49], is known to exhibit
dependency on the friction behavior between fiber bundles
and is subject to discussions as to devising an appropriate
macroscopic analysis model composed of ‘inelastic’ materi-
als.

2 Computational homogenization for
composite plates

With a view to characterization of macroscopic mechanical
behavior of dry woven fabrics, we summarize the method
of numerical plate testing (NPT) for general thin composite
plates within the framework of finite strain theory, which is
just an extension of that formulated within the small strain
framework [18]. While the macrostructure is supposed to be
a plate or shell, the mesostructure is regarded as a solid and
is assumed to be periodically arranged only in the in-plane
directions at a macro-scale. The minimum periodic unit is
then regarded as a representative volume element (RVE) for
the characterization of the macroscopic mechanical behavior
and is referred to as an in-plane unit cell (UC) in this study.

Figure 1 shows the in-plane UC of a typical dry woven
fabricwhose kinematics is described by themesoscopic coor-
dinate system Y . This in-plane UC is assumed to be located
at a macroscopic material point and identified with position
vector X in the initial configuration. Let x = φ̃(X) define
the motion of this material point and be a position vector in
the current configuration. Then, the macroscopic deforma-
tion gradient is defined as F̃ = ∇X φ̃(X) = H̃ + 1, where
H̃ is the macroscopic displacement gradient and 1 is the
second-order identity tensor.

According to the method of linear NPT presented in [18],
the mesoscopic displacement is defined as

w=

⎡
⎢⎢⎢⎢⎢⎢⎣

H̃1 + Z3 H̃4
1

2

(
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)
−1

2
Z2 H̃6
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2

(
H̃3 + Z3 H̃6

)
H̃2 + Z3 H̃5 −1

2
Z1 H̃6

−1

2
Z2 H̃6 −1

2
Z1 H̃6 0

⎤
⎥⎥⎥⎥⎥⎥⎦
Y+u∗,

(1)

in which the effects of transverse shear deformation are not
reflected. Here, H̃1 and H̃2 represent the macroscopic in-
plane normal deformations in the Y1 and Y2 directions (Mode

Y3

Y2Y1

L 2

h/2
h/2

L 1

Fig. 1 In-plane unit cell
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Mode 1: Mode 2: Mode 3:

Mode 4: Mode 5: Mode 6:

Fig. 2 Deformation modes of macroscopic generalised displacement
gradient

1 and 2), and H̃3 is the macroscopic in-plane shear deforma-
tion (Mode 3). Also, H̃4 and H̃5 represent the macroscopic
bending deformations about axes Y1 and Y2 (Mode 4 and
5), and H̃6 the macroscopic torsional deformation (Mode
6). All these components are constant with respect to the
mesoscopic coordinate Y and the corresponding deforma-
tion modes are depicted in Fig. 2. In this study, we call
H̃i (i = 1, . . . , 6) themacroscopic generalized displacement
gradients for convenience, although theymight not be consis-
tent with the proper description of macroscopic kinematics.
In addition, we have introduced an additional mesoscopic
coordinate system Z, which is independent of Y , to control
the mesoscopic deformations with the macroscopic general-
ized displacement gradients, along the line of the linear NPT
presented in Reference [18]. Here, this Zi are set as cell-
centered axes and axis Z3 in the thickness direction has the
same measure as axis X3 at the macroscale. Furthermore, u∗
is the so-called fluctuation displacement vector that satisfies
the following in-plane periodicity conditions:

u∗|
∂Y[+J ]

0
= u∗|

∂Y[−J ]
0

(J = 1, 2), (2)

where ∂Y[+J ]
0 and ∂Y[−J ]

0 are the opposing boundary sur-
faces in the initial configuration, which are assumed to be
in parallel. Here, J taking 1 and 2 indicates the bound-
ary surfaces associated with Y1- and Y2-planes, respec-
tively.

Then, the substitution of Eq. (1) into (2) yields the follow-
ing constraint conditions:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

w
[1]
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[−1]
1 =

(
H̃1 + Z3 H̃4

)
L1

w
[1]
2 − w
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w
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[−2]
1 = 1
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(
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(
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)
L2
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3 − w

[−2]
3 = −1

2
Z1 H̃6L2

. (4)

Here, w[J ] is the displacement on the boundary surface
∂Y[J ], and L J (J = 1, 2) are the widths of the in-plane
UC as shown in Fig. 1.

The derivative of the mesoscopic displacement (1) with
respect to Y derives the ‘mesoscopic’ deformation gradient
as

F =
⎡
⎢⎣

H̃1
1
2 H̃3 − 1

2 Z2 H̃6
1
2 H̃3 H̃2 − 1

2 Z1 H̃6

− 1
2 Z2 H̃6 − 1

2 Z1 H̃6 0

⎤
⎥⎦

+ Z3

⎡
⎢⎣

H̃4
1
2 H̃6 0

1
2 H̃6 H̃5 0

0 0 0

⎤
⎥⎦+ ∇Y u∗ + 1. (5)

With this mesoscopic deformation gradient being input data,
the mesoscopic first Piola-Kirchhoff stress P is determined
by an arbitrary constitutive model so as to satisfy the follow-
ing mesoscopic equilibrium equation:

∇Y · P = 0. (6)

After the equilibrated stress is obtained, with reference to the
in-plane homogenization formula [18], the mesoscopic first
Piola-Kirchhoff stress P can be related to the macroscopic
first Piola-Kirchoff resultant stresses (hereinafter, these are
referred to as “Macro-PK1-RS”), respectively, as

Ñ =
∫ h/2

−h/2

[
1

L1L2

∫ L1/2

−L1/2

∫ L2/2

−L2/2
P dY1dY2

]
dZ3, (7)

M̃ =
∫ h/2

−h/2
Z3

[
1

L1L2

∫ L1/2

−L1/2

∫ L2/2

−L2/2
P dY1dY2

]
dZ3, (8)

where h is the height of the in-plane UC as shown in Fig. 1.

3 Frictional contact problem

A frictional contact problem for two bodies and its numerical
treatment with the penalty method are outlined by reference
to the formulation in [50].

3.1 Contact and friction conditions

Let us consider the twobodiesBγ (γ = 1, 2) contactingwith
each other in the current configuration, as shown in Fig. 3, in
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element boundary 

Gaussian integration point on slave 
Master 

Slave 

Fig. 3 Illustration of normal gap displacement gN

which the lower and upper domains are indicated by “Slave”
and “Master”. Also, let xs and xm be position vectors on the
boundary surfaces of Slave and Master in the current con-
figurations, respectively. Then, the distance between these
points, which is referred to as the gap, can be defined as

gN := (xs − x̄m
) · n̄. (9)

Here, x̄m := xm(ξ̄) is the position vectors of a point on
the boundary surface of Master that minimizes the distance
d(ξ) := ‖xs − x̄m(ξ)‖ relative to the Gaussian integration
point xs on the boundary surface of Slave, and n̄ = n(ξ̄) is
the outward unit normal vector on the point. Also, ξ is the
positionvectormeasured in the two-dimensional (2D)natural
coordinate system, which will be introduced in the geometric
representation for IGA later, and is related to the position
vector x(ξ) in the physical coordinate system through the
parametric mapping. Therefore, to determine x̄m in Eq. (9),
the following equation must be solved for the position vector
ξ̄ = (ξ̄1, ξ̄2):

(xs − x̄m) · āα = 0 (α = 1, 2), (10)

where āα = xm,α(ξ̄) = dxm/dξα(ξ̄) is the first derivative
of xm with respect to ξ at point ξ̄ on the boundary sur-
face of Master, and represents to the tangential plane at
this point. Since the parametric mapping x(ξ) is a nonlinear
function of ξ in the geometric representation with NURBS
basis functions, the nonlinear solution methods such as the
Newton-Raphson method have to be employed to solve it for
ξ̄ .

In a non-contact situation, the contact pressure pN is zero
and the normal gap gN is positive. On the other hand, in case
of contact, the contact pressure pN must be positive, while
the normal gap gN must be zero, as the two bodies cannot
penetrate into each other. Thus, the followingKarush–Kuhn–
Tucker (KKT) conditions have to be satisfied:

gN ≥ 0, pN ≤ 0, gN pN = 0. (11)

When pN < 0 is satisfied, i.e., the two bodies contact with
each other, the following Coulomb friction law is employed
in this study:

fs = ‖tT‖ − μfric|pN| ≤ 0, (12)

where μfric is the friction coefficient. Here, tT is the traction
vector in the tangential direction, along which the slip rate
vector is assumed to satisfy the following flow rule:

ġslipT = γ̇
tT

‖tT‖ , (13)

where γ̇ ≥ 0 is the magnitude of the slip vector. Here, gslipT is
the displacement vector of the contact point that evolves only
when slip condition is satisfied, i.e., fs = 0 in Eq. (12), and
its time rate of change follows the flow rule (13). The com-
bination of these inequalities along with the complementary
condition constitute the following KKT conditions as

γ̇ ≥ 0, fs ≤ 0, γ̇ fs = 0. (14)

3.2 Virtual work for frictional contact

Let us consider the equilibrated state of twobodies contacting
with each other and denote the internal and surface domains
in the initial configuration byBγ

0 andΓ
γ
0 , respectively. Then,

the equilibrium equation takes the following weak form:

2∑
γ

{∫
Bγ
0

δF : PdV −
∫

Γ
γ
0

δw · T̄dA
}

− Cc = 0, (15)

where T̄ is the given traction vector on the Neumann bound-
ary Γ

γ
0 in the initial configuration. Here, the body force is

neglected. Also, δw is the virtual displacement, by which
the variation of the deformation gradient δF is defined. The
term Cc associated with the frictional contact between these
bodies is defined as

Cc =
∫

Γc0

(
δgN pN + δgT · tT

)
dA, (16)

where Γc0 is the surface domain pulled back to the initial
configuration from Γc in the current configuration, on which
the contact condition gN ≤ 0 is satisfied. Also, the variation
of gN is given as

δgN = (δws − δw̄m) · n̄, (17)

in which the relationship condition xs − x̄m = δgNn̄ has
been reflected so that (xs − x̄m) · δn̄ = δgNn̄ · δn̄ = 0.
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On the other hand, the total displacement in the tangential
direction is denoted by gT and its time rate of change and the
variation are respectively given as

ġT = ξ̇ α āα, (18)

δgT = δξα āα. (19)

Here, the variation δξα of ξα can be derived by taking vari-
ation of the relationship (10) such that

δξα = H̄αβ
[(

δws − δw̄m) · aα + gNn̄ · δw̄m
,α

]
, (20)

where H̄αβ is the inverse matrix of

H̄αβ = āαβ + gNn̄ · x̄m,αβ . (21)

Here, āαβ :=āα · āβ is the covariant metric matrix and
x̄m,αβ :=∂2 x̄m/∂ξ ∂ξfi is the second derivative of x̄m with
respect to ξ . With the contravariant vector āα correspond-
ing to āα , the traction vector in the tangential direction can
be represented as tT = tTα āα . Therefore, the weak form
yields

Cc =
∫

Γc0

(
δgN pN + δξαtTα

)
dA, (22)

in which Eq. (19) has been utilized. With the help of these
expressions, the linearized version of Eq. (15) can be derived
for the Newton-Raphson’s iterative procedure; see [50] in
detail.

3.3 Penalty method

In the penalty method, the contact pressure pN in Eq. (16),
which is associated with the contact in the normal direction,
is approximated as

pN = εN ḡN, ḡN =
{
gN if gN < 0

0 otherwise.
, (23)

where εN is the penalty parameter for the normal contact.
The variables in the above equations for the tangential slip

can be calculated by the algorithm described below. In the
description, time rates of change are approximated by the
backward difference scheme; e.g., ξ̇ α = (

ξα
n+1 − ξα

n

)
/Δt

where Δt is the time increment and subscripts, n + 1 and n,
indicate the current and previous time steps, respectively.

Suppose that the displacement field has been determined
during the Newton-Raphson iterative process for time step
n + 1. Then, we introduce the predictor of tTα at time step
n + 1 as

t trialT,n+1 = tT,n + εTaαβ

(
ξ

β
n+1 − ξβ

n

)
. (24)

where εT is the penalty parameter for the tangential contact.
When the condition f trials,n+1 = ‖t trialT,n+1‖ − μfric |pN,n+1| > 0
is met, the traction vector in the tangential direction becomes

tT,n+1 = tT,n + εTΔt
(
ġT,n+1 − ġslipT,n+1

)

= t trialT,n+1 − εT Δt ġslipT,n+1

= t trialT,n+1 − εT Δγ
t trialT,n+1

‖t trialT,n+1‖
, (25)

where the flow rule (13) has been utilized and Δγ = γ̇ Δt is
the increment of slip displacement. By multiplying the both
sides of this equation by t trialT,n+1/‖t trialT,n+1‖, we obtain the norm
of the traction vector as ‖tT,n+1‖ = ‖t trialT,n+1‖ − εT Δγ , by
which Δγ that satisfies fs,n+1 = 0 yields

Δγ = 1

εT

(
‖t trialT, n+1‖ − μfric |pN, n+1|

)
. (26)

Therefore, tTα can be calculated as

tT =

⎧⎪⎨
⎪⎩

t trialT, n+1 if f trials, n+1 ≤ 0

−μfric |pN,n+1 | t trialT, n+1

‖t trialT, n+1‖
if f trials, n+1 > 0

. (27)

Here, the second equation has been obtained by substituting
Eq. (26) into Eq. (25).

4 Isogeometric analysis

The method of isogeometric analysis (IGA) [24] with
NURBS basis functions is summarized in this section.
Although the ways of approximation in IGA and standard
FEM are different, little difference is seen in their discretiza-
tion procedures. Therefore, we just outline the method of
discretization with the NURBS basis functions along with
their characteristics.

4.1 Geometric representation with NURBS functions

Non-UniformedRational B-Spline (NURBS) functions basis
functions in a three-dimensional (3D) space can be generated
fromB-spline functions N 1(ξ1), N 2(ξ2) and N 3(ξ3) defined
with three separate knot vectors Ξ1, Ξ2 and Ξ3 as

Ri, j,k(ξ
1, ξ2, ξ3) = N 1

i,p(ξ
1)N 2

j,q(ξ
2)N 3

k,r (ξ
3)wi, j,k

W (ξ1, ξ2, ξ3)
,

(28)
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where we have defined

W (ξ1, ξ2, ξ3) =
nc∑
i=1

mc∑
j=1

lc∑
k=1

N 1
i,p(ξ

1)N 2
j,q (ξ

2)N 3
k,r (ξ

3)wi, j,k .

(29)

Here, B-spline basis functions Na
i,p(ξ

a) (a = 1, 2, 3) can
be calculated with the following Cox–de Boor’s recursive
formula:

Na
i,p(ξ) = ξa − ξai

ξai+p − ξai
Na
i,p−1(ξ

a) + ξai+p+1 − ξa

ξai+p+1 − ξai+1
Na
i+1,p−1(ξ

a).

(30)

Na
i,0(ξ) =

{
1 if ξai ≤ ξa ≤ ξai+1

0 otherwise.
. (31)

By introducing a knot vector Ξa =
(
ξa1 , ξa2 , . . . , ξan+p+1

)
,

whose components ξai are indices i in Eqs. (30) and (31)
and substituting them from the left to the right, we define a
set of B-spline basis functions Na

i,p(ξ
a). With NURBS func-

tions (28), the displacement vector w in the 3D space at a
control point, which is identified with indices i, j and k, is
approximated as

wh(ξ1, ξ2, ξ3) =
nc∑
i=1

mc∑
j=1

lc∑
k=1

Ri, j,k(ξ
1, ξ2, ξ3)ŵi, j,k, (32)

where ŵi, j,k are the displacement vectors of the correspond-
ing control points.

The characteristic features of the basis functions used for
both geometric representation and approximation of vari-
ables are listed as follows:

– possessing the partition-of-unity property,
– always non-negative, and
– C p−1-continuous in its domain and on the element
boundary when the order of NURBS functions is p,

in which the second and the third features are advanta-
geous especially to frictional contact problems. In IGA, the
discretization of variables such as displacements are approx-
imated with the same set of basis functions Ri, j,k(ξ

1, ξ2, ξ3)

in Eq. (32).

4.2 Discretization for frictional contact behavior

To consider a boundary surface of a 3D body, the correspond-
ing component of the knot vector is fixed at, e.g., ξ3 = ξ30
with k = k0 in Eq. (28), such that

S(ξ1, ξ2) =
nc∑
i=1

mc∑
j=1

Ri, j,k0(ξ
1, ξ2)Bi, j,k0 =

nc∑
I=1

RIBI.

(33)

In the second equation here, notational simplification is
introduced by indexing I with the set (i, j, k0). Also, to dis-
tinguish the basis functions of the boundary surfaces on Slave
andMaster, respectively denoted by Rs, I and Rm, I, the posi-
tion vectors on them are expressed as xs = ∑nc

I=1 R
s,I x̂s,I

and x̄m = ∑nc
I=1 R

m,I x̂m,I, respectively. Here, •̂ indi-
cates the value at a control point. Using these expressions,
Eqn. (9), (17) and (20) can be discretized as

gN =
(

n∑
I=1

Rs,I x̂s,I −
n∑

I=1

Rm,I x̂m,I

)
· n̄, (34)

δgN =
(

n∑
I=1

Rs,Iδŵ
s,I −

n∑
I=1

R̄m,Iδŵ
m,I

)
· n̄, (35)

δξα = H̄αβ

[(
n∑

I=1

Rs,Iδŵ
s,I −

n∑
I=1

Rm,Iδŵ
m,I

)
· aα

+ gNn̄ ·
n∑

I=1

R̄m,I
,α δŵ

m,I

]
. (36)

It is known that the contact pressure sometimes oscil-
lates due to overly strong constraints imposed on the con-
tact surfaces, when a relatively large value is set for the
penalty parameter [32]. To prevent this kind of trouble, the
mortar-based formulation, which is presented in [32–34], is
employed in this study. The idea of this method is to relax the
constraints in the contact condition by evaluating the amount
of penetration with the average value of the gaps at all the
Gaussian integration points in an element. To be more spe-
cific, defining the areal mean of variable ∗ at a Gaussian inte-
gration point by< ∗ >= ∫

Γc0
∗dA, we respectively re-define

the gap and tangential displacement at a control point I as

gIN = 〈gNRI〉
〈RI〉 , (37)

ξ
α,I
n+1 = 〈ξα

n+1R
I〉

〈RI〉 . (38)

The states of contact and non-contact are judged by this value
and the contact pressure at a control point is computed as fol-
lows:

pIN = εN ḡ
I
N ḡIN =

{
gIN if gIN ≤ 0

0 otherwise.
. (39)
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Also, the trial tangential stress is calculated as

t trial,ITα,n+1 = t ITα,n + εTa
I
αβ

(
ξ

β,I
n+1 − ξβ,I

n

)
, (40)

where Nc is the total number of control points that satisfy
gIN ≤ 0 and aIαβ is evaluated as

aIαβ = 〈aαβ RI〉
〈RI〉 . (41)

Furthermore, by checking the slip condition with this trial
tangential stress, we compute the actual tangential stresswith
the formula

t IT,n+1 =

⎧⎪⎨
⎪⎩

t trial,IT, n+1 if f trial,Is, n+1 ≤ 0

−μfric|pIN, n+1|
t trial,IT, n+1

‖t trial, IT, n+1‖
otherwise.

(42)

as derived in Eq. (27). Finally, with these averaged quan-
tities at hand, virtual work (22) associated with contact as
evaluated as

Cc =
Nc∑
I=1

(
δgIN pIN + δξα,It IT,α

)
〈RI〉. (43)

5 Constraint conditions for in-plane UC and
sub-UC

NPT is the procedure to solve the set of governingEqs. (5) and
(6) alongwith appropriate constitutive laws of the constituent
materials for the mesoscopic fist Piola-Kirchhoff stress P ,

deformation gradient F and displacement w, under the con-
straint conditions (3) and (4). Then, the test results are utilized
to compute Macro-PK1-RS by Eqs. (7) and (8). Although
the formulation seems to be completed, the solution of the
mesoscopic equilibrium condition (6) is indeterminate due
to the periodicity constraints, which suppresses three rigid
body rotations, but allows three rigid body translations. To
suppress them, a single point in the in-plane UC is fully con-
strained not to move in this study. However, it is necessary to
be careful for the choice of this single point, as the additional
constraint should not interfere with the contact conditions
and constraints Eqs. (3) and (4).

In general, the minimum periodic unit is chosen for
a representative volume element (RVE) in computational
homogenization. In fact, we identify the in-plane unit cell
of a typical dry woven fabrics as shown in Fig. 4b as in the
previous studies [40,41,51]. However, this in-plane unit cell
can be divided into four regions as shown in Fig. 4b, which
has the following characteristics:

All the one quarter regions, A, B, C and D, have the
same geometrical pattern; each one is transformed to
another with use of rotational symmetry with respect
to the axis parallel to Y1-, Y2- or Y3-axis. For example,
RegionA yields RegionB by 180◦ rotational symmetry
transformation with respect to the axis parallel to Y2-
axis, while A and D becomes identical when we apply
180◦ rotational symmetry transformation with respect
to the axis parallel to Y3-axis

Therefore, instead of the standard in-plane unit cell, the in-
plane sub-unit cell (sub-UC) as shown in Fig. 4c is selected as
theminimumunit in this study.This kindof selectionofRVEs
is not only advantageous in terms of computational costs as
motivated in Reference [52], but also makes NPTs involving
frictional contact problems of multiple bodies stable under

Y1

Y2

Y3

ll structure of dry woven-fabric (c) In-plane sub-unit cell(a) Overa (b) In-plane unit cell composed of 4 divisions

A B

C D

Fig. 4 Definition of in-plane unit cell and sub in-plane unit cell
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Y1

Y2

Y3 Y3

w[-1] : periodicity pair with 

w[1] : periodicity with
 point-symmetry pair with

w[1]

Periodicity and anti-periodicity pairs Cross-section of in-plane sub-unit cell

Y1

w[1]

w[1]

w[1]
w[-1] : periodicity pair with w[1]

: periodicity with
 point-symmetry pair with

w[1]

w[1]

(a) (b)

Fig. 5 Constraint conditions for in-plane sub-unit cell

periodicity constraints. However, the in-plane sub-UC must
be provided with appropriate constraint conditions on its
boundaries to kinematically equivalent to the original in-
plane UC.

Atfirst, as amatter of notational convenience, let us rewrite
Eqs. (3) and (4) as

G
(
w[J ],w[−J ]) = H [J ] (H̃n, L J

)
, (44)

where G is defined as

G
(
w[J ],w[−J ]) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w
[J ]
1 − w

[−J ]
1

w
[J ]
2 − w

[−J ]
2

w
[J ]
3 − w

[−J ]
3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (45)

Also,H [J ] (H̃n, L J

)
(n = 1 ∼ 6) are the 3D vectors whose

components correspond to the expressions on the right-hand
sides of Eqs. (3) and (4). To be more specific, for constraint
conditions (3) and (4),H [J ] is defined as

H [1] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
H̃1 + Z3 H̃4

)
L1

1

2

(
H̃3 + Z3 H̃6

)
L1

−1

2
Z2 H̃6L1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

H [2] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1

2

(
H̃3 + Z3 H̃6

)
L2

(
H̃2 + Z3 H̃5

)
L2

−1

2
Z1 H̃6L2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (46)

In consideration of the above-mentioned geometrical char-
acteristics of the in-plane sub-UC, the following constraint
condition can be established:

Ḡ
(
w[J ],w[−J ]) = H [J ] (H̃n, L̄ J

)
, (47)

where Ḡ has been defined as

Ḡ
(
w[J ], w̄[−J ]) :=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

w
[J ]
1 − w̄

[J ]
1

w
[J ]
2 − w̄

[J ]
2

w
[J ]
3 + w̄

[J ]
3

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (48)

Here, w̄[J ] =
{
w̄

[J ]
1 , w̄

[J ]
2 , w̄

[J ]
3

}T
is the displacement vec-

tor on the point that can be identified by point-symmetric
transformation of a point on the YJY3 plane containing these
points; see Fig. 5. Also, L̄α in the right-hand side of Eq. (47)
is the width of an in-plane sub-UC as shown in Fig. 5; that is,
L̄α is half size of Lα as depicted in Fig. 4. Note here that only
the Y3-component is set to be anti-periodic. These settings of
an in-plane sub-UCs would suppress in part numerical insta-
bilities due to rigid body motions of fiber bundles contacting
with each other. In fact, each bundle can move independently
in the absence of frictional contacts between fiber bundles.
Thus, as the number of rigid motion modes of an in-plane
UC having four fiber bundles is twice as that of an in-plane
sub-UC having two fiber bundles, the former is less stable
than the latter.

On the other hand, let us consider the situation as shown
in Fig. 6a that illustrates the in-plane shear deformation of
the in-plane sub-UCs. Here, the frictional contacts between
upper and lower fiber bundles in the lighter and darker regions
cannot be properly analyzed, since possible contact sur-
faces are outside the analysis domain of the in-plane sub-UC
centered in this figure. Therefore, we virtually place eight
sub-UCs around the in-plane sub-UC as shown in Fig. 6b,
and transfer all the data in the in-plane sub-UC to these
‘virtual’ sub-UCs. The displacement vectors of the virtual
sub-UCs (indicated by subscript VUCx with × being the
virtual domain number) are related to those of the centered
in-plane sub-UC (indicated by subscript ‘UC’) as
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Fig. 6 Treatment of in-plane unit cell subject to in-plane shear deformation

Fig. 7 Initial IGA model of
in-plane sub-unit cell for
weaving simulation of dry
woven fabrics at meso-scale

element boundary

control point

control point on periodical boundary 

120 mm

20 mm

100 mm

Y2

Y3

Y1

Y2

Y3

Y1

           : periodic constriant condition
           : forced displacement

1y 2y
3y

microstructure 

fiber matrix

with

matrix

fiber
microstructure 

with

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G (w|VUC1,w|UC) = −H [1] + H [2]
Ḡ (w|VUC2, w̄|UC) = −H [1]
G (w|VUC3,w|UC) = −H [1] − H [2]
Ḡ (w|VUC4, w̄|UC) = H [2]
Ḡ (w|VUC5, w̄|UC) = −H [2]
G (w|VUC6,w|UC) = H [1] + H [2]
Ḡ (w|VUC7, w̄|UC) = H [1]
G (w|VUC8,w|UC) = H [1] − H [2]

. (49)

Note that the use of virtual sub-UCs as explained here makes
sense only for NPTs with the in-plane shear mode.

Table 1 Identified material parameters of fiber bundle (MPa)

μiso λiso atrn btrn ctrn dtrn

3.2675 3.9042 −2.3451 16.167 4.7881 −6.4613

6 Generating in-plane sub-unit cell

We generate an initial state of the in-plane sub-UC of a
dry woven fabric, which will be used for NPTs in the next
section. After the mesoscopic material model used for the
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Fig. 8 Results of NMTs with mesoscopic deformations being imposed: tensile loading in the Ŷ1, Ŷ2 and Ŷ3 directions (left), and shear loading in
the Ŷ1Ŷ2 and Ŷ2Z3 and Ŷ3Ŷ1 planes (right)

Fig. 9 Numerical results of
weaving simulation

in-plane sub-unit cell

1.30.02 vons-Mises stress [MPa]

in-plane sub-unit cell

overall structure

overall structure

Deformed configuration with displacement distribution

Deformed configuration with von-Mises stress distribution

5.00.0 Norm of displacement [mm]

(b)

(a)

fiber bundles in the cell is presented, its material parame-
ters are determined by the numerical material testing (NMT)
within the framework of nonlinear homogenization. Then,
the weaving process is performed on non-deformed straight
fiber bundles so that the natural initial geometry of the in-
plane sub-UC along with the initial stress caused by bending
of fiber bundles would be obtained.

6.1 Setting of meso-scale analysis

Figure 7 shows the straight fiber bundles before a weaving
process. Each fiber bundle is composed of a number of fibers
impregnated in resin matrix, which are assumed be arranged
periodically in the transverse directions. Representative peri-
odic microstructures, i.e., unit cells, are also depicted in the
same figure, and possess their own fiber orientations.
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Fig. 11 Results of NPT with
macroscopically tensile loading
in the Y1 direction
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Fig. 12 Relationships betweenMacro-PK1-RS’s andmacroscopic gen-
eralized displacement gradients in response to macroscopically tensile
loading in the Y1 direction

In general, the mesoscopic material response of the fiber
bundle is assumed to be transversely isotropic. In this study,
we employ the following strain energy function proposed
by Bonet [53] to represent the transversely isotropic hyper-
elastic behavior:

Ψ = Ψiso + Ψtrn, (50)

Ψiso = μiso

2
(I1 − 3) − μisolnJ + λiso

2
(lnJ )2 , (51)

Ψtrn = {atrn + btrnlnJ + ctrn (I4 − 1)} (I4 − 1)

−
(
1

2
atrn + dtrnlnJ

)
(I5 − 1) . (52)

Here, Ψiso and Ψtrn are the strain energy densities of
isotropic components and transversely components, respec-
tively. Also, I1, I4 and I5 are the invariants respectively
defined as

I1 = trC, I4 = A · CA, I5 = A · C2A, (53)

where A is the unit vector directed to the longitudinal direc-
tion of fibers in the initial configuration. It is noted here
that the original model in [53] does not have the term
dtrnlnJ (I5 − 1) in (52), which is added to improve the identi-
fication accuracy of thematerial parameters determined from
NMT results.

Following the formal procedure of the nonlinear homog-
enization [11], we perform NMTs on the unit cell shown in
Fig. 7 to identify the material parametersμiso,μiso, atrn, btrn,
ctrn and dtrn in Eq. (52). The standard neo-Hookean hyper-
elastic constitutive model is employed for both the fiber and
matrix in the unit cell, in which Young’s moduli of fiber
and matrix are set at Ef = 100 MPa and Em = 1 MPa,
respectively, and Poisson ratio is set at 0.3 for both of the
constituents. The fiber and matrix are assumed to be per-

Fig. 13 Results of NPT with
macroscopically shear loading
in the Y1Y2 plane
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Fig. 14 Relationships betweenMacro-PK1-RS’s andmacroscopic gen-
eralized displacement gradients in response to macroscopically shear
loading in the Y1Y2 plane

fectly bonded and the volume fraction of the fiber is set at
77%. Three separate tensile and three shear modes of macro-
scopic deformations are imposed as constraint conditions for
the periodic pairs of boundary nodes in the NMTs. Then,
the material parameters in the assumed constitutive model,
which have been determined by an optimization scheme to
be in accordance with the NMT results, are presented in
Table 1. Figure 8 provides the comparison between the iden-
tified curves with these parameters and those obtained by the
NMTs. As can be seen from the plots, in which the mechan-
ical behavior of fiber bundle exhibits typical anisotropy
according to the deformation modes, the identification was
successful.

For the meso-scale frictional contact between fiber bun-
dles, the friction coefficient is set to μfric = 0.3, and the
penalty parameters for the normal and tangential contacts,
εN and εT, are set to be 100.

6.2 Initial state of in-plane sub-unit cell

A weaving process of the undeformed two fiber bundles in
Fig. 7 is simulated to obtain the initial state of the IGAmodel
of the in-plane sub-UC. The Y3-components of the displace-
ments of the red-colored control points on a boundary surface
are enforced to coincide with those on the opposite bound-
ary surface so that both of the fiber bundles are bent to form
a woven shape. At the same time, the pairs of the Y1- and
Y2- components on the boundary surfaces are constrained as
w

[J ]
1 = w

[−J ]
1 and w

[J ]
2 = w

[−J ]
2 . During this weaving sim-

ulations, the fiber bundles contact with each other and are
stressed by bending.
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Fig. 15 Relationships betweenMacro-PK1-RS’s andmacroscopic gen-
eralized displacement gradients in response to macroscopically shear
loading in the Y1Y2 plane after three different cases of pre-tensile load-
ing; (i) case without pre-tension, (ii) case with 10% pre-tension and (iii)
case with 20% pre-tension to examine the influence of pre-tension
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Fig. 16 Influence of friction coefficient on relationships between
Macro-PK1-RS’s and macroscopic generalized displacement gradients
in response tomacroscopic shear loading in theY1Y2 plane applied to the
in-plane sub-UCs subjected to 20% pre-tension and without pre-tension

After obtaining the woven forms of the fiber bundles
sustaining the initial stress due to bending, we solve the
self-equilibrium problem of the in-plane sub-UC with the
constraint conditions (44) with H [J ] = 0 to release the
over-constraining imposed during weaving process. Figure 9
shows the deformed configurations of the in-plane unit cell
and of the overall structure containing virtual sub-UCs along
with the norm of displacement and the von-Mises stress
occurred in the weaving process.
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Fig. 17 Convergence trend in
relationships between
Macro-PK1-RS’s and
macroscopic generalized
displacement gradients in
response to macroscopically
shear loading in the Y1Y2 plane
with different penalty
parameters

0 0.1 0.2

0.1

0.2

0.3

0.2

0.3

M
ac

ro
-P

K
1-

R
S 

[M
Pa

m
m

]
Macroscopic generalized 

                 displacement gradient 

*

Fig. 18 Convergence trend in
relationships between
Macro-PK1-RS’s and
macroscopic generalized
displacement gradients in
response to macroscopically
shear loading in the Y1Y2 plane
with different IGA mesh sizes
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7 Representative numerical examples

In order to discuss the validity and capability of the present
approach, we carry out several numerical analyses of the in-
plane sub-UC generated in the previous section. Prior to the
characterization of the macroscopic mechanical behavior of
dry woven fabrics by NPTs involving frictional contact, a
numerical test for computational efficiency is conducted to
demonstrate the performance of the IGA with the NURBS
basis functions. Then, the macroscopic in-plane and out-of-
plane mechanical behaviors are characterized by the IGA-
based NPT. In particular, we are concerned with the effect of
pre-tension on the macroscopic mechanical behavior, which
is supposed to be realized by ‘inelastic’ material response.

7.1 Numerical test for computational efficiency

In IGAwith high-orderNURBSbasis functions, high conver-
gence performance is expected in solving frictional contact

problems because of the smooth geometrical representation
of contact surfaces, which is also reflected in the continu-
ity of discretized displacement. In this section, we verify
such a convergence characteristic in terms of the number of
Newton-Raphson (NR) iterations for the ‘global’ equilibrium
problemwith the following two IGmodels that have the same
geometry and the same number of elements:

– Model A having C1 continuity on element boundaries,
– Model B having C0 continuity on element boundaries,

which is equivalent to the standard FE model.

For each of the models, we have prepared two different
geometries of the fiber bundles to investigate the effect of size
of contact areas; one has a thickness of 1.2 mm and the other
of 1.6 mm as shown in the upper portion of Fig. 10, while all
the other sizes are identical. An in-plane shear deformation of
50% macroscopic displacement gradient is enforced on the
in-plane sub-UC with 100 loading steps. It should be noted
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that the active set on the contact area is continuously updated
during theNR iterative process. To examine the stability asso-
ciated with the determination of contact areas, friction is not
considered in NPTs in this subsection. The degrees of con-
vergence performance are compared in terms of the number
of iterations until the relative errors in ‘global’ equilibrium
states become smaller than the prescribed tolerance value. In
this study, it is set to be 10−7.

Figure 10 shows the mean number of NR iterations in
every consecutive 5 loading steps with the standard KTS
and mortar-based KTS method. In all the cases tested here,
it was consistently observed that C1 continuity delivers a
smaller total number of iterations to simulation completion
thanC0 continuity. This indicates an advantage of employing
B-splines and NURBS at the mesoscopic level in the context
of the standard KTS method (Fig. 10a, b). However, in view
of additional numerical robustness criteria mentioned earlier,
it is important to take one step further and embed this method
within a mortar-based setting. The transition from the stan-
dard to the mortar-based setting will by itself also influence
the total number of iterations and this influence on the overall
performance may vary for different mortar approaches. Nev-
ertheless, for the particular mortar approach pursued in this
work, it was again observed that C1 continuity retains the
advantage over C0 continuity in total number of iterations to
simulation completion as shown in Fig. 10c, d.

In the following sections, apart fromModels A and B, we
will exclusively use the model prepared in Sect. 6.2, whose
initial configuration is provided in Fig. 7.

7.2 Macroscopic in-plane characteristics

In this section, we carry out NPTs for the two in-plane defor-
mationmodes realized byEqs. (3) and (4).One is the in-plane
elongation in the Y1 direction and the other is the in-plane
shear mode.

First, a macroscopic in-plane elongation of 20% displace-
ment gradient is imposed on in-plane sub-UC in the Y1
direction. Figure 11 shows the deformed configurations with
distributions of norm of displacement and von-Mises stress.
The unidirectional state for each fiber bundle can be rec-
ognized from the figures. Figure 12 shows the relationships
between the macroscopic displacement gradient H̃1 and the
corresponding component of Macro-PK1-RS for frictionless
and frictional cases. As can be expected, the effect of fric-
tional contact seems to be indistinctive in the macroscopic
deformation characteristics, as the curves are almost linear.

Next, we conduct NPTs for a macroscopical in-plane
shear deformation of 20% displacement gradient with H̃1

and H̃2 being zeros. Figure 13 shows the deformed configu-
rationswith the distributions of the norm of displacement and
von-Mises stress. High von-Mises stress occurring on fiber
bundles is mostly due to the bending of fiber bundles, as

can be recognized in comparison with that of Fig. 10, which
provides the initial state of the in-plane sub-UC. In fact,
the mesoscopic shear stress is not increased significantly,
since the fiber bundles themselves are not subjected to shear
deformation. In otherwords, themacroscopic shear deforma-
tion has been realized by the large rotation of fiber bundles
about Y3-axis. Figure 14 shows the relationships between
the macroscopic displacement gradient H̃3 and the corre-
sponding component of Macro-PK1-RS for frictionless and
frictional cases. It can be seen from the figure for the fric-
tional case that Macro-PK1-RS increases linearly up to 1%
of the macroscopic displacement gradient, but becomes gen-
tle subsequently. This is due to the fact that almost all the
Gaussian quadrature points in the active set of contact meet
the Coulomb slip criteria and slip with friction. In fact, this
macroscopic ‘inelastic’material behavior is not present in the
frictionless case and can be substituted by an elastic–plastic
material.

7.3 Influence of pre-tension onmacroscopic
in-plane shear characteristics

In view of actual draping processes, the effects of pre-tension
is investigated in this subsection. For that purpose, themacro-
scopic displacement gradient H̃1 is first imposed on the
in-plane sub-UC so that the fiber bundle in parallel to the Y1-
axis undergoes initial stress as a result of elongation. Three
different amounts of pre-tension by H̃1 are imposed; initial
elongations of 10% and 20%, and without pre-tensioning,
which is the same situation as the frictional case in the
previous subsection. Then, the macroscopic in-plane shear
deformation of 20%displacement gradient H̃3 is imposed for
each in-plane sub-UC subjected to the pre-tension-induced
initial stress, while all the other components remain fixed.
Friction is active for all the analysis cases.

Figure 15 shows the obtained relationships between the
macroscopic displacement gradient H̃3 and the correspond-
ing component of Macro-PK1-RS vector. All the tendencies
are similar to the frictional case in Fig. 14, but the larger
the amount of pre-tension, the larger the inclination. This
is a natural response as the pre-tension generally causes the
fiber bundles to stiffen, as can also be observed in actual
experiments; see Reference [48]. But, more importantly, the
transition from the behavior caused by sticking on the contact
surface in the beginning of shear deformation to the follow-
ing behavior with slipping becomes smooth as the amount of
pre-tension increases. This must be due to the fact that the
number of Gaussian quadrature points in the active set on
the contact area and the variation in normal pressure at these
points become large, as the amount of pre-tension increases.

Finally, to see the effect of friction on the degree of
the above-examined influence of pre-tension, we carry out
an additional numerical analysis with the same amount of
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pre-tension as in case (iii), but without friction. Figure 16
illustrates the comparison of the result with that of case (iii)
shown in Fig. 15 and those presented in Fig. 14. As can be
seen from the figure, the larger the friction effect, the more
significant the influence of pre-tension. In fact, the increase
inMacro-PK1-RS by the presence of the friction effect in the
case with 20% pre-tension is much larger than that without
pre-tension.

7.4 Verification analyses

In order to verify the appropriateness of the magnitudes
of penalty parameters εN and εT and the mesh sizes in
the IGA, we conduct convergence studies with different
values of penalty parameters and with different sizes of
elements.

First, Fig. 17 shows the convergence trend of the Macro-
PK1-RS’s in response tomacroscopically shear deformations
in theY1Y2 plane in theNPTwith 0.1, 1, 10 and 100.Here, the
value 100 was the same as that employed in the NPT in the
previous subsections. As can been seen from this figure, the
the curves of the macro-PK1-RS’s converge with increasing
penalty factors. In particular, the responses obtained with
values 1.0, 10 and 100 are undistinguishable.

Next, Fig. 18 shows the convergence trend of the Macro-
PK1-RS’s with respect to the mesh sizes of IGA. We have
tested five IGAmeshes with different number of elements by
varying nA and nB as indicated in the right figure of Fig. 18.
The tested cases are (nA, nB) = (11, 11), (9, 9), (7, 7),
(5, 7) and (5, 5). Here, the mesh with (nA, nB) = (9, 9) was
employed for the NPT in Sects. 7.2 and 7.3. It is confirmed
from this figure that the macroscopic response curves con-
verge with the increasing number of elements. To be more
specific, the difference between the curves obtained by using
the meshes with (nA, nB) = (11, 11) and (9, 9) are negligi-
bly small.

In conclusion, the penalty parameter and IG mesh emplo-
yed in the NPTs presented in Sects. 7.2 and 7.3 are valid for
the characterization of the macroscopic mechanical behavior
of dry woven fabrics that reflect the mesoscopic frictional
contact behavior between fiber bundles.

8 Concluding remarks

This study presented an application of the IGA method to
numerical plate testing of fiber bundles in a dry woven fab-
ric involving frictional contact behavior at meso-scale. Some
numerical examples are presented to demonstrate the perfor-
mance and capability of the proposed method of IGA-based
NPT for characterizing themacroscopic structural responses.
Although the method of NPT presented in this paper is just
an extension of the linear version previously developed by

the authors to finite strain problems, the effectiveness of the
IGA applied to the mesoscopic frictional contact problem for
in-plane unit cells is confirmed through a series of numerical
analyses.

As summarized above, our original goal of this paper
has been achieved, but further developments have to be
made for two-scale analyses by the application of the
de-coupling scheme [11]. In particular, themacroscopic non-
linear mechanical behavior obtained by NPTs is just realized
by the relationships between macroscopic resultant stresses
and generalized strains, implying that both an in-plane cross-
section structure and its constituent materials equivalent to
the original composite plate are indeterminate in view of
performing decoupled two-scale analyses. In order to carry
out macroscopic analyses, we need to determine not only
macroscopic constitutive laws that can realize the ‘inelastic’
material behavior obtained by NPTs, but also a substitution
model such as a laminated plate must be assumed as in [54].
These are our next challenges we are addressing.

Acknowledgements This work was supported by CSTI (Cross-minis-
terial Strategic Innovation Promotion Program) and NEDO (New
Energy and Industrial Technology Development Organization) for SIP
(Innovative design/manufacturing technologies).

References

1. Sanchez-PalenciaE (1980)Non-homogeneousmedia andvibration
theory. Springer, Berlin

2. Zohdi TI, Wriggers P (2005) An introduction to computational
micromechanics, lecture notes in applied and computational
mechanics. Springer, Berlin

3. Devries F, Dumontet H, Duvaut G, Léné F (1989) Homogenization
and damage for composite structures. Int J Numer Methods Eng
27:285–298

4. Guedes JM, Kikuchi N (1990) Preprocessing and postprocessing
for materials based on the homogenization method with adaptive
finite element methods. ComputMethods Appl Mech Eng 83:143–
198

5. Matouš K, Geers MGD, Kouznetsova VG, Gillman A (2017) A
review of predictive nonlinear theories for multiscale modeling of
heterogeneous materials. Comput Phys 330:192–220

6. Geers MGD, Kouznetsova VG, Matous K, Yvonnet J (2017)
Homogenization methods and multiscale modeling: nonlinear
problems. In: Stein E, de Borst R, Hughes TJR (eds) Encyclopedia
of computational mechanics, 6 volume set, 2nd ed. 2018

7. Terada K, Kikuchi N (1995) Nonlinear homogenization method
for practical applications. In: Ghosh S, Ostoja-Starzewski M (eds)
Computationalmethods inmicromechanics,AMSEAMD,vol 212,
pp 1–16

8. Terada K, Kikuchi N (2001) A class of general algorithms for
multi-scale analyses of heterogeneous media. Comput Methods
Appl Mech Eng 190:5427–5464

9. Feyel F, Chaboche J-L (2000) FE2 multiscale approach for mod-
elling the elastoviscoplastic behaviour of long fibre SiC/Ti com-
posite materials. Comput Methods Appl Mech Eng 183:309–330

10. Fish J, Yuan Z (2005) Multiscale enrichment based on partition of
unity. Int J Numer Methods Eng 62:1341–1359

123



228 Computational Mechanics (2019) 64:211–229

11. Terada K, Kato J, Hirayama N, Inugai T, Yamamoto K (2013)
A method of two-scale analysis with micro-macro decoupling
scheme: application to hyperelastic composite materials. Comput
Mech 52:1199–1219

12. Suquet PM (1987) Elements of homogenization theory for inelastic
solid mechanics. In: Sanchez-Palencia E, Zaoui A (eds) Homog-
enization techniques for composite media. Springer, Berlin, pp
193–278

13. Terada K (2007) Fukugouzairyou no suutizairyousiken no susume
sononi. Reinf Plast 53(5):246–253 (in Japanese)

14. Terada K, Inugai T, Hirayama N (2008a) A method of numerical
material testing in nonlinear multiscale material analyses. Trans
Jpn Soc Mech Eng Ser A 74(744):1084–1094 (in Japanese)

15. Terada K, Inugai T, Hamana H, Miyori A, Hirayama N (2008b)
Parameter identification for anisotropic hyperelastic materials
by numerical material testing. Trans Jpn Soc Comput Eng Sci
20080024 (in Japanese)

16. Terada K, Hamana H, Hirayama N (2009) A method of viscoelas-
tic two-scale analyses for FRP. Trans Jpn Soc Mech Eng Ser A
75(760):1674–1683 (in Japanese)

17. Cybernet Systems Co. Ltd. (2018) Multiscale.Sim®. http://www.
cybernet.co.jp/ansys/product/lineup/mul-tiscale/en/multiscale_
sim//. Accessed 31 May 2018

18. Terada K, HirayamaN, Yamamoto K,MuramatsuM,Matsubara S,
Nishi S (2016) Numerical plate testing for linear two scale analyses
of composite plates with in-plane periodicity. Int J NumerMethods
Eng 105:111–137

19. Goncalves BR, Jelovica J, Romanoff J (2016) A homogenization
method for geometric nonlinear analysis of sandwich structures
with initial imperfections. Int J Solids Struct 87:194–205

20. Geers MGD, Coenen EWC, Kouznetsova VG (2007) Multi-scale
computational homogenization of structured thin sheets. Model
Simul Mater Sci Eng 15:393–404

21. Coenen EWC, Kouznetsova VG, Geers MGD (2010) Computa-
tional homogenization for heterogeneous thin sheets. Int J Numer
Methods Eng 83:1180–1205

22. Cong Y, Nezamabadi S, Zahrouni H, Yvonnet J (2015) Multiscale
computational homogenization of heterogeneous shells at small
strains with extensions to finite displacements and buckling. Int J
Numer Methods Eng 104:235–259

23. Mercatoris BCN, Massart TJ (2011) A coupled two-scale compu-
tational scheme for the failure of periodic quasi-brittle thin planar
shells and its application to masonry. Int J Numer Methods Eng
85:1177–1206

24. Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis:
CAD, finite elements, NURBS, exact geometry and mesh refine-
ment. Comput Methods Appl Mech Eng 194:4135–4195

25. Kiendle J, BletzingerKU,Linhard J,WüchnerR (2009) Isogeomet-
ric shell analysis with Kirchhoff–Love elements. Comput Methods
Appl Mech Eng 198:3902–3914

26. Benson DJ, Bazilevs Y, HsuMC, Hughes TJR (2010) Isogeometric
shell analysis: the Reissner–Mindlin shell. Comput Methods Appl
Mech Eng 199:276–289

27. Buffa A, Sangalli G, Vázquez R (2010) Isogeometric analysis
in electromagnetics: B-splines approximation. Comput Methods
Appl Mech Eng 199:1143–1152

28. Verhoosel CV, Scott MA, Hughes TJR, Borst R (2011) An isogeo-
metric analysis approach to gradient damage models. Int J Numer
Methods Eng 86:115–134

29. Seo YD, Kim HJ, Youn SK (2010) Isogeometric topology opti-
mization using trimmed spline surfaces. Comput Methods Appl
Mech Eng 199:3270–3296

30. Dedè L, Borden MJ, Hughes TJR (2012) Isogeometric analysis
for topology optimization with a phase field model. Arch Comput
Methods Eng 19:427–465

31. Lu J (2011) Isogeometric contact analysis: geometric basis and
formulation for frictionless contact. Comput Methods Appl Mech
Eng 200:726–741

32. Temizer I, Wriggers P, Hughes TJR (2011) Contact treatment in
isogeometric analysis with NURBS. Comput Methods Appl Mech
Eng 200:1100–1112

33. Lorenzis LD, Temizer I, Wriggers P, Zavarise GA (2011) Large
deformation frictional contact formulation using NURBS-based
isogeometric analysis. Int J Numer Methods Eng 87:1278–1300

34. Temizer I, Wriggers P, Hughes TJR (2012) Three-dimensional
mortar-based frictional contact treatment in isogeometric analysis
withNURBS.ComputMethodsApplMechEng209–212:115–128

35. Dittmann M, Franke M, Temizer I, Hesch C (2014) Isogeometric
analysis and thermomechanical mortar contact problems. Comput
Methods Appl Mech Eng 274:192–212

36. Corbett CJ, Sauer RA (2015) Three-dimensional isogeometrically
enriched finite elements for frictional contact and mixed-mode
debonding. Comput Methods Appl Mech Eng 284:781–806

37. Kruse R,Nguyen-ThanhN, Lorenzis LDe,Hughes TJR (2015) Iso-
geometric collocation for large deformation elasticity and frictional
contact problems. Comput Methods Appl Mech Eng 296:73–112

38. Matsubara S, Nishi S, Terada K (2017) On the treatment of het-
erogeneities and periodic boundary conditions for isogeometric
homogenization analysis. Int J Numer Methods Eng 109:1523–
1548

39. Temizer I (2014) Computational homogenization of soft matter
friction: isogeometric framework and elastic boundary layers. Int
J Numer Methods Eng 100:953–981

40. FillepS,MergheimJ, SteinmannP (2013)Computationalmodeling
and homogenization of technical textiles. Eng Struct 50:68–73

41. Fillep S,Mergheim J, Steinmann P (2016) Toward an efficient two-
scale approach to model technical textiles. Comput Mech 59:385–
401

42. Espadas-Escalante JJ, van Dijk NP, Isaksson P (2017) A study on
the influence of boundary conditions in computational homoge-
nization of periodic structures with application to woven compos-
ites. Compos Struct 160:529–537

43. Durville D (2008) A finite element approach of the behaviour of
woven materials at microscopic scale. Mechanics of microstruc-
tured solids. Springer, Berlin, pp 39–46

44. Durville D (2010) Simulation of the mechanical behaviour of
woven fabrics at the scale of fibers. Int J Mater Form 3:1241–1252

45. Nguyen-Thanh N, Zhou K, Zhuang X, Areias P, Nguyen-Xuan
H, Bazilevs Y, Rabczuk T (2017) Isogeometric analysis of large-
deformation thin shells using RHT-splines for multiple-patch
coupling. Comput Methods Appl Mech Eng 316:1157–1178

46. Temizer I, Hesch C (2016) Hierarchical NURBS in frictionless
contact. Comput Methods Appl Mech Eng 299:161–186

47. Hesch C, Franke M, Dittmann M, Temizer I (2016) Hierarchical
NURBS and a higher-order phase-field approach to fracture for
finite-deformation contact problems. ComputMethods Appl Mech
Eng 301:242–258

48. Launay J,HivetG,DuongAV,Boisse P (2008) Experimental analy-
sis of the influence of tensions on in plane shear behaviour ofwoven
composite reinforcements. Compos Sci Technol 68:506–515

49. Tapie E, Tan ESL, Guo YB, Shim VPW (2017) Effects of pre-
tension and impact angle on penetration resistance of woven fabric.
Int J Impact Eng 106:171–190

50. Wriggers Computational Contact (2006) Mechanics. Springer,
Berlin

51. Betsch P, Grunttmann F, Stein E (1996) A 4-node finite shell ele-
ment for the implementation of general hyperelastic 3D-elasticity
at finite strains. Comput Methods Appl Mech Eng 130:57–79

52. Matsuda T, Nimiya Y, Ohno N, Tokuda M (2007) Elastic-
viscoplastic behavior of plain-woven GFRP laminates: homog-

123

http://www.cybernet.co.jp/ansys/product/lineup/mul-tiscale/en/multiscale_sim//
http://www.cybernet.co.jp/ansys/product/lineup/mul-tiscale/en/multiscale_sim//
http://www.cybernet.co.jp/ansys/product/lineup/mul-tiscale/en/multiscale_sim//


Computational Mechanics (2019) 64:211–229 229

enization using a reduced domain of analysis. Compos Struct
79:493–500

53. Bonet J, Burton AJ (1998) A simple orthotropic, transverly
isotropic hyperelastic constitutive equation for large strain com-
putations. Comput Methods Appl Mech Eng 162:151–164

54. Sato M, Muramatsu M, Matsubara S, Nishi S, Terada K, Yashiro
K, Kawada T (2017) Numerical plate testing for non-linear multi-
scale analysis of plate-shaped device. J Jpn Soc Civ Eng Ser A2
(Appl Mech (AM)) 73(2):I_283–I_294

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Isogeometric analysis for numerical plate testing of dry woven fabrics involving frictional contact at meso-scale
	Abstract
	1 Introduction
	2 Computational homogenization for composite plates
	3 Frictional contact problem
	3.1 Contact and friction conditions
	3.2 Virtual work for frictional contact
	3.3 Penalty method

	4 Isogeometric analysis
	4.1 Geometric representation with NURBS functions
	4.2 Discretization for frictional contact behavior

	5 Constraint conditions for in-plane UC and sub-UC
	6 Generating in-plane sub-unit cell
	6.1 Setting of meso-scale analysis
	6.2 Initial state of in-plane sub-unit cell

	7 Representative numerical examples
	7.1 Numerical test for computational efficiency
	7.2 Macroscopic in-plane characteristics
	7.3 Influence of pre-tension on macroscopic in-plane shear characteristics
	7.4 Verification analyses

	8 Concluding remarks
	Acknowledgements
	References




