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Generalized Aubry-André-Harper model with modulated hopping and p-wave pairing
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We study an extended Aubry-André-Harper model with simultaneous modulation of hopping on-site potential
and p-wave superconducting pairing. For the case of commensurate modulation of β = 1/2 it is shown that the
model hosts four different types of topological states: Adiabatic cycles can be defined which pump particles two
types of Majorana fermions or Cooper pairs. In the incommensurate case we calculate the phase diagram of
the model in several regions. We characterize the phases by calculating the mean inverse participation ratio and
perform multifractal analysis. In addition we characterize whether the phases found are topologically trivial or
not. We find an interesting critical extended phase when incommensurate hopping modulation is present. The
rise between the inverse participation ratio in regions separating localized and extended states is gradual rather
than sharp. When in addition the on-site potential modulation is incommensurate we find several sharp rises and
falls in the inverse participation ratio. In these two cases all different phases exhibit topological edge states. For
the commensurate case we calculate the evolution of the Hofstadter butterfly and the band Chern numbers upon
variation of the pairing parameter for zero and finite on-site potential. For zero on-site potential the butterflies
are triangularlike near zero pairing when gap closure occurs they are squarelike and hexagonal-like for larger
pairing but with the Chern numbers switched compared to the triangular case. For the finite case gaps at quarter
and three-quarters filling close and lead to a switch in Chern numbers.
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I. INTRODUCTION

The physics of Anderson delocalization-localization (or
metal-insulator) transition in disordered fermionic systems
is a problem of long-standing interest in condensed matter
physics [1–3]. In one dimension uncorrelated random po-
tentials lead to complete localization of all eigenfunctions
[4,5], while mobility edges and the delocalization-localization
transition will typically appear in 3D disordered systems.
However, mobility edges may occur in some 1D systems
[6–8], if the disorder distribution is deterministic, rather than
uncorrelated. The paradigm of this class of quasiperiodic
systems, incommensurate lattices (the superposition of two
periodic lattices with incommensurate periods) is the Aubry-
André model [9], or its two-dimensional analog, the Harper-
Hofstadter model [10,11]. The delocalization-localization
transition due to the disordered on-site potential can appear in
the Aubry-André model when the lattice is incommensurate,
arising from the self-duality of this model [12].

The model was explored [13–15] from a topological
perspective. In the Aubry-André model with p-wave su-
perconducting (SC) pairing the connection between the
Su-Schrieffer-Heeger–like [16] and the Kitaev-like [17,18]
topological phases was investigated [19]. Other studies
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[20–23] focused on localization effects. In addition, com-
mensurate and incommensurate modulations may appear in
on-site and hopping terms; the interplay between the two was
studied in Ref. [24]. When hopping modulations are incom-
mensurate [25], the system will go through Anderson-like
localization, but no mobility edge is found. For commensurate
hopping modulations topological zero-energy edge modes are
found [25,26]. In Ref. [24] the incommensurate and commen-
surate off-diagonal modulations were combined resulting in
the conclusion that the states depend on the phase between
the two. Experimentally the model was realized in ultracold
atoms in optical lattices [27,28] and in photonic crystals
[29,30]. A recent experiment [13] realized the topological
edge state.

In this paper, we study a generalized AAH model with
modulated on-site potential, hopping, and p-wave pairing.
For the bipartite case (β = 1/2) we show that four different
topological excitations are possible. The same model, but
without modulation of the p-wave pairing, was studied by
Zeng et al. [19] and Liu et al. [23]. They studied both the com-
mensurate and incommensurate cases. They mapped the phase
diagram of the model, studied localization by investigating the
mean inverse participation ratio (MIPR), and did multifractal
analysis in the incommensurate case and showed the existence
of topological edge states in the commensurate case. We also
do these calculations for the model with modulated p-wave
pairing. The MIPR studies of the critical extended phases
give an interesting result. When incommensurate hopping
modulation is turned on we see a “smeared mobility edge”
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phase, in which the rise in the MIPR between the localized
and extended regions is gradual, rather than sharp (Fig. 7).
Other GAAHs all show a sharp jump [22,25] in mobility edge
phases. When, in addition, incommensurate on-site potential
modulation is turned on, the rise in MIPR between localized
and extended regions are sharp again, but there are more than
one such jumps in MIPR. In these last two incommensurate
studies topological edge states exist in all phases. Also, for
the commensurate lattice, we investigate the Chern numbers
of the main gaps during the change of the modulated p-wave
SC pairing strength. We find that values of the Chern numbers
are changing with and without on-site potential when we tune
the modulated p-wave SC pairing strength. The modulated
p-wave pairing strength changes; the energy spectrum alters
from the triangular lattice like Hofstadter butterfly to one
which is square lattice like.

Our paper is organized as follows. In the next section
(Sec. II), the generalized version of the GAAH model that
includes nearest-neighbor and next-nearest-neighbor p-wave
SC pairing is defined on the infinite lattice. In Sec. III,
we extend the 1D model to an “ancestor” 2D p-wave SC
model. In Sec. IV, we check topological properties of the
pure commensurate lattice for the β = 1/2. In Sec. V, we
consider the incommensurate modulations case for β, where
we will discuss the metal-insulator transition, and especially
the influences of the modulated p-wave SC pairing strength on
this transition. In Sec. VI, for pure commensurate lattice, the
corresponding Hofstadter butterflies are discussed in detail.
We conclude the paper in Sec. VII.

II. MODEL

The generalized one-dimensional Aubry-André-Harper
model with p-wave SC pairing which we study here is de-
scribed by the following Hamiltonian:

Ĥ = −
∑

j

[(t + τ j )c
†
j c j+1 + H.c.]

+
∑

j

(� + δ j )c
†
j c

†
j+1 + H.c. +

∑
j

Vj n̂ j, (1)

where

τ j = τ cos(2πβ j + φτ ),
δ j = δ cos(2πγ j + φδ ),
Vj = V cos(2πβ j + φV ).

(2)

Here τ j is commensurate (incommensurate) hopping mod-
ulations with periodicity 1/β and phase factor φτ and Vj

is the diagonal Aubry-André potential with periodicity 1/β

and phase factor φV , respectively. The corresponding hopping
modulation amplitude is set by τ and V is the on-site potential
strength. n̂ j = c†

j c j are number operators, c†
j (c j ) are creation

(annihilation operators) at position j on the lattice, and t is
the hopping (or tunneling) amplitudes to the nearest neighbors
and set to be the unit of the energy (t = 1). Also, δ j is a SC
modulation with periodicity 1/β and phase factor φδ . Here δ

and � are the strengths of the SC pairing gap taken to be real.
In the limit � = δ = 0, this model reduces to the gener-

alized Aubry-André-Harper model introduced by Ganeshan
et al. [26]. If δ = 0 and φτ = φV , this model reduces to the

GAAH model with p-wave SC pairing introduced in Ref. [19]
and studied in Ref. [23]. If we set τ = δ = 0 the model ex-
hibits an Anderson localization transition when V > 2(t + �)
[31]. On the other hand, if � and δ are zero, but τ and V are
finite, and when the relation between the hopping modulation
and on-site phases are fixed, for example, φV = φτ + βπ , the
GAA model can be formally derived from an ancestor 2D
quantum Hall system on a lattice (Hofstadter model) with
diagonal (next-nearest-neighbor) hopping terms [13,32,33].
Here we keep our notations general with φτ = φδ = ky and
φV = ky + ϕ as independent variables. The off-diagonal mod-
ulation has an additional phase ϕ.

III. 2D ANALOG OF THE GENERALIZED AUBRY-ANDRÉ
MODEL WITH p-WAVE SUPERCONDUCTIVITY

The Hamiltonian of the 1D GAAH model with p-wave
superfluid pairing we consider in this paper can be made to
correspond to a 2D p-wave SC model. For any given ky, the
GAAH model of Eq. (1) can be viewed as the kyth Fourier
component of a general 2D Hamiltonian. On the other hand, ky

is the second degree of freedom; hence we define the operator
cn,ky that satisfies the following commutation relation:

{
cn,ky , c†

ń,ḱy

} = δn,ńδky,ḱy
. (3)

Therefore, the 2D Hamiltonian can be expressed in terms of
Ĥ as

Ĥ = 1

2π

∫ 2π

0
Ĥ (ky)dky, (4)

where in the Hamiltonian of Eq. (1), we replaced the operators
cn with cn,ky . The corresponding Hamiltonian can be written as

Ĥ (ky) = −
∑

n

[
(t + τn)c†

n,ky
cn+1,ky + H.c.

]

+
∑

n

[
(� + δn)c†

n,ky
c†

n+1,−ky
+ H.c.

]

+
∑

n

Vnc†
n,ky

cn,ky . (5)

Fourier transforming only in the y direction

cn,ky =
∑

m

e−ikymcn,m (6)

allows us to easily calculate the 2D Hamiltonian as

Ĥ =
∑
n,m

−
{

tc†
n,mcn+1,m

−
[τ

2
(ei2πβnc†

n,mcn+1,m+1 + e−i2πβnc†
n,mcn+1,m−1)

]

+
[

δ

2
(ei2πβnc†

n,mc†
n+1,m+1 + e−i2πβnc†

n,mc†
n+1,m−1)

+�cn,mcn+1,m

]
+ V

2
ei(2πβn+ϕ)c†

n,mcn,m+1 + H.c.

}
.

(7)

When ϕ = 0, the 2D system has isotropic next-nearest-
neighbor hoppings and the corresponding 1D Hamiltonian has
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FIG. 1. Graphical presentations of extended 1D GAAH with
nearest and next-nearest hopping (SC pairing) and on-site potential to
a 2D Hamiltonian. In the presence of a perpendicular magnetic field
with β flux quanta per unit cell, the electrons hop on a rectangular
lattice. (a) This is the 2D “ancestor” of the diagonal GAAH model
which the hopping is to nearest neighbors, (b) this is the 2D ancestor
of the off-diagonal GAAH model which the hopping is to next-
nearest neighbors, and (c) this is the 2D ancestor of the SC pairing
of GAAH model which the hopping is to nearest and next-nearest
neighbors. Each rectangular plaquette shown in a different color is
pierced by β flux quanta.

the same phase ky in the off-diagonal and diagonal modula-
tions. This Hamiltonian describes a 2D lattice in the presence
of a uniform perpendicular magnetic field with β flux quanta
per unit cell as shown in Fig. 1.

IV. COMMENSURATE MODULATION:
THE CASE OF β = 1

2

Setting β = 1
2 in Eq. (1), and all three phases to zero, the

lattice becomes bipartite. Introducing the notation ci and di for
the two sublattices and Fourier transforming using the Nambu
basis c†

k , d†
k , c−k, d−k , the Hamiltonian becomes

Ĥ = −2t cos(k)σz ⊗ σx − 2τ sin(k)σz ⊗ σy + V σz ⊗ σz

− 2� sin(k)σy ⊗ σx + 2δ cos(k)σy ⊗ σy. (8)

Note that the first three terms correspond to σz ⊗ ĤRM , where
ĤRM is the Rice-Mele Hamiltonian. It follows that if we set
� = δ = V = 0 the model consists of two independent SSH
models (which are topological), and it is possible to define an
adiabatic process in which charge is pumped across the unit
cell (the topological edge states support charges localized at
the edges of the system). In a similar vein, keeping V = 0, it
is possible to pair the two cos(k) with the two sin(k) terms in
four ways. Keeping the other parameters zero leads to other
possible topological states, or possible adiabatic pumping
processes. Of the remaining three, two are Majorana fermions
and the fourth one a Cooper pair. For example, we can take

τ = δ = 0 resulting in

Ĥ = [−2t cos(k)σz − 2� sin(k)σy] ⊗ σx. (9)

In other words, a 2 × 2 Hamiltonian of the SSH form, but
the adiabatic pumping in this case would not correspond to
a charge pump, because different members of the Nambu
bases are coupled by the matrix elements. For each of the four
cases it is possible to construct the time-reversal, particle-hole
symmetry operators, as well as the chiral symmetry operators
using the “left” or the “right” part of the direct product and
multiplying with an identity operator from the other side.
They all fall in the BDI symmetry class [34].

V. INCOMMENSURATE MODULATION

When β is irrational, the lattice is incommensurate. We
choose β = (

√
5 − 1)/2, the golden ratio, but all the con-

clusions can also be generalized to other incommensurate
situations. In this paper, for the incommensurate modulation
case, we shall study the interplay of the SC modulation pairing
δ with the incommensurate hopping amplitude and poten-
tial, respectively, and then we determine the phase diagram
of the model. The Hamiltonian can be diagonalized by the
Bogoliubov–de Gennes (BdG) transformation [35,36]

η†
n =

L∑
j=1

[un, jc
†
j + νn, jc j], (10)

where n = 1, . . . , L, is the energy band index and un, j and
νn, j denote the two wave function components at the site j
assumed to be real. On this basis the wave function of the
Hamiltonian becomes

|
n〉 = η†
n|0〉 =

L∑
j=1

[un, jc
†
j + νn, jc j]|0〉. (11)

Then the Hamiltonian in Eq. (1) can be diagonalized in terms
of the operators ηn and η†

n as

Ĥ =
L∑

n=1

εn

(
η†

nηn − 1

2

)
, (12)

with εn being the spectrum of the quasiparticles. The
Schrödinger equation H |
n〉 = εn|
n〉 can be written as

−(t + τ j−1)un, j−1 + (� + δ j−1)νn, j−1 + Vjun, j

− (t + τ j )un, j+1 − (� + δ j )νn, j+1 = εnun, j,

(t + τ j−1)νn, j−1 − (� + δ j−1)un, j−1 − Vjνn, j

+ (t + τ j )νn, j+1 + (� + δ j )un, j+1 = εnνn, j . (13)

Representing the wave function as

|
n〉 = [un,1, νn,1, un,2, νn,2, . . . , un,L, νn,L]T , (14)
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the Hamiltonian H can be written as a 2L × 2L matrix,

Hn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 B 0 · · · · · · · · · C
B† A2 B 0 · · · · · · 0
0 B† A3 B · · · · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

0 · · · 0 B† AL−2 B 0
0 · · · · · · 0 B† AL−1 B

C† · · · · · · · · · 0 B† AL

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (15)

where

Aj =
(

Vj 0
0 −Vj

)
, (16)

B =
(−(t + τ j ) −(� + δ j )

� + δ j t + τ j

)
, (17)

and

C =
( −(t + τ j+1) � + δ j+1

−(� + δ j+1) t + τ j+1

)
, (18)

for the lattice with periodic boundary conditions, or

C =
(

0 0
0 0

)
, (19)

for the lattice with open boundary conditions. Here we con-
sider a chain of length L with periodic boundary conditions.
The irrational β can be approximated by a sequence of rational
numbers [37] [see Eq. (21)]. In our model we may expect the
usual [12] delocalization transition that occurs in the original
AA model in the incommensurate case. To show this, we
calculate the mean inverse participation ratio (MIPR), which
for a given normalized wave function [

∑N
j=1(u2

n, j + ν2
n, j ) = 1]

is defined as [38,39]

MIPR = 1

2N

2N∑
n=1

N∑
j=1

(
u4

n, j + ν4
n, j

)
, (20)

where n is the index of energy levels and un, j and νn, j are the
solution to the BdG equations. It is well known that, for an
extended state, MIPR → 1

L and the MIPR tends to zero in the
thermodynamic limit (for large L); however, MIPR tends to
a finite value for a localized state even in the thermodynamic
limit. In the following, we will calculate the MIPR for differ-
ent configurations of our GAAH model with p-wave pairing
for generic and off-diagonal cases to characterize the phase
boundaries separating localized, critical, and extended phases.

Next, in order to clarify the nature of different phases
in our model, we perform multifractal analysis [32] of
the eigenfunctions, a technique which was applied to
study the quasiperiodic chain with p-wave pairing [23] and
also the original Aubry-André model [32,40]. From the above
assumption regarding the irrational value of β, the golden
ratio can be approached by the Fibonacci numbers via the
relation

β = lim
m→∞

Fm−1

Fm
, (21)

where Fm is the mth Fibonacci number. We choose the chain
L = Fm. It is recursively defined by the relation Fm+1 =

Fm + Fm−1, with F0 = F1 = 1. The probability measure can
be defined from a wave function of Eq. (11) as

pn, j = u2
n, j + ν2

n, j, (22)

which is normalized (
∑Fm

j=1 pn, j = 1). The scaling index γn, j

for pn, j is defined by

pn, j ∼ F
−γn, j

m . (23)

In the scaling limit m → ∞, according to the multifractal
theorem [40], the number of sites which have a scaling index
between γ and γ + dγ is proportional to F f (γ )

m . To distinguish
the extended, critical, and localized wave functions, only a
part of f (γ ) is required. For the extended wave functions,
the maximum probability measure scales as max[pn, j] ∼ F−1

m ;
thus we have γmin = 1. For a localized wave function, pn, j is
finite (γ = 0, [ f (0) = 0]) at some sites but on other sites it
is exponentially small (γ = ∞, [ f (∞) = 1]); thus we have
max[pn, j] ∼ F 0

m , or γmin = 0. On the other hand, for the
critical wave functions, on a finite interval [γmin, γmax], f (γ )
is a smooth function with 0 < γmin < 1. Therefore, for distin-
guishing the extended, critical, and localized wave functions,
we need to calculate γmin which is defined as max[pn, j] ∼
F−γmin

m . Namely,

γmin = 1, for an extended wave function,

γmin �= 0, 1, for a critical wave function,

γmin = 0, for a localized wave function.
(24)

Note that, here in our calculation, we plotted the average of
γmin over all the eigenstates (γ min), which can be written as

γ min = 1

2Fm

2Fm∑
n=1

γ n
min. (25)

A. Off-diagonal GAAH model with p-wave pairing

The case V = 0 corresponds to the off-diagonal GAAH
model with p-wave pairing. We calculate the phase diagram
as a function of the modulation strength of incommensurate
p-wave pairing (δ) and the modulation strength of incommen-
surate hopping (τ ), focusing mostly on the case ky = π/2.
We choose ϕ = βπ . This off-diagonal GAAH model in the
limit � = 0 and δ = 0 exhibits nontrivial zero-energy edge
modes [24,26] and in a large parameter space preserves the
critical states [25]. We find that the topological properties and
localization of this system are profoundly affected by a finite
δ. The main new feature compared to Ref. [25] is various
phases with mobility edges. The phase diagram based on the
MIPR of the off-diagonal GAAH model with p-wave pairing
(without hopping modulations and site-diagonal potential) is
shown in Fig. 2. The extended phase (regions I and II), the
mobility-edge phase (region III), and critical phase (region
IV) are separated by the black solid lines. Regions I, II,
and III host two zero-energy modes as a result of nontrivial
topology which only appear for open boundary conditions. In
Fig. 3, we show the distribution of the inverse participation
ratio (IPR) for different eigenstates. In regions I [Fig. 3(a)], II
[Fig. 3(b)], and III [Fig. 3(c)], respectively, we find the zero-
energy topological edge modes (large red dots) indicating the
topologically nontrivial phase. For almost all eigenstates, the
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FIG. 2. Phase diagram of the off-diagonal GAAH model as a
function of the p-wave incommensurate modulation amplitude δ

and the p-wave pairing strength �. The hopping incommensurate
modulation amplitude is set to τ = 0 and the phase in the incom-
mensurate modulation is set to ky = π/2 and ϕ = βπ . The phases
are (I and II) extended phases, (III) topological critical phase, and
(IV) nontopological critical phase.

IPR distribution has the same characteristics (around 10−4)
in regions I and II, which shows that all the eigenstates are
extended. In regions III and IV, the value of IPR is around
10−2, which is two orders of magnitude larger than in the ex-
tended phase. These dispersed distributions suggest that these
regions (III and IV) are critical phases. These results confirm
that regions I, II, and III are in the nontrivial-topological
phases, while the region IV is trivial phase. Also, as shown
in Fig. 4, region IV is topologically trivial and the edge modes
(indicated in red color in the figure), in the regions I and III
are found to be very robust. For comparison, in Ref. [24] the
robustness of edge states against modulations of various types
was analyzed. It was argued that a diagonal potential displaces
edge states from zero energy. In our case the edge states occur
in the case of off-diagonal disorder when τ = 0 and survive
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FIG. 3. Distribution of IPRs over all the eigenstates for (a) and
(b) extended phases, (c) topological critical phase, and (d) nontopo-
logical critical phase of Fig. 2.
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FIG. 4. Energy spectrum of the off-diagonal GAAH model with
p-wave pairing plotted as a function of δ under OBCs with L = 100
lattice sites. The model parameters are τ = 0, V = 0, and � = 0.5.
Inside the regions I and II (see Fig. 2) there are edge states.

even after a finite diagonal potential is turned on and the
model undergoes Anderson-like localization (see Sec. IV B).

The evolution of the MIPR on a logarithmic scale at three
values of δ = 0.5, 1, and 1.5 is shown in Fig. 5. We find
that the MIPR changes abruptly from one phase to another
as a function of � and δ. There are four turning points and
the change of MIPR at these points becomes sharper with
increasing system size L (results not shown). Thus, in the
thermodynamic limit L → ∞, a discontinuity at the turning
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10-3

10-2

M
IP

R

=0.5
=1
=1.5

FIG. 5. MIPR as a function of p-wave superfluid pairing � for
the indicated values of modulation amplitude δ. The dashed lines,
dot-dashed lines, and solid lines demonstrate the abrupt changes of
the MIPR at phase boundaries.
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FIG. 6. Phase diagram of the off-diagonal GAAH model with the
p-wave incommensurate modulation amplitude 0 < δ � 2 and the
p-wave pairing strength 0 � � � 4. The hopping incommensurate
modulation amplitude is set to τ = 1 and the phase in the incommen-
surate modulation is set to ky = π/2 and ϕ = βπ . The phases are (I)
localized phase, (II) critical localized phase, (III) critical extended
phase, and (IV) extended phase.

points signals the phase transitions among the mobility-edge,
the extended, and the critical phases. We have also con-
sidered the dependence of the phase diagram on nonzero
τ . By calculating the MIPR, we find that the localization
properties of this model are significantly affected by turning
on the off-diagonal hopping modulation of τ . For τ = 1,
the results are summarized in the phase diagram shown in
Fig. 6. There are four distinct phases, localized phase (I),
critical localized phase (II), critical extended phase (III), and
extended phase (IV), separated by solid black lines. In Fig. 7,
we show examples of the distribution of IPR over different
eigenstates for localized phase (I), critical localized phase
(II), critical extended phase (III), and extended phase (IV)
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FIG. 7. Distribution of IPRs over all the eigenstates for region
(a) I (localized phase), (b) II (critical localized phase), (c) III (critical
extended phase), and (d) IV (extended phase) of Fig. 6.
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FIG. 8. γmin as function of 1/m for regions I (localized phase),
II (critical localized phase), III (critical extended phase), and IV
(extended phase) of Fig. 6.

of Fig. 6. Topological edge states are found in all phases.
An interesting situation is depicted in Fig. 7(c): The MIPR
indicates the simultaneous presence of localized and extended
states, as in a mobility edge phase, but here the boundary
is smeared between the two. As the eigenenergy increases
in Fig. 7(c), the IPR smoothly changes from a typical value
for the localized states around 10−1 to a typical value for the
extended states 10−4. The smooth changes of the IPR suggest
that there exist the semimobility edge in the energy spectrum.
Also, for these selected phases in Fig. 8, we plotted γ min as
a function of 1/m. For the localized phase and the critical
localized phase γ min extrapolates to zero, while for the critical
extended phase γ min extrapolates to 0.38, and for the extended
phase γ min extrapolates to 1. These results also confirm our
phase diagram in Fig. 6.

Figure 9 shows the MIPR of the model as a function of
� with τ = 1 and δ = 0.5 for different system sizes. We
have checked that, with increasing L, the system is in the
localized region (I) for δ − τ + 1 < � < τ − δ + 1. Also, for
the extended phase (III) the MIPR is finite and depends on the
system size (L). In this phase, the MIPR satisfies the finite
size scaling (FSS) form, MIPR = bL−η. At the �/t = 3.5,
η = 0.63. For this phase, with the increase L, MIPR tends to
zero. The MIPR among localized, critically localized, critical
extended, and extended phases satisfies

MIPRE < MIPRCE < MIPRCL < MIPRL. (26)

We verified this expression by checking the FSS in the whole
phase diagram (results not shown).

B. Generic GAAH model with p-wave pairing

We also investigate the generic p-wave pairing GAAH
model with modulated on-site potentials, modulated off-
diagonal hopping terms, and modulated p-wave pairing terms.
In this section, we explore the influence of the modulated
on-site potential on the phase transition. It is clear that varying
V changes the phase diagram. So, due to the modulation in the
p-wave pairing term, we find that the system has a stronger
tendency to become extended as a function of �/t when the
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FIG. 9. Upper panel: MIPR (log scale) as a function of p-wave
superfluid pairing �/t for different chain lengths L for τ = 1 and
δ = 0.5. Bottom panel: MIPR with the inverse system size 1/L. For
the extended phase, MIPR tends to zero as L increases.

disordered on-site potential (V ) is varied. In Fig. 10, the phase
diagram of the generic GAAH model for the case V/t = 1
is shown. The phase boundary separating the localized phase,
critical localized phase, critical extended phases, and extended
phases vary rapidly with the SC pairing. We also performed
a FSS analysis for this phase diagram (results not shown).
When V/t = 1, it is clear that for δ/t < 1, the localized
phase disappears and the critical localized phase increases
sharply. We also focus on the distribution of IPR with different
eigenstates and multifractal analysis [32] for this case. An
example of determining γ min as a function of 1/m in phases I,
II, III, and IV of Fig. 10 is shown in Fig. 11. For this phase
diagram, γ min extrapolates to zero if we are in I phase (in
this case, the multifractal analysis of the wave function shows
that all wave functions are in localized states) and to 1 if are
in IV phase (in this case, the multifractal analysis of wave
function shows that all of the wave functions are in extended
state). The distribution of IPR in the eigenstates, shown in
Fig. 12, indicates that almost all the eigenstates IPR are close
to each other in phase I (being around 10−1) and phase IV
(being around 10−4). For phases II and III, the multifractal
analysis of wave function is shown in Figs. 11(b) and 11(c).
For the critical localized phase (II), γ min extrapolates to 0.245
and, for the critical extended phase (III), γ min extrapolates
to 0.685. Again, as in Fig. 8, all phases exhibit topological
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/t
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1

1.5

2

/t
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III

II

FIG. 10. Phase diagram of the generic GAAH model with the
p-wave incommensurate modulation amplitude 0 < δ � 2 and the
p-wave pairing strength 0 � � � 4. The hopping incommensurate
modulation amplitude is set to τ = 1, the on-site potential incom-
mensurate modulation amplitude is set to V/t = 1, and the phase
in the incommensurate modulation is set to ky = π/2 and ϕ = βπ .
The phases are (I) localized phase, (II) critical localized phase, (III)
critical extended phases, and (IV) extended phases.

edge modes. As the eigenenergy increases in Fig. 12(b) for the
critical localized state, the IPR suddenly jumps from a typical
value for the localized states around 10−1 to a typical value for
the extended states 10−4, but for the critical extended state this
happens twice [see Fig. 12(c)]. Models of which we are aware
[22,25] show one mobility edge jump. Recall that in Fig. 8
it was also the critical extended state which showed unusual
behavior—the smeared mobility edge.

In summary, we find that due to the modulation in the
SC pairing the incommensurate generic GAAH model with
p-wave pairing delocalizes easier when varying the disordered
on-site potential, when δ < V . We find that the topological
properties of the generic GAAH model with p-wave pairing
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FIG. 11. γmin as function of 1/m for regions I (localized phase),
II (critical localized phase), III (critical extended phase), and IV
(extended phase) of Fig. 10.
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FIG. 12. Distribution of IPRs over all the eigenstates for
(a) regions I (localized phase), (b) II (critical localized phase), (c) III
(critical extended phase), and (d) IV (extended phase) of Fig. 10.

are significantly affected by turning on the modulated on-site
potential and modulated p-wave SC pairing.

VI. COMMENSURATE MODULATION

When β is rational, the lattice is commensurate. It is
known that in the commensurate case [19], the system will
not undergo a localization-delocalization transition as in the

incommensurate case. When β = 1/2, both Kitaev-like and
Su-Schrieffer-Heeger–like (SSH-like) models are included in
this GAAH model with p-wave SC pairing for commensurate
modulations. The Hamiltonian of Eq. (1) is reduced to the
SSH model for V = � = δ = 0 and to the Kitaev model for
τ = δ = 0. In order to determine the different phase bound-
aries and characterize the topological phases, we need to
calculate the effect of modulated SC pairing on the topological
properties of the system. In the following, we characterize the
topological nature of the modulated SC pairing by calculating
the evolution of Chern numbers [41] for the major gaps of the
spectrum.

Chern numbers

Chern numbers can be calculated from the density with
respect to changes in the magnetic field using the Středa
formula [42,43]. In lattice systems, the Chern number can be
written as

C = ∂ n̄(β )

∂β
, (27)

where n̄ is the number of levels below the Fermi level. This
formula is valid when the chemical potential lies in a gap
[42]. Formally, the evaluation of the Chern numbers can
be calculated by k-space integration of the Berry curvature
over the Brillouin zone. In Fig. 13 we present the Hofstadter
butterfly for the case V/t = 0, λ = 0.3, � = 0.4, and various
values of δ. The spectrum for δ = 0 is clearly formed by two
triangular-lattice Hofstadter butterflies separated by a large
gap. The Hofstadter butterfly separation is controlled by the

FIG. 13. Hofstadter butterfly: Energy spectrum as a function of magnetic flux per plaquette β in Aubry-André lattice with V = 0, τ = 0.3,
� = 0.4, and (a) δ = 0, (b) δ = 0.2, (c) δ = 0.4, (d) δ = 0.6, (e) δ = 0.8, and (f) δ = 1.
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FIG. 14. Evolution of the energy bands for β = 0.25, V = 0,
τ = 0.3, and � = 0.4 as function of δ shown in Fig. 13. Gaps are
labeled with their Chern numbers.

FIG. 16. Evolution of the energy bands for β = 0.25, V = 1,
τ = 0.3, and � = 0.4 as function of δ shown in Fig. 15. Gaps are
labeled with their Chern numbers.

FIG. 15. Hofstadter butterfly: Energy spectrum as a function of magnetic flux per plaquette β in Aubry-André lattice with V = 1, τ = 0.3,
� = 0.4, and (a) δ = 0, (b) δ = 0.2, (c) δ = 0.4, (d) δ = 0.6, (e) δ = 0.8, and (f) δ = 1.
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FIG. 17. Evolution of the energy bands for β = 0.25, V = 1,
τ = 0.3, and � = 0.4 as function of δ shown in Fig. 15. Gaps are
labeled with their Chern numbers.

SC parameter, δ (see Fig. 13). As illustrated in this figure, by
changing δ, the upper (lower) butterfly approaches the square
regime and then the honeycomb regime, which has different
topology (in other words, at the β = 0.2 for upper lattice the
Chern number changes from −1 to 1). Also, we see that, as
δ is increased, the gaps at zero energy are sufficiently small
and have not completely closed so that the overall butterfly
shape is maintained. It is possible to understand this surprising
result by considering the evolution of the energy bands at
the points at which the main gap closes and reopens. For
V/t = 0, λ = 0.3, � = 0.4, and β = 0.25, these evolutions
are demonstrated in Fig. 14. When the energy gap closes and
reopens through this evolution, Chern numbers will change.
For this case, we find two different regions corresponding to
different Chern numbers, ±1. An important observation is that
the Chern number is sensitive to the δ parameter. As can be
seen in Fig. 14, the whole area is covered by the triangular
lattice, while the square lattice is confined to the point at gap
closure, δ = 0.3.

For the second case we consider V �= 0, when the system
has sublattice asymmetry. In this case, when V �= 0 the evolu-
tion of the energy spectrum between the triangular lattice and
the square lattice also occurs (see Fig. 15). The differences be-
tween the Hofstadter butterflies in the two sets of plots can be
attributed to the spliting into two energy modes corresponding
to two 1D Majorana chains coupled by the on-site potential,
as discussed in Fig. 15. In Fig. 16, we show the evolution of
bands as a function of δ. As a result of the on-site potential the
critical δc increases. The Chern numbers associated with gaps
are also indicated, which “switch” when the phase transition
is encountered at quarter and three-quarters fillings. Figure 17
the band structure is shown as a function of ky for two different
values of δ. Topological edge states appear, in particular a
zero energy edge state is present for the whole region in both
cases.

VII. CONCLUSION

In this paper, we studied a GAAH model with modulated
p-wave SC pairing, both in the commensurate and incom-
mensurate cases. We mapped the derived 2D magnetic analog
of the model, have shown that in the bipartite commensu-
rate case four different topological excitations are possible,
mapped the phase diagram of the model via studying the
localization characteristics, and studied the evolution of its
Hofstadter butterflies. The phase diagram is remarkably rich,
exhibiting localized, extended, and critical phases, as well
as topological edge states, which can occur in extended or
critical cases. Several new phases were revealed, unique to the
model with modulated p-wave pairing: In the critical extended
phase when incommensurate p-wave pairing and hopping is
turned on, the change in inverse participation ratios separating
extended and localized regions is smeared, rather than sharp,
as it happens [23] in the extended GAAH model without
p-wave pairing modulation. When, in addition, the on-site
potential is modulated the jumps between extended and lo-
calized regions are again sharp, but increase in number. For
the commensurate case the modulated SC amplitude results
in Hofstadter butterfly plots showing a transition from the
rectangular to the square lattice as the parameter δ varies.
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