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ABSTRACT
This paper proposes a projection algorithm which can be employed to bound actuator signals, in terms of
both magnitude and rate, for uncertain systems with redundant actuators. The investigated closed-loop
control system is assumed to contain an adaptive control allocator to distribute the total control input
among actuators. Although conventional control allocationmethods can handle actuator rate andmagni-
tudeconstraints, they cannot consider actuatoruncertainty.On theotherhand, adaptive allocatorsmanage
uncertainty and actuator magnitude limits. The proposed projection algorithm enables adaptive control
allocators to handle both magnitude and rate saturation constraints. A mathematically rigorous analysis is
provided to show that with the help of the proposed projection algorithm, the performance of the adap-
tive control allocator can be guaranteed, in terms of error bounds. Simulation results are presented, where
the Aero-Data Model In Research Environment (ADMIRE) is used to demonstrate the effectiveness of the
proposed method.
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1. Introduction

Actuator constraints such as magnitude and rate limits play
a prominent role in advanced control systems. These limits
induce nonlinear behaviour which may lead to performance
degradation, occurrence of limit cycles, multiple equilibria, and
even instability (Khalil, 2002; Tarbouriech et al., 2011). Actu-
ator rate limits, specifically, introduce phase lags, which act as
time delays, that can lead to persistent undesired oscillations
called Pilot Induced Oscillations (PIO) (Acosta et al., 2015;
Queinnec et al., 2017; Tohidi et al., 2018; Yildiz & Kol-
manovsky, 2011a, 2011b, 2010; Yildiz et al., 2011). These oscilla-
tions generally occur due to an abnormal coupling between the
pilot and the aircraft, instigated by various factors such as high
pilot gains, actuator rate saturation and control mode switch
(McRuer, 1995).

For systems with uncertainties, various adaptive controllers
that account for actuator magnitude limits exist in the liter-
ature (Gruenwald et al., 2019; Karason & Annaswamy, 1993;
Lavretsky & Hovakimyan, 2007a, 2007b). There are also adap-
tive approaches related to the problem of handling actua-
tors that are constrained in both magnitude and rate. In
the paper by Yong and Frazzoli (2014), the approach pre-
sented by Lavretsky and Hovakimyan (2007a) and Lavretsky
and Hovakimyan (2007b) is extended for systems with rate
and magnitude limits. In the method proposed by Leonessa
et al. (2009), the reference inputs, as well as the control sig-
nals, are modified adaptively in order to guarantee the stabil-
ity in the presence of magnitude and rate limits. In a recent
work by Gaudio et al. (2019), plant dynamics is augmented
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with the actuator dynamics, and an adaptive controller is intro-
duced to compensate the effect of actuator magnitude and rate
limits.

With the reduction of actuator costs due to advances
in microprocessors, and with the help of actuator minia-
turisation, the utilisation of redundant actuators have been
growing in recent years. Actuator redundancy can improve
the performance, manoeuverability and the ability to toler-
ate system faults. The process of distributing control sig-
nals among redundant actuators is performed by control allo-
cation. A study on control allocation that considers actua-
tor magnitude constraints is conducted by Durham (1993)
by using direct allocation method. Daisy chain control allo-
cation method, which handles actuator magnitude limit, is
employed by Buffington and Enns (1997). Actuator magni-
tude saturation of an unmanned underwater vehicle is con-
sidered using pseudo-inverse-based control allocation (Mol-
nar et al., 2007). An iterative approach based on the null
space of the control matrix is proposed by Tohidi, Khaki
Sedigh, et al. (2016), which handles actuator magnitude lim-
its. Optimisation-based control allocation is one of the most
common methods of accounting for actuator magnitude and
rate constraints (Härkegård, 2002; Härkegård & Glad, 2005;
Johansen et al., 2008; Petersen & Bodson, 2006; Safa et al., 2019;
Yildiz & Kolmanovsky, 2011a, 2011b). A sequential algorithm
to solve optimisation-based control allocation is proposed by
Naskar et al. (2017). A survey on control allocation methods
can be found in the study conducted by Johansen and Fos-
sen (2013). A recent control allocation study is presented by
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Naderi et al. (2019), wheremodel predictive control is employed
to handle actuator magnitude constraints.

When a system has uncertain dynamics, together with
redundant actuators, it is natural to consider an adaptive con-
trol allocator to achieve the task of distributing the total control
effort among actuators. There exist a few approaches presented
in the literature that addresses the topic of adaptive control allo-
cation. The method proposed by Tjønnås and Johansen (2008)
reduces the difference between virtual and actual control sig-
nals, and guarantees that the control signals ultimately converge
to an optimal set. An adaptive control allocation for a hex-
acopter system is proposed by Falconí and Holzapfel (2016).
A model reference adaptive control allocation structure is
proposed by Tohidi, Yildiz, et al. (2016). This method is
also extended to handle actuator magnitude limits (Tohidi
et al., 2017, 2019, 2020).

Projection algorithm is an appealing approach in robust
adaptive control design. Restricting adaptive parameters while
ensuring the stability of the closed-loop system, simultaneously,
is a prominent benefit of employing this algorithm in adaptive
systems. It is noted that existing projection algorithms (Lavret-
sky &Wise, 2013; Praly et al., 1991) bound adaptive parameters’
magnitudes and thus do not have a straightforward utility to
handle actuator rate limits. In this paper, we propose a projec-
tion algorithm that can be used in adaptive control allocation
implementations, where actuators are both magnitude and rate
limited. Therefore, the contribution of this paper is a projection
algorithm that can handle magnitude and rate-limited redun-
dant actuators for systems with uncertain dynamics, where a
control allocator is utilised in the controller structure. We show
that the existence and uniqueness of the solution of the differen-
tial equation describing the proposed projection algorithm can
be guaranteed. Furthermore, we provide a performance guaran-
tee, in terms of error bounds, for the exploited adaptive control
allocation, which is possible thanks to the proposed projection
algorithm.

To summarise, we propose an answer to this question: ‘How
can we modify the conventional projection algorithm, so that
we can employ it in adaptive control allocation implementa-
tions where actuators are both magnitude and rate saturated?’
To the best of our knowledge, this question is not answered
earlier. It needs to be emphasised that a control allocator is
not a controller and cannot be replaced as a controller. The
duty of the control allocation is distributing the controller
signal, or the total control input, among redundant actua-
tors. The method proposed in this paper is for the systems
where an adaptive control allocator is used in the loop. We
are not proposing a new controller or a new control allocation
method.

This paper is organised as follow. Notations used through-
out the paper and the conventional, element-wise projection
algorithm and its properties are given in Section 2. Section 3
presents the uncertain over-actuated system along with the
adaptive control allocation utilising the conventional projection
algorithm. The proposed modified projection algorithm and its
characteristics are presented in Section 4. The ADMIRE model
is used in Section 5 to illustrate the effectiveness of the pro-
posed methodology in the simulation environment. Finally, a
summary is given in Section 6.

2. Notations and preliminaries

Throughout this work, R is the set of real numbers, R
+ is the

set of positive real numbers, Rm is a column vector withm real
elements and R

m×n is an m × n matrix of real elements. ‖ · ‖
refers to the Euclidean norm for vectors and induced 2-norm
for matrices, and ‖ · ‖F refers to the Frobenius norm. Ir is the
identity matrix of dimension r × r, 0r×n is the zero matrix of
dimension r × n, and tr(·) refers to the trace operation. The
over-dot notation will be used for time derivatives only, i.e.
˙(·) = d(·)/dt.
Consider Y ∈ R

r×m and θv ∈ R
r×m. The element-wise pro-

jection operator Proj(·, ·) : R × R → R is defined as

Proj(θvi,j ,Yi,j) ≡

⎧⎪⎨
⎪⎩
Yi,j − Yi,jfi,j if fi,j > 0 & Yi,j

(
dfi,j
dθvi,j

)
> 0,

Yi,j otherwise,
(1)

where θvi,j and Yi,j refer to the element in the ith row and jth
column of θv and Y, respectively, and where fi,j(·) : R → R is a
convex and continuously differentiable function defined as

fi,j = f (θi,j) = (θvi,j − θmini,j − ζi,j)(θvi,j − θmaxi,j + ζi,j)

(θmaxi,j − θmini,j − ζi,j)ζi,j
, (2)

where ζi,j ∈ R
+ is the projection tolerance of θvi,j such that

ζi,j < 0.5(θmaxi,j − θmini,j), θmaxi,j − ζi,j > 0 and θmini,j + ζi,j <

0. θmaxi,j > 0 and θmini,j < 0 are the upper and lower bounds
of the (i, j)th element of θv. Therefore, the projection opera-
tor Proj(θv,Y) operates on the elements of θv and Y using (1)
and (2).

The following lemmas are useful in proving the main
theorems where projection algorithm is used (Lavretsky
&Wise, 2013; Narendra &Annaswamy, 2012; Praly et al., 1991).

Lemma 2.1: If an adaptive algorithm with adaptive law θ̇vi,j =
Proj(θvi,j ,Yi,j) and initial conditions θvi,j(0) ∈ �i,j = {θvi,j ∈
R | f (θvi,j) ≤ 1}, where f (θvi,j) : R → R is defined as in (2), then
θvi,j ∈ �i,j for ∀ t ≥ 0.

Proof: The proof of Lemma 2.1 can be found in Lavretsky
and Wise (2013). �

Lemma 2.2: Let θ∗
vi,j ∈ [θmini,j + ζi,j, θmaxi,j − ζi,j], and consider

the projection algorithm in (1) with convex function (2), the
following inequality holds:

tr((θTv − θ∗
v
T
)(−Y + Proj(θv,Y))) ≤ 0. (3)

Proof: The proof of Lemma 2.2 can be found in Lavretsky
and Wise (2013). �

3. Problem statement

In this section, firstly, the over-actuated plant with constrained
uncertain actuators is introduced. Then, the adaptive control
allocation utilising the conventional projection algorithm (1),
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which can bound only the magnitude of actuators input sig-
nals, is presented. Finally, the problem statementmotivating the
proposed projection algorithm is given.

Consider the following uncertain over-actuated plant
dynamics:

ẋ = Ax + Bu�u

= Ax + BvB�u

= Ax + Bvvs, (4)

where x ∈ R
n is the state vector, u = [u1, . . . , um]T ∈ R

m is
the magnitude constrained actuator command vector, where
uj ∈ [uminj , umaxj] with umaxj > 0 and uminj < 0. The matrix
A ∈ R

n×n is the known state matrix and Bu = BvB ∈ R
n×m is

the known rank deficient control input matrix which is decom-
posed into the known matrices Bv ∈ R

n×r and B ∈ R
r×m such

that rank(B) = rank(Bv) = r. The actuator loss of effectiveness
ismodelled as a diagonalmatrix� ∈ R

m×m with uncertain pos-
itive elements. The goal of the static control allocation methods
in the absence of uncertainty, where � = Im, is to distribute
the total control effort vs ∈ R

r , produced by a controller, to the
redundant actuators such thatBu = vs. In the presence of uncer-
tainty, the static control allocation methods are not applicable
since the goal of the control allocation becomes

B�u = vs. (5)

One way to achieve (5) is by employing the following control
allocation system proposed by Tohidi, Yildiz, et al. (2016):

ξ̇ = Amξ + B�u − vs, (6a)

ξ̇m = Amξm, (6b)

θ̇v = g(θv,Y(vs, e)), (6c)

u = θTv vs, (6d)

where ξ ∈ R
r is the output of the virtual dynamics, θv ∈ R

r×m

is the adaptive parameter to be updated, ξm ∈ R
r is the output

of the reference model, e = ξ − ξm, (6b) is the reference model
with aHurwitzmatrixAm ∈ R

r×r , (6c) is the adaptive lawwhere
g(·, ·) : R

r×m × R
r×m → R

r×m is a projection algorithm, and u
is the control allocation signal, or the actuator command sig-
nal. It can be shown that (Tohidi, Yildiz, et al., 2016), in the
absence of actuator limits, e converges to zero and thus the con-
trol allocation goal (5) is achieved. In the presence of actuator
magnitude limits, e converges to a predetermined compact set
(Tohidi et al., 2019, 2020).

In the presence of actuator magnitude limits, if the control
signal vs is bounded, then (6d) shows that in order to pro-
duce actuator command signals uj, j = 1, . . . ,m, that respect
the actuator saturation bounds, such that uj ∈ [uminj , umaxj],
the elements of the adaptive parameter matrix θv should be
appropriately bounded. It is shown in Tohidi et al. (2019, 2020)
that this could be achieved, together with the stability of the
overall system dynamics, by using the conventional projection
operator (1) as the function g in (6c).

Problem statement: If the actuators in (4) are not only mag-
nitude saturated but also rate saturated, i.e. u̇j ∈ [ūminj , ūmaxj],
j = 1, . . . ,m, how should the projection algorithm (1), which

Figure 1. Closed-loop control system.

is used as the function g in (6c), be modified to handle this
additional condition?

To address the above problem, we need to reconstruct the
conventional projection algorithm (1) such that not only the
magnitude but also the rate of change of the elements of the
matrix θv become bounded. This problem needs to be solved
in such a way that the new projection algorithm must have
useful properties similar to the ones given in Lemma 2.1 and
Lemma 2.2, to ensure the stability of the closed-loop control
system. In the next section, this new projection algorithm is
introduced.

4. Modified projection algorithm

The structure of the overall closed-loop control system con-
sidered in this paper, consisting of the controller, the control
allocator and the plant, is presented in Figure 1.The soft sat-
uration introduced after the controller ensures that the input
of the control allocator, vs, and its derivative, v̇s, are bounded.
From (6c) and (6d), it can be seen that one way to obtain a
bounded actuator command signal u is to restrict both themag-
nitude and the rate of change of the adaptive parameter matrix
θv. This restrictionmust be achieved while ensuring the bound-
edness of all the signals in the closed loop control system. It is
noted that a rate and magnitude bounded total control input
vs does not guarantee a rate and magnitude bounded actuator
input signal vector u, due to the nature of the adaptation in the
control allocator.

The approach proposed in this paper for bounding the adap-
tive parameter matrix θv in terms of both magnitude and rate is
based on projectingYi,j and θvi,j , simultaneously. In thismethod,
apart from the function fi,j introduced in (2), another convex
and continuously differentiable function given as

hi,j = h(Yi,j) = (Yi,j − Ymini,j − εi,j)(Yi,j − Ymaxi,j + εi,j)

(Ymaxi,j − Ymini,j − εi,j)εi,j
(7)

is introduced, where Ymaxi,j > 0 and Ymini,j < 0 are the allow-
able maximum and minimum bounds of Yi,j, respectively, and
εi,j ∈ R

+ is the projection tolerance such that Ymaxi,j − εi,j > 0
and Ymini,j + εi,j < 0.

Using (2) and (7), an element-wise, modified projection
algorithm is proposed as

Projm(θvi,j ,Yi,j)

≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi,j(1 − f̂i,j)(1 − ĥi,j) if fi,j ≥ 0 & Yi,j
dfi,j
dθvi,j

≥ 0

& hi,j ≥ 0,

Yi,j(1 − f̂i,j) if fi,j > 0 & Yi,j
dfi,j
dθvi,j

> 0,

Yi,j(1 − ĥi,j) if hi,j > 0,
Yi,j otherwise,

(8)
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where f̂i,j = min{1, fi,j} and ĥi,j = min{1, hi,j}.
Using this projection algorithm, the adaptive law is given

as θ̇vi,j = Projm(θvi,j ,Yi,j). In the proposed projection algorithm
defined in (8), when θvi,j reaches its boundary value (θmaxi,j or
θmini,j), fi,j reaches 1, and from the first and second conditions
of (8), Projm(θvi,j ,Yi,j) reaches zero.WhenYi,j reaches its bound-
ary value (Ymaxi,j or Ymini,j), hi,j reaches 1, and from the first and
third conditions of (8), Projm(θvi,j ,Yi,j) reaches zero. In addi-
tion, since fi,j and hi,j cannot exceed one, the magnitude and
rate of θvi,j are both bounded. A formal proof is given below,
in Lemma 4.1. It is noted that it is not necessary to take the time
derivative of any signal to implement the proposed projection
algorithm.

Lemma 4.1: Given the adaptive law θ̇vi,j = Projm(θvi,j ,Yi,j),
where the projection operator is given in (8), together with convex
and continuously differentiable functions (2) and (7), if the initial
conditions are defined as θvi,j(0) ∈ �i,j = {θvi,j ∈ R | f (θvi,j) ≤ 1}
and Yi,j(0) ∈ �̄i,j = {Yi,j ∈ R | h(Yi,j) ≤ 1}, then θvi,j(t) ∈ �i,j

and Yi,j(t) ∈ �̄i,j for all t ≥ 0.

Proof: Taking the time derivative of the convex function f (θvi,j)
along the dynamics of θvi,j , we have

dfi,j
dt

= dfi,j
dθvi,j

dθvi,j
dt

= dfi,j
dθvi,j

Projm(θvi,j ,Yi,j)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dfi,j
dθvi,j

Yi,j(1 − f̂i,j)(1 − ĥi,j) if fi,j ≥ 0 & Yi,j
dfi,j
dθvi,j

≥ 0

& hi,j ≥ 0,
dfi,j
dθvi,j

Yi,j(1 − f̂i,j) if fi,j > 0 & Yi,j
dfi,j
dθvi,j

> 0,

dfi,j
dθvi,j

Yi,j(1 − ĥi,j) if hi,j > 0,

dfi,j
dθvi,j

Yi,j otherwise,

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dfi,j
dt

= 0 if fi,j = 1 & Yi,j
dfi,j
dθvi,j

≥ 0 & hi,j = 1,

dfi,j
dt

= 0 if 0 ≤ fi,j < 1 & Yi,j
dfi,j
dθvi,j

≥ 0 & hi,j = 1,

dfi,j
dt

= 0 if fi,j = 1 & Yi,j
dfi,j
dθvi,j

≥ 0 & 0 ≤ hi,j < 1,

dfi,j
dt

> 0 if 0 ≤ fi,j < 1 & Yi,j
dfi,j
dθvi,j

≥ 0

& 0 ≤ hi,j < 1,
dfi,j
dt

= 0 if fi,j = 1 & Yi,j
dfi,j
dθvi,j

> 0,

dfi,j
dt

> 0 if 0 < fi,j < 1 & Yi,j
dfi,j
dθvi,j

> 0,

dfi,j
dt

= 0 if hi,j = 1.

(9)

Also, when f̂i,j = 1, dfi,j
dt = dfi,j

dθvi,j
Projm(θvi,j ,Yi,j) ≤ 0. Therefore,

if θvi,j(0) ∈ �i,j, θvi,j(t) ∈ �i,j for all t ≥ 0. The same procedure

can be followed for dhi,j
dt = dhi,j

dYi,j
dYi,j
dθvi,j

Projm(θvi,j ,Yi,j) to prove that

if Yi,j(0) ∈ �̄i,j, then Yi,j(t) ∈ �̄i,j for all t ≥ 0. �

Below, in Lemma 4.2, a property of the proposed projection
algorithm,which is analogous to Lemma 2.2, is given, whichwill
be useful later in the stability investigation.

Lemma 4.2: Let θ∗
vi,j ∈ [θmini,j + ζi,j θmaxi,j − ζi,j], Yi,j(0) ∈ �̄i,j

= {Yi,j ∈ R | h(Yi,j) ≤ 1}, and consider the projection algorithm
(8) with convex functions (2) and (7). The inequality

tr((θTv − θ∗
v
T
)(−Y + Projm(θv,Y))) ≤ ‖θ̃max‖F‖YMAX‖F

(10)
holds, where θ̃max and YMAX are thematrices whose elements con-
stitute the upper bounds of the absolute values of the elements of
θ̃ and Y, respectively.

Proof: If fi,j ≥ 0, Yi,j(dfi,j/dθvi,j) ≥ 0 and hi,j ≥ 0 (first condi-
tion), then

tr
(
(θTv − θ∗

v
T
)
(− Y + Projm(θv,Y)

))
=

m∑
j=1

r∑
i=1

(θvi,j − θ∗
vi,j)
(− Yi,j + Projm(θvi,j ,Yi,j)

)

=
m∑
j=1

r∑
i=1

(θvi,j − θ∗
vi,j)
(− Yi,j + Yi,j(1 − f̂i,j)(1 − ĥi,j)

)

=
m∑
j=1

r∑
i=1

(θvi,j − θ∗
vi,j)
(− Yi,jf̂i,j − Yi,jĥi,j + Yi,jf̂i,jĥi,j)

)
(11)

0 ≤ ĥi,j ≤ 1 and 0 ≤ f̂i,j ≤ 1, therefore |Yi,jf̂i,j| ≥ |Yi,jf̂i,jĥi,j| and
|Yi,jĥi,j| ≥ |Yi,jf̂i,jĥi,j|. Hence,

m∑
j=1

r∑
i=1

(θvi,j − θ∗
vi,j)
(− Yi,jf̂i,j − Yi,jĥi,j + Yi,jf̂i,jĥi,j)

)

≤
m∑
j=1

r∑
i=1

(θ∗
vi,j − θvi,j)Yi,jf̂i,jĥi,j︸ ︷︷ ︸

<0

< 0. (12)

If hi,j > 0 (third condition), then

tr
(
(θTv − θ∗

v
T
)
(− Y + Projm(θv,Y)

))
=

m∑
j=1

r∑
i=1

(θvi,j − θ∗
vi,j)
(− Yi,j + Projm(θvi,j ,Yi,j)

)

=
m∑
j=1

r∑
i=1

(θvi,j − θ∗
vi,j)
(− Yi,j + Yi,j(1 − ĥi,j)

)

≤
m∑
j=1

r∑
i=1

|θ∗
vi,j − θvi,j |YMAXi,j

= tr(|θ̃Tv |YMAX) ≤ ‖θ̃max‖F‖YMAX‖F . (13)
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Figure 2. The decomposed set of feasible (Yi,j , θvi,j ).

The same procedure used in the proof of Lemma 2.2 can be
employed to complete the proof for the second and fourth
conditions. �

Discontinuity in the projection algorithm is not desir-
able and may cause numerical problems. In the following
lemma, we prove that the proposed projection algorithm is
continuous.

Lemma 4.3: For continuous θvi,j and Yi,j, the function Projm
(θvi,j ,Yi,j) : Sθ × SY → R, where Sθ , SY ⊂ R, is continuous.

Proof: Wefirst decompose the set of feasible (Yi,j, θvi,j), denoted
as S = Sθ × SY ⊂ R

2, into the following subsets:

S1 =
⋃

η=1,2
S1,η =

{
(Yi,j, θvi,j) | fi,j > 0,Yi,j

dfi,j
dθvi,j

> 0

}
,

S2 =
⋃

η=1,2
S2,η = {(Yi,j, θvi,j) | hi,j > 0},

S3 =
⋃

η=1,2,3,4
S3,η =

{
(Yi,j, θvi,j) | fi,j, hi,j ≥ 0,Yi,j

dfi,j
dθvi,j

≥ 0

}
,

S0 = S
∖⎛
⎝ ⋃

η=1,2,3
Sη

⎞
⎠ ,

(14)
which are illustrated in Figure 2. Since Yi,j, θvi,j , fi,j and hi,j are
continuous functions, the proposed projection operator (8) is
continuous in each subspace of S. Here, we will prove that the
proposed projection is continuous also on the boundaries of
these subsets.

Consider the boundary between S0 and S2,1 (see Figure 2).
Let the point (θ0,Ymaxi,j − εi,j) ∈ S0 be an arbitrary point on
the boundary. Notice that since S0 is a closed set, the points on
the boundary of S0 and S2,1 belong to S0. Therefore, in order to
show that the proposed projection algorithm is continuous on

the boundary of S0 and S2,1, we should show that

lim
(θvi,j ,Yi,j)→(θ0,Ymaxi,j−εi,j)

Projm(θvi,j ,Yi,j) = Projm(θ0,Ymaxi,j − εi,j)

= Ymaxi,j − εi,j (15)

in both sets, S0 and S2,1.
First, consider taking the limit in the set S2. For any

given γ > 0, there exists δ1 = min{√2εi,j,
√
2εi,jγ

εi,j+Ymaxi,j
} such that

for Yi,j ∈ (Ymaxi,j − εi,j,Ymaxi,j − εi,j + δ1√
2
) and θvi,j ∈ (θ0 −

δ1
2
√
2
, θ0 + δ1

2
√
2
), 0 <

√
(θi,j − θ0)2 + (Yi,j − Ymaxi,j + εi,j)2

≤ δ1. Then using |Yi,j − Ymaxi,j + εi,j| < δ1√
2
we have

|Projm(θvi,j ,Yi,j) − Ymaxi,j + εi,j| = |Yi,j(1 − ĥi,j) − Ymaxi,j + εi,j|
≤ |Yi,j − Ymaxi,j + εi,j| + |Yi,jĥi,j|

<
δ1√
2

+
∣∣∣∣∣Yi,j(Yi,j − Ymini,j − εi,j)(Yi,j − Ymaxi,j + εi,j)

(Ymaxi,j − Ymini,j − εi,j)εi,j

∣∣∣∣∣ .
(16)

Considering Yi,j ∈ (Ymaxi,j − εi,j,Ymaxi,j − εi,j + δ1√
2
), an upper

bound on (16) can be calculated as

|Projm(θvi,j ,Yi,j) − Ymaxi,j + εi,j|

<
δ1√
2

+
∣∣∣∣
(
Ymaxi,j − εi,j + δ1√

2

)

×
(
Ymaxi,j − Ymini,j − 2εi,j + δ1√

2

) (
δ1√
2

)
(Ymaxi,j − Ymini,j − εi,j)εi,j

∣∣∣∣∣∣ . (17)

If
√
2εi,j ≤

√
2εi,jγ

εi,j+Ymaxi,j
, then γ ≥ εi,j + Ymaxi,j , and δ1 = √

2εi,j.

Substituting
√
2εi,j for δ1 in (17) leads to

|Projm(θvi,j ,Yi,j) − Ymaxi,j + εi,j| < εi,j + Ymaxi,j ≤ γ . (18)

On the other hand, if
√
2εi,j >

√
2εi,jγ

εi,j+Ymaxi,j
, then γ < εi,j + Ymaxi,j ,

and δ1 =
√
2εi,jγ

εi,j+Ymaxi,j
. Substituting

√
2εi,jγ

εi,j+Ymaxi,j
in (17) leads to

|Projm(θvi,j ,Yi,j) − Ymaxi,j + εi,j| <
εi,jγ

εi,j + Ymaxi,j

+
∣∣∣∣∣
(
Ymaxi,j − εi,j +

εi,jγ

εi,j + Ymaxi,j

)

×

(
Ymaxi,j − Ymini,j − 2εi,j + εi,jγ

εi,j+Ymaxi,j

)(
εi,jγ

εi,j+Ymaxi,j

)
(Ymaxi,j − Ymini,j − εi,j)εi,j

∣∣∣∣∣∣∣∣ .
(19)

Since Ymaxi,j − εi,j > 0 and Ymini,j + εi,j < 0, we have Ymaxi,j −
Ymini,j − 2εi,j > 0. Using these inequalities, and the fact that
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γ < εi,j + Ymaxi,j , (19) can be rewritten as

|Projm(θvi,j ,Yi,j) − Ymaxi,j + εi,j| <
(εi,j + Ymaxi,j)γ

εi,j + Ymaxi,j
= γ .

(20)
Therefore, lim(θvi,j ,Yi,j)→(θ0,Ymaxi,j−εi,j) Projm(θvi,j ,Yi,j) = Ymaxi,j −
εi,j in set S2,1.

Let us now consider the same limit operation in S0. Again, for

any γ > 0, there exist a δ1 = min{√2εi,j,
√
2εi,jγ

εi,j+Ymaxi,j
} such that

for Yi,j ∈ (Ymaxi,j − εi,j − δ1√
2
,Ymaxi,j − εi,j) and θvi,j ∈ (θ0 −

δ1
2
√
2
, θ0 + δ1

2
√
2
), 0 <

√
(θi,j − θ0)2 + (Yi,j − Ymaxi,j + εi,j)2 ≤ δ1.

Then using |Yi,j − Ymaxi,j + εi,j| < δ1√
2
we have

|Projm(θvi,j ,Yi,j) − Ymaxi,j + εi,j| = |Yi,j − Ymaxi,j + εi,j|

<
δ1√
2

≤ εi,j

εi,j + Ymaxi,j
γ < γ .

(21)

This shows that lim(θvi,j ,Yi,j)→(θ0,Ymaxi,j−εi,j) Projm(θvi,j ,Yi,j) =
Ymaxi,j − εi,j in S0. Therefore, Projm(θvi,j ,Yi,j) is continuous on
the boundary of S0 and S2,1.

Consider now the boundary between S1,1 and S3,1 (see
Figure 2). Let the point (θ1,Ymaxi,j − εi,j) be an arbitrary point
on the boundary of S1,1 and S3,1. Notice that since S3,1 is a closed
set, the points on the boundary of S1 and S3 belong to S3. We
should show that the limit of Projm(θvi,j ,Yi,j) when (θvi,j ,Yi,j)
approaches (θ1,Ymaxi,j − εi,j) in S3,1 leads to the same value
as (θvi,j ,Yi,j) approaches to (θ1,Ymaxi,j − εi,j) in S1,1, and this
value is equal to Projm(θ1,Ymaxi,j − εi,j) = (Ymaxi,j − εi,j)(1 −
ĥ(Ymaxi,j − εi,j))(1 − f̂ (θ1)) = (Ymaxi,j − εi,j)(1 − f̂ (θ1)).

First, consider the limit in S3,1. For any γ > 0, there exists
δ2 = min{√2εi,j,

√
2γX−1}, where

X = 1 + f̂ (θ1) +
(
2θ1 − θmaxi,j − θmini,j + εi,j/2
2(θmaxi,j − θmini,j − ζi,j)ζi,j

)
Ymaxi,j ,

such that for Yi,j ∈ (Ymaxi,j − εi,j,Ymaxi,j − εi,j + δ2√
2
) and θvi,j ∈

(θ1 − δ2
2
√
2
, θ1 + δ2

2
√
2
), 0<

√
(θi,j − θ0)2+(Yi,j − Ymaxi,j + εi,j)2

≤ δ2. Then, we have

|Projm(θvi,j ,Yi,j) − (Ymaxi,j − εi,j)(1 − f̂ (θ1))|
= |Yi,j(1 − f̂i,j)(1 − ĥi,j) − (Ymaxi,j − εi,j)

× (1 − f̂ (θ1))|

≤
∣∣∣∣Yi,j

(
1 − f̂

(
θ1 − δ2

2
√
2

))

−(Ymaxi,j − εi,j)

(
1 − f̂

(
θ1 + δ2

2
√
2

))∣∣∣∣
≤ |Yi,j − Ymaxi,j + εi,j|

+
∣∣∣∣Yi,jf̂

(
θ1 − δ2

2
√
2

)
− (Ymaxi,j − εi,j)f̂

(
θ1 + δ2

2
√
2

)∣∣∣∣

<
δ2√
2

+
∣∣∣∣
(
Ymaxi,j − εi,j + δ2√

2

)
f̂
(

θ1 − δ2

2
√
2

)
− (Ymaxi,j

−εi,j)f̂
(

θ1 + δ2

2
√
2

)∣∣∣∣ . (22)

It can be shown that

f̂
(

θ1 − δ2

2
√
2

)

= f̂ (θ1) − δ2√
2

⎛
⎝2θ1 − θmaxi,j − θmini,j + δ2

2
√
2

2(θmaxi,j − θmini,j − ζi,j)ζi,j

⎞
⎠

and

f̂
(

θ1 + δ2

2
√
2

)

= f̂ (θ1) + δ2√
2

⎛
⎝2θ1 − θmaxi,j − θmini,j + δ2

2
√
2

2(θmaxi,j − θmini,j − ζi,j)ζi,j

⎞
⎠ .

Therefore, an upper bound on (22) can be obtained as

|Projm(θvi,j ,Yi,j) − (Ymaxi,j − εi,j)

× (1 − ĥ(Ymaxi,j − εi,j))(1 − f̂ (θ1))|

<
δ2√
2

+ δ2√
2
f̂ (θ1) + δ2√

2

⎛
⎝2θ1 − θmaxi,j − θmini,j + δ2

2
√
2

2(θmaxi,j − θmini,j − ζi,j)ζi,j

⎞
⎠

×
(
Ymaxi,j − εi,j + δ2√

2

)
. (23)

Using the definition of δ2, and the fact that θmaxi,j − ζi,j > 0 and
θmini,j + ζi,j < 0, an upper bound on (23) can be obtained as

|Projm(θvi,j ,Yi,j) − (Ymaxi,j − εi,j)(1 − ĥ(Ymaxi,j − εi,j))(1 − f̂ (θ1))|

<
δ2√
2

((
1 + f̂ (θ1) +

(
2θ1 − θmaxi,j − θmini,j + εi,j

2
2(θmaxi,j − θmini,j − ζi,j)ζi,j

)
Ymaxi,j

)
≤γ .

(24)

This shows that lim(θvi,j ,Yi,j)→(θ1,Ymaxi,j−εi,j) Projm(θvi,j ,Yi,j) =
(Ymaxi,j − εi,j)(1 − f̂ (θ1)), in set S3,1.

Now, consider taking the same limit in S1,1. For Yi,j ∈
(Ymaxi,j − εi,j − δ2√

2
,Ymaxi,j − εi,j) and θvi,j ∈ (θ1 − δ2

2
√
2
, θ1

+ δ2
2
√
2
), 0 <

√
(θi,j − θ0)2 + (Yi,j − Ymaxi,j + εi,j)2 ≤ δ2. Then,

we have

|Projm(θvi,j ,Yi,j) − (Ymaxi,j − εi,j)

× (1 − ĥ(Ymaxi,j − εi,j))(1 − f̂ (θ1))|
= |Yi,j(1 − f̂i,j) − (Ymaxi,j − εi,j)(1 − f̂ (θ1))|

≤
∣∣∣∣Yi,j

(
1 − f̂

(
θ1 − δ2

2
√
2

))
− (Ymaxi,j − εi,j)

×
(
1 − f̂

(
θ1 + δ2

2
√
2

))∣∣∣∣ . (25)
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Using the same procedure as (22)–(24), it can be shown that
|Projm(θvi,j ,Yi,j) − (Ymaxi,j − εi,j)(1 − ĥ(Ymaxi,j − εi,j))

(1 − f̂ (θ1))| < γ . Therefore, Projm(θvi,j ,Yi,j) is continuous on
the boundary of S1,1 and S3,1.

Continuity of the proposed projection function on the other
boundaries can be proved following the same procedure as
above. Therefore, Projm(θvi,j ,Yi,j) is continuous on S. �

The final step before presenting the main theorem of this
study is showing that the solution of the differential equation
providing the parameter adaptation law θ̇vi,j = Projm(θvi,j ,Yi,j),
actually exists and is unique. Considering that θvi,j and Yi,j are
piecewise continuous functions of time, it is enough to prove
that Projm(θvi,j ,Yi,j) is locally Lipschitz to show existence and
uniqueness.

Lemma 4.4: The function Projm(θvi,j ,Yi,j) : Sθ × SY → R,
where Sθ , SY ⊂ R, is locally Lipschitz.

Proof: In order to prove that a function g : D ⊂ R
n → R

m is
locally Lipschitz, it must be shown that there exists a positive
constant K such that ‖g(x) − g(y)‖ ≤ K‖x − y‖, for any x, y ∈
D ⊂ R

n. Let a1 ≡ (Y1
i,j, θ

1
vi,j) ∈ S ⊂ R

2 and a0 ≡ (Y0
i,j, θ

0
vi,j) ∈

S ⊂ R
2, where S is given as S = Sθ × SY ⊂ R

2. Furthermore, let
aμ = (Yμ

i,j, θ
μ
vi,j), μ ∈ [0, 1], be any point on the line connecting

a0 and a1, which satisfy

Yμ
i,j = μY1

i,j + (1 − μ)Y0
i,j, (26)

θ
μ
i,j = μθ1vi,j + (1 − μ)θ0vi,j . (27)

The Lipschitz condition needs to be investigated for four differ-
ent cases, which are given below. The subsets of S, defined in (14)
and demonstrated in Figure 2, are used throughout the proof.

Case 1. If for all μ ∈ [0, 1], aμ lies in the set S0, then,
using (8), it can be shown that

|Projm(a1) − Projm(a0)| = |Y1
i,j − Y0

i,j|
≤ |Y1

i,j − Y0
i,j| + |θ1vi,j − θ0vi,j |

≤ k0‖a1 − a0‖, (28)

where k0 is a positive constant. This satisfies the Lipschitz
condition on S0.

Case 2. If for all μ ∈ [0, 1], aμ lies in the set S3,1, then

|Projm(a1) − Projm(a0)| = |Y1
i,j(1 − f̂ 1i,j)(1 − ĥ1i,j)

− Y0
i,j(1 − f̂ 0i,j)(1 − ĥ0i,j)|, (29)

where f̂ �i,j = f̂ (θ�
vi,j) and ĥ�

i,j = ĥ(Y�
i,j) for � = {0, 1}. Using (2)

and (7), it can be shown that there exist positive constants kθ0
and kY0 such that

|f̂ 1i,j − f̂ 0i,j| < kθ0|θ1vi,j − θ0vi,j |, (30)

|ĥ1i,j − ĥ0i,j| < kY0|Y1
i,j − Y0

i,j|. (31)

Using (30) and (31), an upper bound on (29) can be obtained as

|Projm(a1) − Projm(a0)| ≤ kY1|Y1
i,j − Y0

i,j| + kθ1|θ1vi,j − θ0vi,j |
≤ k1‖a1 − a0‖, (32)

where kθ1, kY1 and k1 are positive constants. The same pro-
cedure can be followed for each subsets of S1, S2 and S3, and
therefore the Lipschitz condition is satisfied on each subsets of
S1, S2 and S3.

Case 3. If a0 and a1 are in two neighbouring subsets of S,
then the following analysis can be conducted: Let a1 belong to
S3,1 and a0 to S1,1. Then, the segment [a0, a1] can be divided into
two segments [a1, aμ∗

] ∈ S3,1 and (aμ∗
, a0] ∈ S1,1, where

μ∗ = min μ

s.t. μ ∈ [0, 1] and aμ ∈ S3,1. (33)

Using the mean value theorem in S1,1 \ ∂S1,1, where ∂S1,1
denotes the boundary of S1,1, and using (26) and (27), we obtain
that

|Projm(aμ∗
) − Projm(a0)| ≤ k′

2(|Yμ∗
i,j − Y0

i,j| + |θμ∗
vi,j − θ0vi,j |)

≤ k′′
2(|Y1

i,j − Y0
i,j| + |θ1vi,j − θ0vi,j |),

(34)

where k′
2 and k′′

2 are positive constants. Also, following
the procedure in Case 2, it can be shown that |Projm(a1) −
Projm(aμ∗

)| ≤ k1‖a1 − a0‖. Therefore, using the triangle inequal-
ity, we get

|Projm(a1) − Projm(a0)| ≤ |Projm(a1) − Projm(aμ∗
)|

+ |Projm(aμ∗
) − Projm(a0)|

≤ k2‖a1 − a0‖, (35)

where k2 is a positive constant. The same procedure can be used
for the other two neighbouring subsets.

Case 4. If a0 and a1 are in two non-neighbouring subsets of
S, then the following analysis can be conducted: Let a0 belong to
S1,1 and a1 to S2,1. Then, the segment [a0, a1] can be divided into
three segments [a0, aα∗

) ∈ S1,1, [aα∗
, aβ∗

] ∈ S0, and (aβ∗
, aa1 ] ∈

S2,1, where α∗ and β∗ are defined as

α∗ = min μ

s.t. μ ∈ [0, 1] and aμ ∈ S0, (36)

and

β∗ = max μ

s.t. μ ∈ [0, 1] and aμ ∈ S0. (37)

Then, the same procedure used in Case 3 can be followed to
obtain the Lipschitz condition.

Since the Lipschitz condition is satisfied for any two points
a0, a1 ∈ S, the projection algorithm is locally Lipschitz on S. �

After defining the modified projection algorithm, proving
its properties that will be useful in the stability analysis of
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the closed-loop system, and proving the existence and unique-
ness of the solution of the differential equation describing the
algorithm, we provide the main theorem below, stating that
when the proposed projection algorithm is employed, all the sig-
nals in the adaptive control allocation system, in the presence of
actuator magnitude and rate saturation, remains bounded and
the control allocation error converges to a predetermined closed
set.

Theorem 4.5: Consider the actuator command signal u pro-
duced by the adaptive control allocation (6)with g(θv,Y(vs, e)) =
�Projm(θv,Y(vs, e)), where � is a diagonal positive definite
matrix and the projection operator is defined in (8) with convex
functions (2) and (7). If Y = −vseTPB, where P is the posi-
tive definite symmetric matrix solution of the Lyapunov equation
AT
mP + PAm = −Q with a symmetric positive definite matrix Q,

then θ̃v and e remain bounded and converge to the compact set

E2 =
{

(e, θ̃v) : ‖e‖2 ≤ 2‖θ̃v‖2F‖YMAX‖F
λmin(Q)

, ‖θ̃‖ ≤ θ̃max

}
. (38)

Moreover, the design parameters θmini,j , θmaxi,j , Ymini,j and Ymaxi,j
in (2) and (7) can be chosen such that for vs ∈ �v = {v | − Mi ≤
vi ≤ Mi,−Li ≤ v̇i ≤ Li, i = 1, . . . , r}, where Mi and Li are posi-
tive scalars for i = 1, . . . , r, u remains in �u = {u | uminj ≤ uj ≤
umaxj , ūminj ≤ u̇j ≤ ūmaxj , j = 1, . . . ,m}, where uminj , umaxj ,
ūminj , ūmaxj are actuator magnitude and rate constraints.

Proof: Substituting (6d) into (6a), we obtain that

ξ̇ = Amξ + (B�θTv − I)vs. (39)

It is assumed that there exists an ideal adaptive parameter, θ∗
v ,

such that

B�θ∗T
v = I. (40)

Since B� is a full row rank matrix, this assumption is always
valid. Defining θTv = θ∗T

v + θ̃Tv , where θ̃Tv is the deviation of θTv
from its ideal value, (39) can be rewritten as

ξ̇ = Amξ + B�θ̃Tv vs. (41)

Using (6b) and (41), the error dynamics is obtained as

ė = Ame + B�θ̃Tv vs. (42)

Consider a Lyapunov function candidate

V = eTPe + tr(θ̃Tv �−1θ̃v�). (43)

The derivative ofV along the trajectories of (6) can be calculated
as

V̇ = eT(AT
mP + PAm)e + 2eTPB�θ̃Tv vs + 2 tr(θ̃Tv �−1 ˙̃

θv�)

= −eTQe + 2eTPB�θ̃Tv vs + 2 tr(θ̃Tv �−1 ˙̃
θv�). (44)

Using the property of the trace operation aTb = tr(baT) where
a and b are vectors, (44) can be rewritten as

V̇ = −eTQe + 2 tr(θ̃Tv (vseTPB + �−1 ˙̃
θv)�). (45)

Substituting modified adaptive control law (6c) into (45), the
derivative of the Lyapunov function candidate is obtained as

V̇ = −eTQe + 2 tr(θ̃Tv (vseTPB + Projm(θv,−vseTPB))�).
(46)

By using Lemma 4.2, we get

V̇ ≤ −λmin(Q)‖e‖T + 2‖θ̃v‖2F‖YMAX‖F , (47)

where λmin(·) denotes the minimum eigenvalue. V̇ ≤ 0 for
‖e‖2 ≥ (2‖θ̃v‖2F‖YMAX‖F)/(λmin(Q)). Therefore, for any initial
conditions e(0) and θ̃v(0), if ‖θ̃v(0)‖ ≤ θ̃max, where θ̃max is the
predetermined upper bound for θ̃v, e(t) and θ̃v(t) are bounded
for all t ≥ 0 and their trajectories converge to the following
compact set (Narendra & Annaswamy, 2012):

E2 =
{

(e, θ̃v) : ‖e‖2 ≤ 2‖θ̃v‖2F‖YMAX‖F
λmin(Q)

, ‖θ̃‖ ≤ θ̃max

}
. (48)

Using Lemma 4.1, if the initial conditions are defined
as θvi,j(0) ∈ �i,j = {θvi,j ∈ R | f (θvi,j) ≤ 1} and Yi,j(0) ∈ �̄i,j =
{Yi,j ∈ R | h(Yi,j) ≤ 1}, then θvi,j(t) ∈ �i,j and Yi,j(t) ∈ �̄i,j for
all t ≥ 0. For a bounded vs ∈ �v, suitable values of θmaxi,j ,
θmini,j , Ymaxi,j and Ymini,j can be found to be used in f (θi,j) and
h(Yi,j) that ensureuj ∈ [uminj , umaxj] and u̇j ∈ [ūminj , ūmaxj], j =
1, . . . ,m for all t ≥ 0. �

Remark 4.1: It should be noted that control allocation’s task
is to distribute the total control effort produced by a controller
among redundant actuators. The investigated control allocation
method and the proposed projection algorithm in this paper can
be used with various different types of controllers. In this paper,
a new control method is not proposed.

Remark 4.2: Although the employment of the proposed pro-
jection algorithm is exemplified on an adaptive control alloca-
tion implementation, the proposed method can be extended to
be used for other adaptive systems where the actuators are both
magnitude and rate saturated.

5. Application example

5.1 ADMIREmodel

The Aerodata Model in Research Environment (ADMIRE)
(Härkegård, 2002), which is an over-actuated aircraft model, is
used for the simulations. The linearised model is given as

ẋ = Ax + Buu = Ax + Bvvs,

vs = Bu, Bu = BvB, Bv = [03×2 I3×3]T,

x = [α β p q r]T,

y = [p q r]T,

u = [uc ure ule ur]T,

(49)

where α,β , p, q and r are the angle of attack, sideslip angle,
roll rate, pitch rate and yaw rate, respectively. The vector u
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includes the commanded control surfaces’ deflection. The con-
trol surfaces uc, ure, ule and ur are the canard wings, right
and left elevons and the rudder, respectively. The magni-
tude and rate limits of the commanded control surfaces are
given as uc ∈ [−55, 25] × π

180 (rad), ure, ule, ur ∈ [−30, 30] ×
π
180 (rad) and u̇c, u̇re, u̇le, u̇r ∈ [−40, 40] × π

180 (rad/sec). The
state and control matrices which are provided by

Härkegård (2002), are given as

A=

⎡
⎢⎢⎢⎢⎣

−0.5432 0.0137 0 0.9778 0
0 −0.1179 0.2215 0 −0.9661
0 −10.5123 −0.9967 0 0.6176

2.6221 −0.0030 0 −0.5057 0
0 0.7075 −0.0939 0 −0.2127

⎤
⎥⎥⎥⎥⎦ ,

Figure 3. Case I: Evolution of the states, total control inputs and adaptive parameters in the presence ofmagnitude saturation, using the conventional projectionmethod.
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B =
⎡
⎣ 0 −4.2423 4.2423 1.4871
1.6532 −1.2735 −1.2735 0.0024

0 −0.2805 0.2805 −0.8823

⎤
⎦ . (50)

To introduce the actuator effectiveness uncertainty, we modify
the model (49) as

ẋ = Ax + Bu�u

= Ax + BvB�u

= Ax + Bvvs, (51)

where � ∈ R
4×4 is a diagonal matrix with uncertain positive

elements. Substituting the allocated signal u given by (6d), and
using θTv = θ∗T

v + θ̃Tv , (51) can be rewritten as

ẋ = Ax + BvB�θTv vs = Ax + Bv(I + B�θ̃Tv )vs, (52)

where the total control input (see Figure 1) v ∈ R
r can be

designed using a proper control method. For the simulations
conducted in this paper, we use the controller provided by
Tohidi et al. (2019, 2020).

Figure 4. Case II: Evolution of the states, total control inputs and adaptive parameters in the presence of both magnitude and rate saturation, using the conventional
projectionmethod.
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5.2 Simulation results

The closed-loop control structure depicted in Figure 1 is
used for the simulations. The reference signal is ref =
[pref , qref , rref ]T, where pref , qref and rref are the desired roll,
pitch and yaw rates, respectively. The effectiveness of the actua-
tors are reduced by 30% at t = 6 s.

Three different cases are simulated. Figure 3 shows the evo-
lution of the system states, total control input signals, vi, i =
1, 2, 3, and the adaptive parameters, θv, in the presence of
actuator magnitude saturation and conventional projection
algorithm (1). It is seen that all the signals are bounded and
p, q and r track their references. Also, the total control input
v is realised reasonably well.

Figure 5. Case III: Evolution of the states, total control inputs and adaptive parameters in the presence of bothmagnitudeand rate saturation, using the proposedprojection
algorithm.
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Figure 6. Case I: Evolution of the actuator inputs in the presence ofmagnitude saturation, using the conventional projectionmethod.

Figure 7. Case II: Evolution of the actuator inputs in the presence of bothmagnitude and rate saturation, using the conventional projectionmethod.

In the second case, actuators are both magnitude and rate-
limited and again the conventional projection algorithm is used.
It is shown in Figure 4 that the overall closed-loop system shows
oscillatory behaviour under these conditions.

Finally, in the third case, the proposed projection algorithm
is applied in the presence of bothmagnitude and rate saturation.
Figure 5 demonstrates the resulting stable and oscillation-free
system response.

The effect of the conventional and the proposed pro-
jection algorithms on the actuator input signals are pre-
sented separately, in Figures 6–8, to emphasise the ability of
the latter to limit the signal rates. Figure 6 shows that the

conventional projection algorithm is able to limit the actua-
tor signals within predefined values, when the actuators are
only magnitude limited. When actuators are both magni-
tude and rate limited, the conventional projection algorithm
fails to limit the rate of change of actuator signals. This is
shown in Figure 7, where ule and ur increase faster than
the rate limit. Finally, Figure 8 shows that the proposed
projection algorithm is capable of limiting both the magni-
tude and the rate of actuator signals. This can be deduced
from the observation that the rate of change of the fastest-
growing actuator signal, ule, grows still slower than the rate
limit.
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Figure 8. Case III: Evolution of the actuator inputs in the presence of bothmagnitude and rate saturation, using the proposed projection algorithm.

6. Summary

A modified projection algorithm that is capable of bounding
both the magnitude and rate of change of adaptive parame-
ters is proposed in this paper. This method can be combined
with an adaptive control allocator for the control of uncertain
over-actuated systemswith constrained actuators. The existence
and uniqueness of the solutions of the differential equation
describing the proposed projection algorithm are shown. Fur-
thermore, properties of the modified projection algorithm that
are instrumental for the stability analysis are proven. The per-
formance of the exploited control allocator, in terms of the error
bounds, is also guaranteedwith the help of the presented projec-
tion method. The simulation results with the ADMIRE aircraft
model are provided to demonstrate the efficacy of the proposed
algorithm.
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