
Journal of Parallel and Distributed Computing 147 (2021) 140–151

a

b

c

e
a
b
a
r
m
G
f

a
g
c
t
b
a
c
e
e
a
d
d

h
0

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Fast shared-memory streamingmultilevel graph partitioning
Nazanin Jafari a, Oguz Selvitopi b,∗, Cevdet Aykanat c

College of Information and Computer Science, UMass Amherst, Amherst, MA 01002, United States of America
Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States of America
Department of Computer Engineering, Bilkent University, Ankara, 06800, Turkey

a r t i c l e i n f o

Article history:
Received 15 August 2019
Received in revised form 19 June 2020
Accepted 1 September 2020
Available online 12 September 2020

Keywords:
Streaming algorithms
Graph partitioning
Multilevel graph partitioning
Parallel graph partitioning

a b s t r a c t

A fast parallel graph partitioner can benefit many applications by reducing data transfers. The online
methods for partitioning graphs have to be fast and they often rely on simple one-pass streaming
algorithms, while the offline methods for partitioning graphs contain more involved algorithms and the
most successful methods in this category belong to the multilevel approaches. In this work, we assess
the feasibility of using streaming graph partitioning algorithms within the multilevel framework. Our
end goal is to come up with a fast parallel offline multilevel partitioner that can produce competitive
cutsize quality. We rely on a simple but fast and flexible streaming algorithm throughout the entire
multilevel framework. This streaming algorithm serves multiple purposes in the partitioning process:
a clustering algorithm in the coarsening, an effective algorithm for the initial partitioning, and a fast
refinement algorithm in the uncoarsening. Its simple nature also lends itself easily for parallelization.
The experiments on various graphs show that our approach is on the average up to 5.1x faster than
the multi-threaded MeTiS, which comes at the expense of only 2x worse cutsize.

Published by Elsevier Inc.
1. Introduction

Graphs are ubiquitous in many diverse fields of science and
ngineering. They form the basis of many important algorithms
nd data structures in computer science. Graphs in computational
iology help scientists in understanding functions of proteins or
ssembling long genome sequences from shorter strings called
eads. In VLSI circuit design, graphs are successfully used to
inimize the propagation delay or the wire crossings in a layout.
raphs are powerful mediums in addressing important questions
rom almost any field.

Today, large graphs can have billions or even trillions of edges
nd such a size more than often necessitates the execution of al-
orithms on graphs in parallel. There are many distributed graph
omputation frameworks, GraphLab [22], Giraph [2], Pregel [23],
o name a few, that facilitate parallel execution of algorithms
ased on graphs. In parallel processing of the graph, the vertices
nd edges are distributed among the processors and the pro-
essors operate on their portions of the graph and occasionally
xchange data. Partitioning of the graph usually has a crucial
ffect on the parallel performance of the executed algorithm,
nd if not done carefully it can lead to poor performance. Most
istributed graph frameworks rely on a simple hash function to
istribute graphs. Although this can lead to somewhat acceptable

∗ Corresponding author.
E-mail address: roselvitopi@lbl.gov (O. Selvitopi).
ttps://doi.org/10.1016/j.jpdc.2020.09.004
743-7315/Published by Elsevier Inc.
computational load balance, it is very likely to cause high commu-
nication (i.e., high edge-cut or vertex-cut) as this translates into
a random partitioning of the graph.

In distributed graph computation frameworks, the distribution
of the vertices and edges of the graph must be fast. Although
trivial hash functions are certainly acceptable, the lightweight
streaming algorithms can offer better quality partitions while still
staying within the acceptable preprocessing time limits. There
are several works [4,13,24,27,30,35–37] that use streaming al-
gorithms for distributing a graph. These algorithms are usually
categorized in the online algorithms category for partitioning
a graph. The offline graph partitioning is more expensive and
usually contains more involved methods. Examples include, but
certainly not constrained to, spectral methods [3,11,12,17,28],
multilevel methods [6,16,18,19], and rather recently, metaheuris-
tics [5,31,34]. Multilevel methods are usually the choice of prefer-
ence as they are able to produce high-quality partitions very fast
and the most widely adopted tools [19,26] rely on this method.
Offline methods are usually deemed to be too expensive for
distributed graph computation frameworks and they are usually
preferred in scientific computing or VLSI circuit design, where the
overhead of expensive partitioning can be justified.

This work tries to answer the following question: How feasible
is it to utilize a streaming graph algorithm within the context of
multilevel graph partitioning framework? Most multilevel graph
partitioners make use of several different heuristics in different

sections of the multilevel framework. Although doing so certainly

https://doi.org/10.1016/j.jpdc.2020.09.004
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2020.09.004&domain=pdf
mailto:roselvitopi@lbl.gov
https://doi.org/10.1016/j.jpdc.2020.09.004

N. Jafari, O. Selvitopi and C. Aykanat Journal of Parallel and Distributed Computing 147 (2021) 140–151

a
b

i
e
f
u
w
b
s
d
f
n
(
i
t
c

i
a
b
m
a
i
p
c
t
o
i
I
w
f
a
w

Fig. 1. Four different approaches in obtaining a perfectly balanced two-way partition. The vertices belonging to different partitions are illustrated with different
colors. The cut edges are shown with dashed lines and the numbers above edges indicate their weights. (a) Random partitioning (cutsize = 24). (b) The streaming
lgorithm linear deterministic greedy [35] (cutsize = 17). (c) A single pass of Kernighan–Lin iterative improvement heuristic [20], with the initial starting partition
eing the random partition in (a) (cutsize = 15). (d) An optimal partition (cutsize = 14).
e
v
w
T
A

G
m
v
o

k

mproves the quality of the solutions, they often sacrifice from the
xecution time and parallel efficiency. The solutions obtained by a
ast streaming algorithm that is amenable for parallelization and
tilized within the multilevel framework can be more attractive
hen its advantages are considered. The hastily made decisions
y the streaming algorithm can be corrected by using the same
treaming algorithm for refinement purposes. Fig. 1 shows four
ifferent methods to partition a graph with eight vertices and
ourteen edges into two parts with each part having the same
umber of vertices. These methods are: (i) random partitioning
Fig. 1a), (ii) a streaming algorithm (Fig. 1b), (iii) an iterative
mprovement heuristic (Fig. 1c), and (iv) an optimal partition in
erms of cutsize (Fig. 1d). The figure shows that a smaller cutsize
an be obtained using more complex and expensive algorithms.
We choose to utilize the streaming algorithm linear determin-

stic greedy (LDG) that is proposed by [35]. Among the many
lgorithms tested out in [35], the LDG algorithm attained the
est performance. The LDG algorithm serves multiple purposes in
ultilevel framework in our approach. It is used as a clustering
lgorithm in the coarsening phase and it inherently produces an
nitial partition of the original graph after the coarsening com-
letes. The LDG algorithm can be considered as an agglomerative
lustering algorithm, in which two or more vertices are used
o form a new coarser vertex. It has also the nice feature of
btaining coarse vertices uniform in size, which is a feature that
s commonly sought for the algorithms used in the coarsening.
n the uncoarsening phase, it serves as a refinement algorithm
hich is used for repartitioning purposes. The flexibility and

ast nature of this heuristic renders it attractive to be utilized
nywhere in the multilevel framework. The contributions of this
ork are listed as follows:

1. We assess the feasibility of using a streaming algorithm
within the multilevel algorithm.

2. We describe in detail how a flexible streaming algorithm is
used for the purposes of coarsening, initial partitioning, and
uncoarsening in the multilevel partitioning framework. We
outline how to best exploit the algorithm to suit the needs
of these different stages.

3. We parallelize the LDG algorithm and the multilevel frame-
work for shared memory architectures. We essentially come
up with a fully-fledged shared-memory parallel multi-
level graph partitioner that relies on a simple and flexible
streaming algorithm to do its bidding.

4. We investigate the feasibility of utilizing multilevel frame-
work within an online context. We describe how our ap-
proach can be utilized for online graph partitioning under
141
the assumption that the vertices in the stream arrive in
batches.

5. We validate our approach on a comprehensive dataset by
comparing it to the widely-adopted partitioner MeTiS [19]
and the flat LDG algorithm [35].

The rest of this paper is organized as follows: The notation is
introduced in Section 2. Background and the studies related to
this work are discussed in Section 3. Our approach is explained
in Section 4 and the parallelization of our approach for shared
memory systems is discussed in Section 5. We describe how to
utilize the proposed methodology for online graph partitioning
in Section 6. The proposed methodology is validated in Section 7
with experiments and the conclusions are given in Section 8.

2. Definitions

A graph G = (V, E) is a tuple of a vertex set V of size n and an
dge set E of size m. Each edge (vi, vj) ∈ E connects two distinct
ertices. Each vertex vi and each edge (vi, vj) are associated with
eights, which are respectively denoted by ω(vi) and ω(vi, vj).
he neighbors of vi are denoted by Adj(vi) = {vj : (vi, vj) ∈ E}.
dj function easily extends to a set of vertices.

Π (G) = {V1,V2, . . . ,VK } is said to be a K -way partition of
if each part is nonempty, the parts are pairwise disjoint and
utually exhaustive. In Π (G), an edge (vi, vj) is cut if the pair of
ertices connected by that edge is in different parts, and uncut
therwise. The cutsize of Π (G) is denoted with cutsize(Π (G)) and

is equal to the sum of the weights of the cut edges, i.e.,

cutsize(Π (G)) =
∑

(vi,vj)∈E
vi∈Vk,vj∈Vℓ̸=k

ω(vi, vj). (1)

The weight of each part is equal to the sum of the weights of the
vertices in that part, i.e.,

ω(Vk) =
∑
vi∈Vk

ω(vi). (2)

Π (G) is said to be balanced if it satisfies the balance constraint
for each part Vk:

ω(Vk) ≤ (1+ ϵ)Wavg , (3)

where ϵ is the given maximum imbalance ratio and Wavg is
the average part weight. Under these definitions, the graph par-
titioning problem is defined as finding Π (G) that minimizes
cutsize(Π (G)) and satisfies the balance constraint. In the rest of
the paper, the indices i and j are used for vertices, while the index
is used for vertex parts.

N. Jafari, O. Selvitopi and C. Aykanat Journal of Parallel and Distributed Computing 147 (2021) 140–151

p
g
i
a

3

i
t
P
t
p
l
p
s
t
a
S
o
t
f

e
p
f
r
g
i

i
D
a
p
g
V
b
t
a
r
a
t
s
f
I
i
o
t
l
n

3

m
f
i
v

t
b
i
n

3. Background and related work

We review two different approaches to graph partitioning
roblem in this section: (i) the successful multilevel and offline
raph partitioning and (ii) the online streaming graph partition-
ng. We also discuss parallelism in studies that realize these
pproaches.

.1. Multilevel graph partitioning

Multilevel partitioning is a successful paradigmwidely adopted
n several graph/hypergraph partitioners such as Metis [19], Pa-
oh [7], Scotch [26], Jostle [39], Chaco [16], and KaHIP [31].
arallelizing multilevel algorithms in the context of graph parti-
ioning has been the focus of several studies. Akhremtsev et al. [1]
ropose a shared memory multilevel graph partitioner by paral-
elizing the label propagation algorithm [29] in the coarsening
hase and introducing a parallel version of k-way multi-try local
earch [31]. ParMetis [32], as a distributed memory graph parti-
ioner, and mt-metis [21], as the shared memory version of Metis
re among the commonly used parallel graph partitioners. PT-
cotch [8] is a parallel version of Scotch [26]. These partitioners
ften suffer from poor scalability because the algorithms used in
he initial partitioning and uncoarsening phases of the multilevel
ramework do not always lend themselves to efficient parallelism.

General structure of a multilevel framework consists of coars-
ning a given graph into successively coarser graphs, then ap-
lying a graph partitioning algorithm on the coarsest graph, and
inally projecting it back to the original graph by performing a
efinement algorithm on successively finer graphs. Since finer
raphs have more degrees of freedom, refinement can effectively
ncrease the quality of the partitions in the uncoarsening [21].

In the coarsening phase, the original graph G = G0
= (V0, E0)

s transformed into a sequence of coarser graphs G1, G2, . . . , GL.
ifferent types of algorithms have been tried out for this phase,
mong which edge matching algorithms [10,19,26,38] and label
ropagation algorithm [29] are common choices. The coarsest
raph GL is then partitioned in the initial partitioning phase.
arious algorithms are used for this phase as well: spectral
isection [28], Kernighan–Lin algorithm [20], graph growing par-
itioning algorithm [9,14], greedy graph growing partitioning
lgorithm [19] are among the most common partitioning algo-
ithms. At each level ℓ of the uncoarsening phase, a refinement
lgorithm is applied with the aim of improving the cutsize ob-
ained in the previous uncoarsening level. Multilevel framework
uccessfully stood the test of time and is usually the choice
or obtaining good quality solutions. However, it is expensive.
n addition, an offline partitioning strategy may not be viable
n the context of harsher conditions such as limited memory
r incremental updates to the graph which adds/removes ver-
ices or edges to/from the graph. These reasons necessitate the
ightweight algorithms for graph partitioning, which we focus
ext.

.2. Streaming graph partitioning

In contrast to the offline partitioning methods, the online
ethods make use of lightweight algorithms that generate ‘‘suf-

iciently good’’ partitions by keeping only a fraction of all graph
nformation in the memory at any time. These algorithms assign
ertices or edges to the parts as they arrive in the stream.
Stanton and Kliot [35] propose 10 heuristics, among which

he Linear Deterministic Greedy (LDG) algorithm produces the
est results. This heuristic greedily assigns vertices to the parts
n which they have the highest number of neighbors while pe-

alizing heavy parts with a linearly weighted function. Its linear

142
penalty function is able to produce well-balanced partitions with-
out neglecting the graph structure. Fennel [37], another stream-
ing graph partitioning algorithm, is a modularity maximization
framework that approximately balances the part weights while
greedily assigning vertices to the parts. Tsourakakis et al. [36]
propose streaming graph partitioning in a planted partition model
with higher length walks. Besides streaming vertex-based par-
titioning, edge-based streaming partitioning also got attention.
Petroni et al. [27] proposed replicated streaming edge-based
graph partitioning mainly focusing on power-law graphs. HoV-
erCut [30] is a multi-threaded streaming edge-based partitioning
platform. A more recent work in this area, ADWISE [24], proposes
a smart approach in taking into account a window of edges for
partitioning in a stream instead of handling one vertex at a time
in random order.

The quality of the partitions obtained by streaming graph
partitioning algorithms is usually not comparable to the quality
of the partitions obtained by offline partitioners. To partially alle-
viate this, Nishimura and Ugander [25] propose a multipass solu-
tion for two single-pass streaming algorithms, Fennel and LDG. In
their work, a graph partitioned with the streaming algorithms can
be repartitioned several times. Even though repartitioning can be
effective in increasing the quality of the partitions in only few
passes, the quality does not further improve in the later passes.

Besides these works, Firth and Missier [13] propose a
workload-aware streaming graph partitioning algorithm. They
use frequent patterns seen in the graph as workloads and parti-
tion the graph considering these motifs with the LDG algorithm.
Grasp [4] proposes distributed-memory streaming graph parti-
tioning. For this purpose, it uses MPI to parallelize the framework
proposed in Fennel.

As our proposed method is based on the LDG algorithm, here
we briefly review it. We utilize the LDG heuristic in both coarsen-
ing and uncoarsening phases of the multilevel partitioning frame-
work. The LDG heuristic computes the affinity of a vertex v in the
stream to the parts considering its neighbors and assigns it to the
part with the maximum affinity score. Heavy parts are penalized
by scaling the raw affinity with a linear factor. In assigning the
next vertex v in the stream, the LDG algorithm makes its choice
based on the following equation:

argmax
k∈K

{|Vk ∩ Adj(v)|(1−
ω(Vk)
C

)}, (4)

where C is the capacity constraint and is equal to total vertex
weight divided by the number of parts K , i.e., C =

∑
i ω(vi)
K .

In (4), |Vk ∩ Adj(v)| denotes the raw affinity score of v to part Vk

and (1 −
ω(Vk)
C

) denotes the linear penalty factor in assigning
that vertex to the same part. This quantity does not take into
account the cases where the edges of the graph have weights.
This is especially important in our approach as the coarser graphs
formed in the multilevel framework result in weighted edges. In
assigning a vertex v in the stream, (4) is extended to handle edge
weights as:

argmax
k∈K

{

(∑
u∈Adj(v)
u∈Vk

ω(v, u)
)
(1−

ω(Vk)
C

)}. (5)

4. Multilevel streaming graph partitioning

In the following sections, we describe how the LDG algorithm
is utilized in different phases of the multilevel framework.

N. Jafari, O. Selvitopi and C. Aykanat Journal of Parallel and Distributed Computing 147 (2021) 140–151

c
g
f
L
d
r
a
c
i
i
p

L

p
b
ℓ

K

T
i

V

p
c
H
v
f

E

T

A

T
t

ω

F
w
w

ω

W
h
e
r

w
i
a
u
a
o
s

4

g

4.1. Coarsening with LDG algorithm

In coarsening, the given original graph G0
= (V0, E0) is pro-

essed through a number of successive levels to obtain a smaller
raph. Each of these levels consists of a partitioning stage that is
ollowed by a coarsening stage. We use a fixed bin size β for the
DG algorithm throughout all coarsening levels. This allows us to
etermine the number of coarse vertices at each level and have a
ough idea how many fine vertices a coarse vertex will contain in
ny level before running the coarsening phase. We differ from the
onventional multilevel coarsening algorithms in the sense that it
s usually not possible to know how many vertices there will be
n the coarsening levels. For a given β and the desired number of
arts, K , we compute the total number of coarsening levels L as:

=

⌊
logβ

|V0
|

K

⌋
. (6)

Here and hereafter, a superscript denotes the level index.
At each level 0 ≤ ℓ < L, the graph Gℓ

= {Vℓ, Eℓ
} is first

artitioned into K ℓ bins to get Π ℓ
= {Vℓ

1,V
ℓ
2, . . . ,V

ℓ

Kℓ}. Here, each
in represents a part in Π ℓ and the number of bins/parts at level
is:
ℓ
= |Vℓ

|/β. (7)

hen, Π ℓ is used to obtain the coarser graph Gℓ+1
= {Vℓ+1, Eℓ+1

}

n the next level. Note that K ℓ+1 < K ℓ. Each part in the finer graph
in level ℓ becomes a new vertex in the coarser graph in level ℓ+1.
Hence, there are K ℓ vertices in the coarse graph at level ℓ+ 1:

ℓ+1
= {vℓ+1

i : Vℓ
i ∈ Π ℓ

}, where |Vℓ+1
| = K ℓ. (8)

The edges between the constituent fine vertices of any two
arts in Π ℓ are coalesced into a single edge between the pair of
oarse vertices representing these two parts in the coarse graph.
ence, in Gℓ+1, there exists an edge between a pair of coarse
ertices if and only if there exists at least one edge between the
ine vertices of the respective parts in Π ℓ, i.e.,
ℓ+1
= {(vℓ+1

i , vℓ+1
j) : Adj(Vℓ

i) ∩ Vℓ
j ̸= ∅ ∧ i ̸= j}. (9)

he neighbors of a coarse vertex are given by:

dj(vℓ+1
i) = {vℓ+1

j̸=i : Adj(V
ℓ
i) ∩ Vℓ

j ̸= ∅}. (10)

he weight of a coarse vertex is set to the sum of the weights of
he finer vertices in the part it is formed from:

(vℓ+1
i) =

∑
v∈Vℓ

i

ω(v). (11)

inally, the weight of an edge in Gℓ+1 is set to the sum of the
eights of the edges between the respective parts in Gℓ from
hich the vertices connected by this edge are formed:

(vℓ+1
i , vℓ+1

j) =
∑

v∈Vℓ
i ,u∈Vℓ

j

ω(v, u). (12)

e note that even in the case where the original graph does not
ave weighted edges, the coarsening may still lead to weighted
dges as multiple cut edges between two parts in a level will be
epresented by a single edge after coarsening.

We use a relaxed balance constraint in the coarsening, starting
ith a large imbalance of 1+ ϵ + ϵ′, where ϵ ≤ ϵ′, and reducing

t (ϵ′ − ϵ)/L at each level to get the desired balance with 1 + ϵ

t the end. Balancing is less critical in coarsening than it is in
ncoarsening, hence we allow a loose constraint in coarsening
nd use the strict one in uncoarsening. Reducing the strict burden
f the balance constraint aids us in better decisions in partitioning
tages of the coarsening phase.
143
.2. Initial partitioning

The initial partitioning phase simply partitions the coarsest
raph GL that contains |VL

| vertices into K parts using the LDG
algorithm to get Π L

= {VL
1,V

L
2, . . . ,V

L
K }. Note that K refers to the

desired number of partitions to be obtained on the original graph.

4.3. Uncoarsening with LDG algorithm

The uncoarsening phase starts with the K -way partitioned
GL. Each level ℓ of the uncoarsening consists of refining Π ℓ on
Gℓ using the LDG algorithm followed by projecting it back to
Π ℓ−1 on the finer graph Gℓ−1. Note that the number of parts
in each Π ℓ is K . The LDG algorithm is used with each vertex
already assigned to some part, but according to the affinity score
computed, the vertices may change their parts. It may be difficult
to move around vertices in the early levels of the uncoarsening
due to very coarse vertices, however in the later stages as the
vertices get finer and finer, the LDG algorithm is expected to have
more degrees of freedom in improving the cutsize. Moreover,
now that all neighbors of a vertex are assigned to some part,
the raw affinity scores computed by the LDG algorithm should
be more accurate. Projecting back a graph to its finer graph
is straightforward as this information is already stored in the
coarsening phase and all that needs to be done is simply set the
parts of the finer vertices. In projection, a vertex vℓ

i ∈ Vℓ
k is

decomposed into its constituent vertices and expected to spawn
approximately β new fine vertices, all of which are in Vℓ−1

k .
Choosing a large value for β (bin/part size) leads to a small

number of coarsening and uncoarsening levels in the multilevel
framework. Choosing a small value, on the other hand, may
adversely affect the quality of the solutions produced by the LDG
algorithm since it leads to many random decisions. This is because
the neighbors of a vertex that is about to be assigned to a bin are
likely to be scattered across many bins, which in turn causes the
affinity scores of different bins to be close to each other.

5. Shared memory parallelization

In this section, we explain in detail how the LDG algorithm is
parallelized within the context of multilevel partitioning frame-
work on shared memory systems. We use OpenMP for paralleliza-
tion.

5.1. Multi-threaded LDG algorithm

Simple structure of the LDG algorithm makes it suitable for
parallelization. We divide the vertices of the graph equally among
the threads and make each thread responsible for assigning its
portion of vertices into parts. Despite being simple, the paral-
lelization of the LDG algorithm requires care in order not to
disturb its natural behavior.

In our implementation, partition information is shared among
the threads. This information consists of a weight value ω(Vk) for
each part Vk, and a part array storing the part indices of each
vertex. For a vertex v ∈ Vk we can define part[v] as:

part[v] =
{
k, if v ∈ Vk, for 1 ≤ k ≤ K
NIL, otherwise.

(13)

The entries in the part array are accessed by a single writer
and multiple readers. We do not use any synchronization mech-
anism for this array as the effects of doing so are expected to be
minuscule. On the other hand, the part weight information is ac-
cessed by multiple readers and multiple writers. The correctness
of part weights is important in terms of load balance. Therefore,
we manage accesses to this array.

N. Jafari, O. Selvitopi and C. Aykanat Journal of Parallel and Distributed Computing 147 (2021) 140–151

1
1
1
1
1
1
1

1

2

2
2

v
t
a
6
p
f
I
n
a
T

t
i
a
v
b
a
n
a
v
c

Algorithm 1 Multi-threaded LDG algorithm

Input: G = (V, E), number of parts K , capacity C
Output: Vertex partition (part), part weights (ω(Vk)), vertex

weights (ω(v))
1: for each v ∈ V in parallel do
2: part[v] = NIL
3: for k = 1→ K in parallel do
4: af [k] ← 0 {stores affinity scores}
5: for each u ∈ V in parallel do
6: partset = ∅
7: for each v ∈ Adj(u) do
8: if part[v] = NIL then
9: continue
0: k← part[v]
1: if af [k] = 0 then
2: partset ← partset ∪ {k} {neighbors of u}
3: af [k] ← af [k] + ω(u, v)
4: kmax ← 0
5: αmax ← 0
6: for each k ∈ partset do
7: α← af [k] · (1− ω(Vk)

C)
18: if α > αmax then
19: kmax ← k
20: αmax ← α

21: af [k] ← 0
22: while kmax = 0 do
23: kξ ← rand(1, K)
4: if ω(Vkξ)+ ω(u) ≤ C then

25: kmax ← kξ

6: part[u] ← kmax
7: ω(Vkmax)← ω(Vkmax)+ ω(u) {atomic update}

The multi-threaded LDG algorithm is given in Algorithm 1. A
ertex-centric parallelism is adopted (line 5). In the algorithm,
he neighbors of a vertex u are processed by first computing u’s
ffinity to the parts in which it has at least one neighbor (lines
–12). These parts and their affinities are respectively stored in
artset and af arrays. Then, among these parts the one with a
easible capacity and the highest affinity is selected (lines 15–20).
f u is the first vertex that is being assigned to a part among its
eighbors or none of the parts with at least one neighbor of u has
feasible capacity, we select a random feasible part (lines 21–24).
he update of part weights in line 27 is performed atomically.
Since we do not serialize accesses to the part array, the multi-

hreaded LDG algorithm may occasionally make inferior decisions
n assigning vertices to the parts compared to the sequential
lgorithm. The reason is that since they are in a streaming order,
ertices are divided among threads and adjacent vertices might
e processed by different threads simultaneously. Consider two
djacent vertices u and v (i.e., (u, v) ∈ E) that are processed
ear in time by two threads T1 and T2, respectively. Assume T1
ssigns u to Vk while T2 is still computing the affinity scores for
. T2 may miss the part assignment decision of its neighbor u and
onsequently make a rush decision in assigning v (see Fig. 2).
Although this does not occur in the sequential case, we expect
the effects of this phenomenon not to be severe as the multilevel
framework will probably correct it in further executions of the
LDG algorithm. For this reason, we do not manage concurrent
accesses to the part array, which has very positive practical
implications in terms of parallel efficiency.

5.2. Multi-threaded coarsening

Multi-threaded coarsening algorithm for constructing the
ℓ+1 ℓ ℓ
coarser graph G at level ℓ+1 from the partition Π on G =

144
Fig. 2. Although not frequently expected, multi-threaded LDG algorithm may
make inferior decisions compared to the sequential version.

Algorithm 2 Multi-threaded coarsening

Input: Gℓ
= (Vℓ, Eℓ), number of parts K ℓ, part (Π ℓ), part weights

(ω(Vℓ
k))

Output: Gℓ+1
= (Vℓ+1, Eℓ+1)

1: V ℓ+1
= ∅

2: for each u ∈ Vℓ in parallel do
3: k← part[u]
4: Pk ← Pk ∪ {u} {atomic update}
5: for k = 1→ K ℓ in parallel do
6: ω(vℓ+1

k)← ω(Vℓ
k)

7: Vℓ+1
= Vℓ+1

∪ {vℓ+1
k }

8: for each u ∈ Pk do
9: for each v ∈ Adj(u) do

10: p← part[v]
11: if p ̸= k then
12: Adj(vℓ+1

k)← Adj(vℓ+1
k) ∪ {vℓ+1

p }

13: ω(vℓ+1
k , vℓ+1

p)← ω(vℓ+1
k , vℓ+1

p)+ ω(u, v)

(Vℓ, Eℓ) is given in Algorithm 2. The algorithm first gathers the
vertices in individual parts (lines 2–4) and then processes them
to form the adjacency list structure of the coarser graph (lines
5–13). In order to create the coarse graph, a set corresponding to
the vertices assigned to each part is created with the part array
such that vertex u which is located in part k is added to part set
Pk. The accesses to these part sets are synchronized, as multiple
threads may write to the same set concurrently. In the algorithm,
the vertices u and v denote the vertices in level ℓ.

In parallel implementation of the coarsening, each thread is
held responsible for constructing coarse vertices of the new level
from approximately K ℓ/N number of parts of the previous level,
where N is the number of threads. Each part in level ℓ consists
of approximately β vertices. Vertices assigned to each part are
processed by a single thread. This leads to a somewhat coarse-
grained parallelism, but enables no concurrent accesses to any of
the data structures. In addition, the parts in level ℓ are expected
to have roughly equal number of vertices, which in turn will very
likely lead to a good balance among the threads. A finer level of
parallelism may lead to better load balance, but its synchroniza-
tion overhead due to concurrent updates to the adjacency lists of
the coarse vertices is likely to hinder parallel efficiency.

Since the graphs in our work are undirected and stored in
adjacency list format, each edge is stored twice. Consider two
neighbor vertices u and v in level ℓ, which are respectively
assigned to parts Vℓ

k and Vℓ
p , and to be processed by different

threads in coarsening. In updating the adjacency lists of the
vertices vℓ+1

k and vℓ+1
p corresponding to these parts, the edge

(u, v) will be processed once each of one of the two threads, and
each will update the adjacency list that belongs to it, ensuring no
concurrent writes. Hence, the edge weights of the coarse graph

can be computed seamlessly.

N. Jafari, O. Selvitopi and C. Aykanat Journal of Parallel and Distributed Computing 147 (2021) 140–151

b

5

f
r
c
t

v
a
a
n
v
u
c

6

w
w
i
i
c
f
v
i
l
i

v
p

m

Fig. 3. Streaming multilevel framework adapted to an online context. For each batch, the full multilevel algorithm is executed. The multilevel scheme run for each
atch has the same number of levels.
.3. Multi-threaded uncoarsening

In parallel implementation of the uncoarsening, vertices of the
iner graph are divided among the threads and each thread is held
esponsible for mapping vertices of level ℓ into the parts that their
orresponding coarser vertices in level ℓ+ 1 have been assigned
o.

After projecting back the coarse vertices in parts into finer
ertices, we refine the graph using the LDG algorithm. The par-
llel LDG algorithm run in uncoarsening is the same with the
lgorithm given in Algorithm 1 except the fact that there are
o unprocessed vertices in uncoarsening and each and every
ertex has already been assigned to a part. The refinement in
ncoarsening has the positive effect of correcting poor decisions
arried out by the LDG algorithm in earlier iterations.

. Online streaming multilevel partitioning

The methodology described so far uses a streaming algorithm
ithin the multilevel framework in an offline context. In other
ords, it assumes that the entire graph is available for partition-

ng at once. Although the theme of our work is offline partition-
ng, how the multilevel framework would perform in an online
ontext is also worth of investigating. Obviously, the multilevel
ramework would not make sense if we were to assign a single
ertex at a time. However, if we assume that the vertices arrive
n batches, then utilizing the LDG algorithm within the multi-
evel framework can potentially exploit the intra-neighborhood
nformation in the batch better than the flat LDG algorithm can.

Assume n vertices of G arrive in batches of sizes nb ≪ n. For
each batch, we can run the full multilevel algorithm described
in Section 4 to determine the assignments of the vertices in
the batch. The vertices in a batch are coarsened only among
themselves through bin assignment. On the other hand, while
computing affinities of these vertices to the bins, they also take
into account the vertices that are already assigned in the earlier
batches. In this setting, the capacities of the bins are computed
with respect to batch size instead of the number of vertices
in the entire graph. Hence, the capacities of bins are increased
accordingly whenever a new batch will be processed and then
the multilevel framework is executed. Such a scheme necessitates
maintaining the vertex assignments at each level of the multilevel
scheme. Although this overhead may seem prohibitive, the num-
ber of levels in the multilevel framework is very small since it
is determined by the batch size (nb) and not by the number of
ertices in the entire graph (n). This online streaming multilevel
artitioning scheme is illustrated in Fig. 3.
This batch scheme is likely to benefit less from shared-
emory parallelization described in Section 5 compared to the

145
Table 1
Graphs used in the experiments.
Graph name Vertices Edges Category

ljournal-2008 5 363 260 49 514 271 Social
soc-LiveJournal1 4 847 571 42 851 237 Social
hollywood-2009 1 139 905 56 375 711 Social
Web-notredome 325 729 1 090 108 Web
Web-google 916 428 4 322 051 Web
Eu-2005 862 664 16 138 468 Web
copapersDBLP 540 486 15 245 729 Citation
coAuthorsDBLP 299 067 977 676 Citation
dblp-2010 326 186 807 700 Citation
cit-Patents 3 774 768 16 518 947 Citation
coPapersCiteseer 434 102 16 036 720 Citation
Patents 3 774 768 14 970 766 Citation
hcircuit 105 676 203 734 Circuit
circuit5M 5 558 326 26 983 926 Circuit
Fullchip 2 987 012 11 817 567 Circuit
amazon-2008 735 323 3 523 472 Similarity
Bump_2911 2 911 419 62 409 240 FEM
HV15R 2 017 169 162 357 569 FEM
ML_Laplace 377 002 13 656 485 FEM
Flan_1565 1 564 794 57 920 625 FEM
Dubcova1 16 129 118 440 FEM
WS-1M 1 000 000 10 000 000 Synthetic
WS-5M 5 000 000 55 000 000 Synthetic
WS-10M 10 000 000 110 000 000 Synthetic

offline partitioning described earlier. This is due to the fewer
vertices handled in each batch and fewer levels in the multilevel
framework. In addition, there is no inter-batch parallelism due to
the fact that the batches must be processed sequentially.

7. Experimental results

7.1. Graphs

Our approach is empirically tested on 27 graphs consisting
of real world and synthetic datasets. Real world graphs are col-
lected from SNAP [33] archive. These graphs are chosen from
the following domains: social networks, web graphs, citation
networks, circuit simulation, item similarity and finite element
meshes (FEM). Our dataset also contains three synthetic Watts–
Strogatz [40] graphs. These synthetic graphs are created using
NetworkX [15] package with a rewiring parameter of 0.1. Table 1
summarizes the properties of the tested graphs. All graphs are
made undirected and self loops are removed. The vertices and
edges in all graphs have unit weights.

7.2. Experimental framework

We implemented our framework in C and compiled all the
codes with gcc 4.9.2 in O3 optimization level. In our parallel

N. Jafari, O. Selvitopi and C. Aykanat Journal of Parallel and Distributed Computing 147 (2021) 140–151

i
p
8
k
2
r
n
l
a
t

T
r
r

E

L

H
W

w
L
w
s
o
M
a
o

7

β

S
b
i
i
t
t
a
w
v
d
l
b

Fig. 4. Partitioning time and edge cut for different bin sizes (β).
T

mplementation, we used OpenMP multi-threading library. Ex-
eriments are conducted on a system with four Intel Xeon E7-
860v4 CPUs. Each CPU has 18 cores, clocked at 2.2 GHz, and 32
B L1 cache and 256 kB L2 cache. The system has 72 cores and
56 GB of memory. All reported results are the average of five
uns. The imbalance ratio is set to ϵ = 0.10. It is important to
ote that in all the experiments that we have reported, at each
evel of coarsening phase, a single pass of repartitioning is applied
fter the partitioning stage. This is an effort towards improving
he quality of the partitioning.

In evaluating quality of partitions, two metrics are examined.
he first metric is the fraction of cut edges (EC), which we simply
efer to as edge cut, and the second metric is the load imbalance
atio (LI). These metrics are respectively defined as follows:

C =
cutsize(Π)∑

(vi,vj)∈E
ω(vi, vj)

∗ 100, (14)

I =
Wmax

Wavg
. (15)

ere, Wmax denotes the weight of maximally loaded part and
avg denotes average part weight.
To evaluate the proposed framework, we compared our results

ith the multi-threaded graph partitioner mt-metis and the flat
DG algorithm. The flat LDG algorithm is run many times, so that
e can assess if the multilevel framework benefits from a simple
treaming algorithm. In the following discussions, we refer to
ur framework as SML (Streaming MultiLevel), the mt-metis as
TS, and the flat LDG algorithm as FLL. Before comparing our
pproach with the described schemes, we first examine the effect
f bin size parameter β .

.3. Bin sizes

We briefly discuss the chosen value for the bin size parameter
and its effect on the quality and performance of our algorithm,
ML. Recall that β determines the average number of vertices to
e assigned to each part in each level. A small value for β results
n more levels of partitioning, which is likely to lead to more
mprovements in partition quality because the number of times
he streaming algorithm is run increases with decreasing β . On
he other hand, utilizing a very small β value may also have an
dverse effect on the quality of partitions as the affinity scores
ill not lead to good clusterings in bins containing very few
ertices. A large number of levels causes a high partitioning time
ue to increase in the number of coarsening and uncoarsening
evels. This tradeoff between the quality and partitioning time can
e seen in Fig. 4 for three values of β = 10, β = 20 and β = 40.

β values smaller than 10 can give very volatile results espe-
cially in a multi-threaded environment and values larger than

40 can totally ignore multilevel scheme by reducing number of

146
levels to as low as 1, which would eliminate the coarsening and
uncoarsening phases and partition the graph as the LDG algo-
rithm. Although different β values might fit better for different
graphs, in our experiments we found out that β = 20 produces
a satisfying tradeoff between the metrics of interest. Hence, we
use β = 20 for SML in the rest of this section.

7.4. Experimental evaluation on all graphs

In this section we compare the performance of our scheme
SML against FLL and MTS in terms of LI (Load Imbalance), EC
(edge cut), and runtime (in seconds). All the schemes are ex-
perimented in shared-memory platform using OpenMP and the
number of threads for this experiment is set to 8. In Table 2, we
provide a comprehensive evaluation of these three schemes for
32-way partitioning (i.e., K = 32).

All the experiments for FLL are reported as the average of 10
passes. FLL is usually stuck in local optima after 10 passes and
it does not improve the edge-cut quality for almost all graphs in
our dataset after that value. We report both the actual and the
normalized values in the table. All the actual values reported in
Table 2 are normalized with respect to the results of FLL and the
geometric mean for each category and the overall mean for all
the graphs are also provided.

We categorized the graphs based on their types in our dataset
in Table 2 with their respective geometric means in evaluated
metrics. When we compare all the schemes in terms of edge-cut
quality, MTS expectedly attains the best results, followed by SML,
and the worst in this metric being FLL. When we compare SML
and FLL, in FEM category SML has the best category-wise edge-
cut improvement over FLL with an average value of 51%. It also
leads to significant improvements in categories Web, Citation,
Circuit, Similarity, and Synthetic. Only in the Social category SML
and FLL produce similar quality partitions. These results show
that we can successfully exploit the multilevel framework with a
flexible streaming algorithm to significantly improve the partition
quality and still do that within the bounds of an acceptable
partitioning time.

The reason for SML and FLL to have comparable edge cuts
in Social category is that these types of graphs are known to be
power law graphs with a high average local clustering coefficient
compared to the graphs in other categories, leading to irregular
structure around the individual nodes. This impacts the effective-
ness of the multilevel partitioning framework [25]. In fact MTS,
being a successful offline multilevel graph partitioner, leads to
only 17% improvement over FLL. It also has the least category-
wise edge-cut improvement over FLL for the Social category,
which justifies the claim for multilevel approaches.

When we compare the schemes in terms of partitioning time,
SML is on the average 10% faster than FLL in all categories.
his might seem odd at first, but the partitioning time of FLL

N. Jafari, O. Selvitopi and C. Aykanat Journal of Parallel and Distributed Computing 147 (2021) 140–151

e

Table 2
Performance comparison of the proposed streaming multilevel method SML against FLL [35] and MTS [21] for all the graphs in terms of LI (load imbalance), EC (cut
dge ratio %), and runtime in seconds. Normalized values of SML and MTS are calculated with respect to the actual values of FLL based on the respective metrics.
Category Graph Actual values Normalized values (w.r.t. FLL)

EC LI Runtime EC LI Runtime

FLL MTS SML FLL MTS SML FLL MTS SML MTS SML MTS SML MTS SML

Social

soc-LiveJournal1 34.94 27.13 35.69 1.04 1.11 1.07 4.07 21.25 4.33 0.76 0.97 1.07 1.02 5.22 1.06
hollywood-2009 32.47 32.05 32.51 1.05 1.10 1.04 7.31 23.86 3.70 0.78 1.02 1.05 0.99 3.26 0.51
ljournal-2008 35.78 27.08 34.76 1.05 1.18 1.08 1.23 14.69 1.60 0.99 1.00 1.12 1.02 11.94 1.30
mean 34.37 28.66 34.29 1.05 1.13 1.06 3.32 19.53 2.95 0.83 1.00 1.08 1.01 5.88 0.89

Web

web-NotreDame 11.72 2.94 11.01 1.02 1.10 1.05 0.07 0.21 0.09 0.25 0.94 1.08 1.03 3.04 1.28
web-Google 15.80 1.37 9.66 1.00 1.05 1.01 0.24 0.62 0.25 0.09 0.61 1.05 1.01 2.54 1.01
eu-2005 16.66 5.69 14.57 1.06 1.56 1.07 0.47 1.02 0.47 0.34 0.87 1.47 1.00 2.16 1.00
mean 14.56 2.84 11.57 1.03 1.22 1.04 0.20 0.51 0.22 0.20 0.79 1.18 1.01 2.56 1.09

Citation

cit-Patents 37.47 14.85 28.65 1.00 1.08 1.03 0.40 0.99 0.34 0.67 0.88 1.08 1.03 2.51 0.85
coPapersDBLP 22.04 14.73 19.29 1.01 1.05 1.04 0.09 0.26 0.08 0.57 0.88 1.04 1.03 2.95 0.94
coAuthorsDBLP 28.14 16.18 24.82 1.00 1.04 1.03 0.07 0.22 0.07 0.48 0.81 1.04 1.03 3.11 1.02
dblp-2010 22.93 11.12 18.52 1.00 1.07 1.01 2.14 7.26 1.80 0.40 0.76 1.07 1.01 3.39 0.84
coPapersCiteseer 14.24 8.20 11.22 1.02 1.08 1.01 0.36 0.72 0.29 0.58 0.79 1.06 0.99 2.02 0.82
patents 38.95 14.39 29.12 1.00 1.06 1.00 2.07 6.65 1.76 0.37 0.75 1.06 1.00 3.21 0.85
mean 25.81 12.92 20.89 1.01 1.06 1.02 0.39 1.12 0.35 0.50 0.81 1.06 1.01 2.82 0.88

Circuit

hcircuit 23.03 1.34 17.75 1.00 1.13 1.00 0.02 0.05 0.02 0.06 0.77 1.13 1.00 2.29 0.86
circuit5M 34.35 28.13 34.60 1.02 1.07 1.07 2.16 47.94 2.71 0.82 1.01 1.05 1.05 22.16 1.25
Fullchip 52.25 36.41 48.16 1.03 1.58 1.04 1.43 2.04 1.12 0.70 0.92 1.54 1.02 1.43 0.78
mean 34.57 11.11 30.93 1.02 1.24 1.04 0.40 1.67 0.38 0.32 0.89 1.22 1.02 4.17 0.94

Similarity amazon-2008 28.80 9.43 19.01 1.01 1.10 1.02 0.30 0.70 0.23 0.33 0.66 1.09 1.01 2.30 0.76

FEM

Bump_2911 30.68 4.13 11.73 1.00 1.05 1.01 3.08 2.58 2.77 0.13 0.38 1.05 1.00 0.84 0.90
HV15R 26.44 6.65 11.48 1.00 1.08 1.03 4.35 6.33 4.31 0.25 0.43 1.07 1.03 1.45 0.99
ML_Laplace 21.16 4.13 13.44 1.00 1.05 1.02 0.47 2.58 0.34 0.20 0.64 1.05 1.02 5.45 0.71
Flan_1565 21.99 2.81 9.36 1.00 1.04 1.03 1.49 2.08 1.52 0.13 0.43 1.04 1.02 1.39 1.02
Dubcova1 23.29 8.04 14.26 1.00 1.02 1.01 0.01 0.02 0.00 0.35 0.61 1.02 1.00 4.17 0.85
mean 24.48 4.80 11.93 1.00 1.05 1.02 0.56 1.16 0.50 0.20 0.49 1.04 1.01 2.07 0.89

Synthetic

WS-1M 25.50 16.12 18.71 1.00 1.10 1.04 0.55 1.40 0.44 0.63 0.73 1.10 1.04 2.56 0.81
WS-5M 25.37 16.14 19.58 1.00 1.10 1.01 4.34 9.97 3.72 0.64 0.77 1.10 1.01 2.30 0.86
WS-10M 25.36 16.10 19.54 1.00 1.10 1.04 11.46 23.42 10.50 0.63 0.77 1.10 1.04 2.04 0.92
mean 25.41 16.12 19.27 1.00 1.10 1.03 3.01 6.88 2.58 0.63 0.76 1.10 1.03 2.29 0.86
Overall mean 25.61 9.57 19.02 1.01 1.11 1.03 0.65 1.89 0.59 0.37 0.74 1.10 1.02 2.91 0.91
Fig. 5. Edge-cut quality comparison of FLL, SML, and MTS for varying number of parts (K) on different graphs from different categories.
corresponds to 10 passes on the original input graph. On the other
hand, SML utilizes the streaming algorithm probably more than
10 times, but most of them are on the graphs that are smaller
than the original graph. MTS is much more slower on the average
compared to FLL and SML. In FEM graphs, MTS is relatively faster
compared to the graphs in other categories. Yet in this category
its running time is still 107% and 118% higher than those of
FLL and SML, respectively. On grand average, MTS is 2.91 slower
147
than FLL, while SML and FLL have comparable running times.
In general, using a fast lightweight greedy algorithm (i.e., LDG)
within a multilevel approach we are able to produce relatively
good quality partitions by improving edge cut 26% compared to
FLL while having nearly the same load imbalance ratio as FLL,
with only a 2% of slack. Despite the fact that MTS in general
provides better quality partitions (with a 63% improvement over
FLL on the average and a 36% over SML), its runtime is much

N. Jafari, O. Selvitopi and C. Aykanat Journal of Parallel and Distributed Computing 147 (2021) 140–151

h
2
u
a
r

a

Fig. 6. Running time and speedup plots of FLL, MTS and SML for 32-way partitioning with increasing number of threads on 6 different matrices.
igher than FLL and SML: 191% slower than FLL and nearly
20% slower than SML. This is, however, hardly surprising as MTS
tilizes more sophisticated algorithms in each multilevel phase
nd as a result it has better improvements at the cost of slower
untime.

In Fig. 5, we present the edge-cut percentage of FLL, MTS,
nd SML for K = {4, 8, 16, 32, 64, 128} for 6 graphs, each

from a different category. In all these 6 graphs, SML exhibits
a steady performance that is in between FLL and MTS. In the
synthetic graph WS-10m, SML performs nearly the same as MTS
 p

148
for all values of K . In three irregular graphs, amazon-2008,
web-google and coPapersCiteseer the performance of SML
is roughly in halfway between FLL and MTS, while in the regular
graph Fullchip, SML performs close to FLL.

7.5. Scalability

In this section we compare the running time and scalability
of SML, MTS, and FLL with varying number of threads. Table 3
resents the average runtimes (in seconds) of the compared

N. Jafari, O. Selvitopi and C. Aykanat Journal of Parallel and Distributed Computing 147 (2021) 140–151

T

T
R
f

a

7

u
t
f
b
a
t
d
i
t

w
b
v
m
s
w
m
t

Fig. 7. Edge-cut quality comparison of the multilevel framework utilized within online context for varying batch size on different graphs from different categories.
he annotated values for matrices amazon-2008 and ML_Laplace denote the number of batches.
n
d
a
2
c
a
o
t
f
A
n
p
o
m

8

t
a
u
s
t
t
a
m
O
p
W
t

p
h
f
f
i
w
q

C

g
a
w
A
e

able 3
unning times (in seconds) of FLL, MTS, and SML for different number of threads
or 32-way partitioning. The values are the averages of all graphs.
#threads FLL MTS SML

2 2.22 6.36 1.62
4 1.26 3.99 0.93
6 0.92 3.36 0.70
8 0.75 2.55 0.59
12 0.61 2.31 0.48
18 0.53 2.11 0.41

schemes in all datasets for K = 32. FLL is again fixed to 10
passes. Fig. 6 displays the results of strong scaling experiments
on 6 graph instances in two different forms. Fig. 6a shows the
variation of parallel running time with increasing number of
threads, whereas Fig. 6b displays the speedup.

As seen from Table 3 and Fig. 6, MTS exhibits inferior scalability
compared to FLL and SML. On the other hand, while SML on the
average is faster than FLL, it is slightly less scalable compared
to FLL. The reason is that SML is a multilevel approach with
coarsening and uncoarsening phases, each of which consists of
a number of successive stages and the coarser the graph gets, the
less the parallelism it exhibits. The running time and scalability
of SML are comparable to those of FLL while the running time
nd scalability of MTS are worse than these two schemes.

.6. Assessment of online multilevel framework

We evaluate the performance of multilevel framework when
sed in an online context as described in Section 6. We assess
he edge-cut percentage obtained by partitioning 6 graphs, each
rom different category, for K = {8, 32, 128}, and for 5 different
atch sizes of {213, 214, 215, 216, 217

}. We plot edge-cut percent-
ge against batch size to assess how different batch sizes affect
he quality of the obtained partitions. The three plots for three
ifferent K values are presented in Fig. 7. The annotation points
n the plots for matrices amazon-2008 and ML_Laplace denote
he number of batches for the respective batch size.

As seen in Fig. 7, the edge cut decreases or stays the same
ith increased batch size. This is mainly because the larger the
atch size, the higher the likelihood that the batch will contain
ertices that are in the neighborhood of each other, and hence the
ultilevel framework may exploit those relations in order to get a
maller edge cut. Another reason is that the multilevel framework
ill benefit from larger batch sizes more because otherwise the
ultilevel scheme will approximate to the flat algorithm when

he batch size is small due to the reduced number of levels. As the
149
umber of batches decreases, the online partitioning becomes no
ifferent than the offline partitioning. This is best seen in matrices
mazon-2008 and ML_Laplace in Fig. 7. When the batch size is
17, the number of batches for ML_Laplace is three and its edge
ut gets close to that of offline partitioning. It can be said that
s the number of batches increases, the quality of the partitions
btained by the online multilevel partitioning decreases or stays
he same. This is because the locality in the graph gets more
ragmented across different batches when we have more batches.
s seen in Fig. 7, the edge cut often gradually gets worse as the
umber of batches increases, and then it consolidates at a certain
oint. Note that the vertices in our experiments are randomly
rdered. Using a breadth-first or depth-first order is likely to
ake the threshold where the edge cut consolidates higher.

. Conclusion

We proposed a fast parallel streaming multilevel graph par-
itioning method. Instead of using several different expensive
lgorithms for different stages of the multilevel framework, we
tilized a single lightweight, easy-to-parallelize and flexible
treaming algorithm throughout the partitioning. We parallelized
his algorithm within the multilevel framework and tested it ex-
ensively against the state-of-the-art offline partitioner mt-metis
s well as against flat streaming heuristics to see whether the
ultilevel framework can really exploit such a simple algorithm.
ur results indicate that our approach can attain good quality
artitions for certain classes of graphs much faster than mt-metis.
e also demonstrated how it scales with varying number of

hreads.
As future work, we consider testing other fast streaming graph

artitioning heuristics. This is a promising direction as some
euristics can suit better for certain stages of the multilevel
ramework. In addition, different heuristics can exhibit better per-
ormance for certain types of graphs. The second future direction
s the testing of different vertex visit orders. It is shown in other
orks that various orders can significantly affect the edge-cut
uality.

RediT authorship contribution statement

Nazanin Jafari: Methodology, Software, Validation, Investi-
ation, Resources, Data curation, Writing - original draft, Visu-
lization. Oguz Selvitopi: Conceptualization, Methodology, Soft-
are, Writing - original draft, Writing - review & editing. Cevdet
ykanat: Conceptualization, Methodology, Writing - review &
diting, Supervision, Project administration.

N. Jafari, O. Selvitopi and C. Aykanat Journal of Parallel and Distributed Computing 147 (2021) 140–151

c
t

A

D

R

Declaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgment

This work was supported by the Director, Office of Science, U.S.
epartment of Energy under Contract No. DE-AC02-05CH11231.

eferences

[1] Y. Akhremtsev, P. Sanders, C. Schulz, High-quality shared-memory graph
partitioning, in: M. Aldinucci, L. Padovani, M. Torquati (Eds.), Euro-Par
2018: Parallel Processing, Springer International Publishing, Cham, 2018,
pp. 659–671.

[2] Apache giraph, Apache software foundation, 2019, URL http://giraph.
apache.org.

[3] S.T. Barnard, H.D. Simon, Fast multilevel implementation of recursive spec-
tral bisection for partitioning unstructured problems, Concurrency, Pract.
Exp. 6 (2) (1994) 101–117, http://dx.doi.org/10.1002/cpe.4330060203,
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4330060203 URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4330060203.

[4] C. Battaglino, P. Pienta, R. Vuduc, GraSP: distributed streaming graph parti-
tioning, in: HPGM: High Performance Graph Mining. "1st High Performance
Graph Mining Workshop", 2015, http://dx.doi.org/10.5821/hpgm15.3.

[5] U. Benlic, J. Hao, A multilevel memetic approach for improving graph k-
partitions, IEEE Trans. Evol. Comput. 15 (5) (2011) 624–642, http://dx.doi.
org/10.1109/TEVC.2011.2136346.

[6] T.N. Bui, C. Jones, A heuristic for reducing fill-in in sparse matrix
factorization, in: PPSC, 1993, pp. 445–452.

[7] U. Catalyurek, C. Aykanat, Hypergraph-partitioning-based decomposition
for parallel sparse-matrix vector multiplication, IEEE Trans. Parallel Distrib.
Syst. 10 (1999) 673–693, http://dx.doi.org/10.1109/71.780863, URL http:
//portal.acm.org/citation.cfm?id=311796.311798.

[8] C. Chevalier, F. Pellegrini, PT-scotch: A tool for efficient parallel graph or-
dering, Parallel Comput. 34 (6) (2008) 318–331, http://dx.doi.org/10.1016/
j.parco.2007.12.001, URL http://www.sciencedirect.com/science/article/pii/
S0167819107001342 Parallel Matrix Algorithms and Applications.

[9] P. Ciarlet, F. Lamour, On the validity of a front-oriented approach to
partitioning large sparse graphs with a connectivity constraint, Numer.
Algorithms 12 (1) (1996) 193–214, http://dx.doi.org/10.1007/BF02141748.

[10] R. Diekmann, R. Preis, F. Schlimbach, C. Walshaw, Shape-optimized
mesh partitioning and load balancing for parallel adaptive FEM, Paral-
lel Comput. 26 (12) (2000) 1555–1581, http://dx.doi.org/10.1016/S0167-
8191(00)00043-0, URL http://www.sciencedirect.com/science/article/pii/
S0167819100000430 Graph Partitioning and Parallel Computing.

[11] W.E. Donath, A.J. Hoffman, Algorithms for partitioning of graphs and
computer logic based on eigenvectors of connected matrices, in: IBM
Technical Disclosure Bulletin, Vol. 15.3, 1972, pp. 938–944.

[12] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices
and its application to graph theory, Czechoslovak Math. J. 25 (4) (1975)
619–633, URL http://eudml.org/doc/12900.

[13] H. Firth, P. Missier, Workload-aware streaming graph partitioning, in:
EDBT/ICDT Workshops, 2016.

[14] T. Goehring, Y. Saad, Heuristic Algorithms for Automatic Graph Partitioning,
Tech. Rep., University of Minnesota, 1994.

[15] A. Hagberg, P. Swart, D. S. Chult, Exploring network structure, dynamics,
and function using networkx, 0000.

[16] B. Hendrickson, R. Leland, A multilevel algorithm for partitioning
graphs, in: Proceedings of the 1995 ACM/IEEE Conference on
Supercomputing (CDROM), in: Supercomputing ’95, ACM, New
York, NY, USA, 1995, URL http://doi.acm.org/10.1145/224170.224228
doi:http://doi.acm.org/10.1145/224170.224228.

[17] B. Hendrickson, R. Leland, S. Plimpton, An efficient parallel algorithm for
matrix-vector multiplication, Int. J. High Speed Comput. 7 (1995) 73–88.

[18] G. Karypis, V. Kumar, METIS - Unstructured Graph Partitioning and Sparse
Matrix Ordering System, Version 2.0, Tech. Rep., 1995.

[19] G. Karypis, V. Kumar, A fast and high quality multilevel scheme for
partitioning irregular graphs, SIAM J. Sci. Comput. (ISSN: 1064-8275) 20
(1) (1998) 359–392, http://dx.doi.org/10.1137/S1064827595287997, URL
http://dx.doi.org/10.1137/S1064827595287997.
150
[20] B. Kernighan, S. Lin, An efficient heuristic procedure for partitioning graphs,
Bell Syst. Tech. J. 49 (1970) 291–307.

[21] D. Lasalle, G. Karypis, Multi-threaded graph partitioning, in: 2013 IEEE 27th
International Symposium on Parallel and Distributed Processing, 2013, pp.
225–236, http://dx.doi.org/10.1109/IPDPS.2013.50.

[22] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, J.M. Hellerstein,
Distributed graphlab: A framework for machine learning and data mining
in the cloud, Proc. VLDB Endow. 5 (8) (2012) 716–727, http://dx.doi.org/
10.14778/2212351.2212354.

[23] G. Malewicz, M.H. Austern, A.J. Bik, J.C. Dehnert, I. Horn, N. Leiser, G.
Czajkowski, Pregel: A system for large-scale graph processing, in: Proceed-
ings of the 2010 ACM SIGMOD International Conference on Management
of Data, in: SIGMOD ’10, ACM, New York, NY, USA, 2010, pp. 135–
146, http://dx.doi.org/10.1145/1807167.1807184, URL http://doi.acm.org/
10.1145/1807167.1807184.

[24] C. Mayer, R. Mayer, M.A. Tariq, H. Geppert, L. Laich, L. Rieger, K. Rothermel,
ADWISE: Adaptive window-based streaming edge partitioning for high-
speed graph processing, in: 2018 IEEE 38th International Conference on
Distributed Computing Systems (ICDCS), 2018, pp. 685–695, http://dx.doi.
org/10.1109/ICDCS.2018.00072.

[25] J. Nishimura, J. Ugander, Restreaming graph partitioning: Simple ver-
satile algorithms for advanced balancing, in: Proceedings of the 19th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, in: KDD ’13, ACM, New York, NY, USA, 2013, pp. 1106–
1114, http://dx.doi.org/10.1145/2487575.2487696, URL http://doi.acm.org/
10.1145/2487575.2487696.

[26] F.c. Pellegrini, J. Roman, Scotch: A software package for static mapping
by dual recursive bipartitioning of process and architecture graphs, in:
H. Liddell, A. Colbrook, B. Hertzberger, P. Sloot (Eds.), High-Performance
Computing and Networking, in: Lecture Notes in Computer Science, vol.
1067, Springer Berlin Heidelberg, 1996, pp. 493–498, http://dx.doi.org/10.
1007/3-540-61142-8_588.

[27] F. Petroni, L. Querzoni, K. Daudjee, S. Kamali, G. Iacoboni, HDRF:
Stream-based partitioning for power-law graphs, in: Proceedings of the
24th ACM International on Conference on Information and Knowledge
Management, in: CIKM ’15, ACM, New York, NY, USA, 2015, pp. 243–
252, http://dx.doi.org/10.1145/2806416.2806424, URL http://doi.acm.org/
10.1145/2806416.2806424.

[28] A. Pothen, H. Simon, K. Liou, Partitioning sparse matrices with eigenvectors
of graphs, SIAM J. Matrix Anal. Appl. 11 (3) (1990) 430–452, http://dx.doi.
org/10.1137/0611030, arXiv:https://doi.org/10.1137/0611030.

[29] U.N. Raghavan, R. Albert, S. Kumara, Near linear time algorithm to
detect community structures in large-scale networks, Phys. Rev. E 76
(2007) 036106, http://dx.doi.org/10.1103/PhysRevE.76.036106, URL https:
//link.aps.org/doi/10.1103/PhysRevE.76.036106.

[30] H.P. Sajjad, A.H. Payberah, F. Rahimian, V. Vlassov, S. Haridi, Boosting
vertex-cut partitioning for streaming graphs, in: 2016 IEEE International
Congress on Big Data (BigData Congress), 2016, pp. 1–8, http://dx.doi.org/
10.1109/BigDataCongress.2016.10.

[31] P. Sanders, C. Schulz, Engineering multilevel graph partitioning algorithms,
in: C. Demetrescu, M.M. Halldórsson (Eds.), Algorithms – ESA 2011,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 469–480.

[32] K. Schloegel, G. Karypis, V. Kumar, Parallel static and dynamic
multi-constraint graph partitioning, Concurr. Comput.: Pract. Exper.
14 (3) (2002) 219–240, http://dx.doi.org/10.1002/cpe.605, arXiv:https://
onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.605 URL https://onlinelibrary.
wiley.com/doi/abs/10.1002/cpe.605.

[33] SNAP: Stanford network analysis project, 2019, URL http://snap.stanford.
edu/snap/.

[34] A. Soper, C. Walshaw, M. Cross, A combined evolutionary search and
multilevel optimisation approach to graph-partitioning, J. Global Optim. 29
(2) (2004) 225–241, http://dx.doi.org/10.1023/B:JOGO.0000042115.44455.
f3.

[35] I. Stanton, G. Kliot, Streaming graph partitioning for large distributed
graphs, in: Proceedings of the 18th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, in: KDD ’12, ACM, New
York, NY, USA, 2012, pp. 1222–1230, http://dx.doi.org/10.1145/2339530.
2339722, URL http://doi.acm.org/10.1145/2339530.2339722.

[36] C. Tsourakakis, Streaming graph partitioning in the planted partition
model, in: Proceedings of the 2015 ACM on Conference on Online
Social Networks, in: COSN ’15, ACM, New York, NY, USA, 2015, pp. 27–
35, http://dx.doi.org/10.1145/2817946.2817950, URL http://doi.acm.org/10.

1145/2817946.2817950.

http://refhub.elsevier.com/S0743-7315(20)30365-8/sb1
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb1
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb1
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb1
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb1
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb1
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb1
http://giraph.apache.org
http://giraph.apache.org
http://giraph.apache.org
http://dx.doi.org/10.1002/cpe.4330060203
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4330060203
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.4330060203
http://dx.doi.org/10.5821/hpgm15.3
http://dx.doi.org/10.1109/TEVC.2011.2136346
http://dx.doi.org/10.1109/TEVC.2011.2136346
http://dx.doi.org/10.1109/TEVC.2011.2136346
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb6
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb6
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb6
http://dx.doi.org/10.1109/71.780863
http://portal.acm.org/citation.cfm?id=311796.311798
http://portal.acm.org/citation.cfm?id=311796.311798
http://portal.acm.org/citation.cfm?id=311796.311798
http://dx.doi.org/10.1016/j.parco.2007.12.001
http://dx.doi.org/10.1016/j.parco.2007.12.001
http://dx.doi.org/10.1016/j.parco.2007.12.001
http://www.sciencedirect.com/science/article/pii/S0167819107001342
http://www.sciencedirect.com/science/article/pii/S0167819107001342
http://www.sciencedirect.com/science/article/pii/S0167819107001342
http://dx.doi.org/10.1007/BF02141748
http://dx.doi.org/10.1016/S0167-8191(00)00043-0
http://dx.doi.org/10.1016/S0167-8191(00)00043-0
http://dx.doi.org/10.1016/S0167-8191(00)00043-0
http://www.sciencedirect.com/science/article/pii/S0167819100000430
http://www.sciencedirect.com/science/article/pii/S0167819100000430
http://www.sciencedirect.com/science/article/pii/S0167819100000430
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb11
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb11
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb11
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb11
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb11
http://eudml.org/doc/12900
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb13
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb13
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb13
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb14
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb14
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb14
http://doi.acm.org/10.1145/224170.224228
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb17
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb17
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb17
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb18
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb18
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb18
http://dx.doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827595287997
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb20
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb20
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb20
http://dx.doi.org/10.1109/IPDPS.2013.50
http://dx.doi.org/10.14778/2212351.2212354
http://dx.doi.org/10.14778/2212351.2212354
http://dx.doi.org/10.14778/2212351.2212354
http://dx.doi.org/10.1145/1807167.1807184
http://doi.acm.org/10.1145/1807167.1807184
http://doi.acm.org/10.1145/1807167.1807184
http://doi.acm.org/10.1145/1807167.1807184
http://dx.doi.org/10.1109/ICDCS.2018.00072
http://dx.doi.org/10.1109/ICDCS.2018.00072
http://dx.doi.org/10.1109/ICDCS.2018.00072
http://dx.doi.org/10.1145/2487575.2487696
http://doi.acm.org/10.1145/2487575.2487696
http://doi.acm.org/10.1145/2487575.2487696
http://doi.acm.org/10.1145/2487575.2487696
http://dx.doi.org/10.1007/3-540-61142-8_588
http://dx.doi.org/10.1007/3-540-61142-8_588
http://dx.doi.org/10.1007/3-540-61142-8_588
http://dx.doi.org/10.1145/2806416.2806424
http://doi.acm.org/10.1145/2806416.2806424
http://doi.acm.org/10.1145/2806416.2806424
http://doi.acm.org/10.1145/2806416.2806424
http://dx.doi.org/10.1137/0611030
http://dx.doi.org/10.1137/0611030
http://dx.doi.org/10.1137/0611030
http://dx.doi.org/10.1137/0611030
http://dx.doi.org/10.1103/PhysRevE.76.036106
https://link.aps.org/doi/10.1103/PhysRevE.76.036106
https://link.aps.org/doi/10.1103/PhysRevE.76.036106
https://link.aps.org/doi/10.1103/PhysRevE.76.036106
http://dx.doi.org/10.1109/BigDataCongress.2016.10
http://dx.doi.org/10.1109/BigDataCongress.2016.10
http://dx.doi.org/10.1109/BigDataCongress.2016.10
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb31
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb31
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb31
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb31
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb31
http://dx.doi.org/10.1002/cpe.605
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.605
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.605
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.605
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.605
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.605
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.605
http://snap.stanford.edu/snap/
http://snap.stanford.edu/snap/
http://snap.stanford.edu/snap/
http://dx.doi.org/10.1023/B:JOGO.0000042115.44455.f3
http://dx.doi.org/10.1023/B:JOGO.0000042115.44455.f3
http://dx.doi.org/10.1023/B:JOGO.0000042115.44455.f3
http://dx.doi.org/10.1145/2339530.2339722
http://dx.doi.org/10.1145/2339530.2339722
http://dx.doi.org/10.1145/2339530.2339722
http://doi.acm.org/10.1145/2339530.2339722
http://dx.doi.org/10.1145/2817946.2817950
http://doi.acm.org/10.1145/2817946.2817950
http://doi.acm.org/10.1145/2817946.2817950
http://doi.acm.org/10.1145/2817946.2817950

N. Jafari, O. Selvitopi and C. Aykanat Journal of Parallel and Distributed Computing 147 (2021) 140–151
[37] C. Tsourakakis, C. Gkantsidis, B. Radunovic, M. Vojnovic, FENNEL: Stream-
ing graph partitioning for massive scale graphs, in: Proceedings of the 7th
ACM International Conference on Web Search and Data Mining, in: WSDM
’14, ACM, New York, NY, USA, 2014, pp. 333–342, http://dx.doi.org/10.
1145/2556195.2556213, URL http://doi.acm.org/10.1145/2556195.2556213.

[38] C. Walshaw, M. Cross, Mesh partitioning: A multilevel balancing
and refinement algorithm, SIAM J. Sci. Comput. 22 (1) (2000) 63–
80, http://dx.doi.org/10.1137/S1064827598337373, arXiv:https://doi.org/
10.1137/S1064827598337373.

[39] C. Walshaw, M. Cross, in: F. Magoules (Ed.), Mesh Partitioning Tech-
niques and Domain Decomposition Methods, Saxe-Coburg Publications,
Stirling, Scotland, UK, 2007, pp. 27–58, Chapter. JOSTLE: parallel multilevel
graph-partitioning software an overview.

[40] D.J. Watts, S.H. Strogatz, Collective dynamics of ’small-world’ networks,
Nature 393 (6684) (1998) 440–442, http://dx.doi.org/10.1038/30918.

Nazanin Jafari received her master’s degree from
Bilkent University, at the Department of Computer
Engineering. She is currently working towards her Ph.D.
degree in the College of Information and Computer
Science, UMass Amherst, MA, USA. Her research inter-
ests include high-performance computing, information
retrieval and big data analysis.
151
Oguz Selvitopi received his B.S. degree from Marmara
University, Computer Science and Engineering Depart-
ment, Istanbul, Turkey in 2008, and M.S. and Ph.D.
degrees from Bilkent University, Computer Engineering
Department, Ankara, Turkey, in 2010 and 2016, respec-
tively. His research interests are parallel computing,
scientific computing, parallel and distributed systems,
and bioinformatics. He is currently a post-doctoral
fellow in Computational Research Division at Lawrence
Berkeley National Laboratory.

Cevdet Aykanat received the B.S. and M.S. degrees
from Middle East Technical University, Ankara, Turkey,
both in Electrical Engineering, and the Ph.D. degree
from Ohio State University, Columbus, in Electrical
and Computer Engineering. He worked at the Intel
Supercomputer Systems Division, Beaverton, Oregon, as
a research associate. Since 1989, he has been affiliated
with the Department of Computer Engineering, Bilkent
University, Ankara, Turkey, where he is currently a
Professor. His research interests mainly include parallel
computing, parallel scientific computing and its combi-

natorial aspects. He is the recipient of the 1995 Young Investigator Award of The
Scientific and Technological Research Council of Turkey and 2007 Parlar Science
Award. He has served as an associate editor of IEEE Transactions of Parallel and
Distributed Systems between 2008 and 2012.

http://dx.doi.org/10.1145/2556195.2556213
http://dx.doi.org/10.1145/2556195.2556213
http://dx.doi.org/10.1145/2556195.2556213
http://doi.acm.org/10.1145/2556195.2556213
http://dx.doi.org/10.1137/S1064827598337373
http://dx.doi.org/10.1137/S1064827598337373
http://dx.doi.org/10.1137/S1064827598337373
http://dx.doi.org/10.1137/S1064827598337373
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb39
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb39
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb39
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb39
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb39
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb39
http://refhub.elsevier.com/S0743-7315(20)30365-8/sb39
http://dx.doi.org/10.1038/30918

	Fast shared-memory streaming multilevel graph partitioning
	Introduction
	Definitions
	Background and related work
	Multilevel graph partitioning
	Streaming graph partitioning

	Multilevel streaming graph partitioning
	Coarsening with LDG algorithm
	Initial partitioning
	Uncoarsening with LDG algorithm

	Shared memory parallelization
	Multi-threaded LDG algorithm
	Multi-threaded coarsening
	Multi-threaded uncoarsening

	Online streaming multilevel partitioning
	Experimental results
	Graphs
	Experimental framework
	Bin sizes
	Experimental evaluation on all graphs
	Scalability
	Assessment of online multilevel framework

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References

