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Abstract
This study proposes a method for the static output feedback (SOF) stabilization of discrete time linear time invariant (LTI) systems by using a low num-

ber of sensors. The problem is investigated in two parts. First, the optimal sensor placement is formulated as a quadratic mixed integer problem that

minimizes the required input energy to steer the output to a desired value. Then, the SOF stabilization, which is one of the most fundamental problems

in the control research, is investigated. The SOF gain is calculated as a projected solution of the Hamilton-Jacobi-Bellman (HJB) equation for discrete

time LTI system. The proposed method is compared with several examples from the literature.
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Introduction

Spatially distributed dynamical systems, such as flexible struc-

tures (Halevi and Wagner-Nachshoni, 2006), diffusion

(Garvie, 2007), biological systems (Turing, 1990; Vicsek and

Zafeiris, 2012), are modeled by high dimensional state space

equations in order to capture all essential properties of their

physical character. When considered in the control systems

perspective, this leads to high dimensional controllers that

require a large number of sensors. The optimal sensor place-

ment problem is substantial to improve observability and

controllability of the system (Shaker and Tahavori, 2013). It

changes the location of the zeros of system on the complex

plane which may limit the closed-loop performance. Sensor

locations also affect the cost of control implementation (van

de Wal and de Jager, 2001; Zhang and Morris, 2018). Present

day applications of the control of large scale systems extend

over complex systems like computer networks, power grids

and biological networks (Klickstein et al., 2017; Liu et al.,

2011). Improving the controllability and observability of large

scale systems are important to define better control laws in

terms of performance, robustness and feasibility of the physi-

cal implementation. For this respect, there are quantitative

approaches in the literature based on improving the system

gramians (Belabbas and Chen, 2018; Bender, 1987; Casadei,

2018; Klickstein et al., 2017; Marx et al., 2002; Shaker and

Tahavori, 2013; Summers and Lygeros, 2014; Summers et al.,

2016; van de Wal and de Jager, 2001). On the other hand,

problem can be analyzed by using the structural properties of

dynamical system (Chen et al., 2019; Belabbas, 2016;

Klickstein et al., 2017; Liu et al., 2011; Müller and Schuppert,

2011).
For linear time invariant (LTI) systems, the controllability

and observability matrices and gramians provide quantitative

measures. The observability/controllability condition imposed

by gramians can be improved by an optimal selection of the

sensor/actuator locations. The matrix norms of observability/

controllability gramians are reliable measures to determine

the sensor and actuator locations (Summers and Lygeros,

2014). The input and output matrices must be designed to

maximize the controllability and observability gramians. In

the first part of this paper, for a fixed input matrix B (fixed

actuator configuration) a low dimensional optimal output

matrix C (sensor placement) is investigated. The considered

systems are not supposedly stable. Hence, a discrete time

counterpart of the generalized gramian calculation in Zhou

et al. (1999) is developed. The considered systems are assumed

to be output controllable in the sense that is defined in

Klickstein et al. (2017). The optimal sensor selection is formu-

lated as a norm maximization problem for the ‘‘output con-

trollability gramian’’ matrix. It is also shown that outputs

chosen by this method can be steered to a desired value with a

minimum amount of input energy. It can be said that the
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smaller input energy requirement means the larger influence
of the input on the output (Cxela et al., 2018). The intuition
behind using the sensors chosen in this way is to obtain rela-
tively smaller static output feedback (SOF) gains having a
larger effect on the output of the next time step.

Once the output matrix is determined as above, the second
part of the paper discusses the computation of a stabilizing
SOF gain. For many systems full state variable information
may not be available or it may be costly to place many sen-
sors. If the system is observable, an observer and state feed-
back configuration can be implemented. But, this will lead to
high dimensional controllers for large scale systems.
Stabilization by SOF is preferred because of its simplicity.
However, SOF problem is known to be NP-hard (Toker and
Özbay, 1995) because of the non-convexity of the problem
(Sadabadi and Peaucelle, 2016). In fact, not all plants can be
stabilized by a static output feedback, a necessary condition
for the existence of SOF controller is that the plant satisfies
the parity interlacing property (PIP), so that it is stabilizable
by a stable controller. Moreover, even if the plant satisfies the
PIP, depending on the location of non-minimum phase zeros
and unstable poles, the order of the stabilizing stable control-
ler may have to be high (Smith and Sondergeld, 1986). For
recent work and further references on stable controller design,
see Yücesoy and Özbay (2019).

There is a vast literature on the numerical solution of the
SOF problem for both continuous and discrete time LTI sys-
tems (Bara and Boutayeb, 2005; Gadewadikar and Lewis,
2006; Garcia et al., 2001; Palacios-Quionero, et al., 2012,
2014; Sadabadi and Peaucelle, 2016). In Garcia et al. (2001),
the SOF gain is directly obtained from the system matrices,
which does not allow adding constraint on the robustness and
performance. Several approaches formulate the SOF stabiliza-
tion as a linear matrix inequality (LMI) problem. In Bara and
Boutayeb (2005), the SOF gain is found from the solutions of
two consecutive LMI problems when a proper realization of
the state space model is used. There are methods those obtain
the SOF gain as the solution of a single LMI (Crusius and

Trofino, 1999; Palacios-Quionero et al., 2012, 2014). In these
methods, robustness and performance conditions are formu-
lated by adding extra constraints on the LMIs. For our pro-
posed method, the calculated SOF gain leads to a similar
quadratic cost as the Linear Quadratic Regulator (LQR)
problem with a larger cost function weight on the states. It
can be said that it has similar performance characteristics in
L2-norm measure.

There are iterative approaches using sequential solutions
of the Riccati equations those lack convergence guarantee
(Gadewadikar and Lewis, 2006; Gadewadikar et al., 2007;
Rosinová et al., 2003). This study proposes another iterative
approach based on approximate dynamic programming
(ADP). The SOF gain is calculated as a projected solution of
the well-known Hamilton-Bellman-Jacobi (HJB) iterations
for the discrete time LTI systems (Bertsekas, 1995).
Nevertheless, solutions lack convergence guarantee and are
dependent on the system’s realization similar to the counter-
parts in the literature. Despite the inevitable numerical
intractability of the problem, a necessary condition for the
system matrices can be defined. Promising results are
obtained for the balanced form of example models.

The results are compared with some examples from the lit-

erature (Bara and Boutayeb, 2005; Gadewadikar et al., 2007;
Garcia et al., 2001). A significant improvement in the results

is observed according to the robustness metrics and the spec-
tral radius of the closed loop system matrix. Also, these char-

acteristics can be easily adjusted by changing the cost function
weights. Furthermore, its applicability is demonstrated on a

truncated version of the simply supported flexible beam model
and a large scale biological network (Edelstein-Keshet, 2005;
Hiramoto et al., 2000).

The paper is organized as follows. In Section 1, the prob-

lem is defined formally. In Section 2, optimal sensor place-
ment for unstable systems is investigated. Approximate

solution of the LQR problem is discussed in Section 3. The
proposed method is demonstrated on several examples in

Section 4. Lastly, there are remarks and discussions on the
results in Section 5.

Problem formulation

The systems considered in this study are discrete time linear

time invariant (LTI) systems given by the state space
representation

xt+ 1 =Axt +But ð1Þ

yt =Cxt +Dut, ð2Þ

where x 2 R
n is the state vector, u 2 R

m is the input and

y 2 R
q is the output of system. A,B,C,D are constant matrices

of appropriate dimensions and we assume D= 0. It is also

assumed that the pair (A,B) is stabilizable and (A,C) is detect-
able. The output matrix C is of rank q and is expressed as

C = diag faigr
i= 1

� �
~C, ð3Þ

where the number of rows of ~C is assumed to be r ø q, and it
captures all available sensors sites at various different possible

locations (each sensor corresponds to a row of ~C), and
ai 2 f0, 1g8i= 1, � � � , r (with r � q of them being zero). We
are interested in using a low number of sensors (q of them).

Problem definition: Given the system model (A,B, ~C),
which is not necessarily stable, g . 0, symmetric matrices
Q ø 0 and R . 0, find K and a1, � � � ,ar by solving

min
K,ai

gq+
X‘

t= 0

xT
t Qxt + uT

t Rut

 !

subject to xt+ 1 =Axt +But

ut =Kyt =K diag faigr
i= 1

� �
~Cxt

Xr

i= 1

ai = q 2 f1, � � � , rg,ai 2 f0, 1g:

Direct optimal solution of this problem is difficult. For this

reason we separate it into two optimization problems. First,
ai values are found to construct the output matrix C which is

optimal in terms of minimizing the required input energy to
steer the output to a desired value. Then, a stabilizing SOF
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gain K is calculated for the output matrix C obtained from

the first problem.
Notation used in the paper is standard. In particular, for a

system described in the state space form given by (1) and (2)

we may also use the compact notation

A

C

���� B

D

� �

to represent the same system, as in Zhou et al. (1996).

Sensor selection problem

Controllability gramian of a discrete time LTI system is

defined as

Wc =
X‘

t= 0

AtBBT (AT )t ð4Þ

where the gramian Wc is a symmetric non-negative definite
matrix. Its norm k Wc k is a measure for the required input

energy to steer state vector x from x0 to xt. A larger k Wc k
means that less energy is required and the system has a higher

degree of controllability (Marx et al., 2002; Shaker and
Tahavori, 2013; Summers and Lygeros, 2014; van de Wal and

de Jager, 2001).

The gramians of unstable discrete time LTI systems

Equation (4) is undefined unless A has all eigenvalues inside
the unit circle. However, a discrete time counterpart of the

generalized gramian calculation algorithm for unstable con-
tinuous time LTI systems in Zhou et al. (1999) can be devel-

oped as follows.
Assuming (A,B) is stabilizable and A has no eigenvalues

on the unit circle, transform the unstable system

G(z)=~C(zI�A)�1B into its co-prime factorized form
G(z)=N (z)M(z)�1 where N (z) and M(z) are stable and M(z) is

an inner transfer function (Zhou et al., 1996). The right co-
prime factorization of G(z) in the state space form can be

given by

A+BF

F

~C

������
B~R
�1=2

~R
�1=2

0

2
64

3
75 ,

where ~R= I +BT SB, F = � ~R�1BT SA and S = ST ø 0 is the
stabilizing solution of

S =AT S(I +BBT S)�1A: ð5Þ

The solutions S of (5) also satisfies the discrete time algebraic

Riccati equation (DARE) (Lancaster and Rodman, 1995)

S =AT SA� AT SB(I +BT SB)�1BT SA: ð6Þ

Then, the generalized controllability gramian is a symmetric

matrix Wc ø 0 that satisfies the following Lyapunov equation

(A+BF)Wc(A+BF)T +B~R�1BT =Wc: ð7Þ

Calculating the generalized observability gramian is straight
forward for the dual system (AT ,CT ).

Output controllability

For the system given by (A,B,C), if an input sequence ut can
be found that steers the system output from y0 to a desired yf

in finite time, it can be said that (A,B,C) is output controlla-
ble, (Klickstein et al., 2017). Output controllability can be
defined as a matrix rank condition

If rank(C)= rank C B AB � � � An�1B
� �� �

, ð8Þ

the system is output controllable. Similarly, the output con-
trollability gramian can be defined as (Casadei, 2018;
Klickstein et al., 2017)

Yc =CWcCT , ð9Þ

where Wc is the generalized controllability gramian. The norm
of Yc gives a measure about ease of steering the output of the
system to a desired value if the system is output controllable.

Output controllability condition (8) implies non-singularity of
the output controllability gramian Yc (Klickstein et al., 2017)

(discrete time version can be found in Rugh (1996).

Lemma 1: For the unstable discrete time LTI system defined

by (A,B,C), define

Yc(t)=C
Xt�1

t = 0

(A+BF)t�t�1B(I +BT SB)�1BT

3 (A+BF)T
� �t�t�1

CT ,

where S is given in (6) and F = � (I +BT SB)�1BT SA. Then,
the minimum energy required to steer the output y0 = 0 to a

desired final value ytf
= yf is given by

J =
1

2
yT

f Yc(tf )
�1yf , ð10Þ

where J is also the solution of

min
ut

J =
1

2
xT

tf
Sxtf +

1

2

Xtf�1

t= 0

uT
t ut ð11Þ

s:t: xt+ 1 =Axt +But, yt =Cxt ð12Þ

yf = ytf =Cxtf : ð13Þ

Proof: Proof can be found in the Appendix.
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Remark 1: Note that

Yc(t)=C
Xt�1

t = 0

(A+BF)t�t�1B(I +BT SB)�1BT

3 (A+BF)T
� �t�t�1

CT

=C
Xt�1

t = 0

(A+BF)tB(I +BT SB)�1BT

3 (A+BF)T
� �t

CT

=CWc(t)C
T ,

where Wc(t) is the generalized controllability gramian in (7)
and Wc(t)! Wc as t! ‘.

Now, formulate the problem as maximizing the Frobenius

norm of Yc with respect to ai of (3) by writing it as a quadratic

problem
Define a : = ½a1, � � � ,ar�T ,

max
a

aT Ha, ð14Þ

s:t
Xr

i= 1

ai = q, ð15Þ

given q 2 f1, � � � , rg,ai 2 f0, 1g, ð16Þ

where the elements of Hij is the magnitude square of the ele-

ments of Yc. This problem can be solved by mixed integer

programming tools. In this study, solutions are obtained from
SCIP software (Gamrath et al., 2020) by solving for all

q= f1, � � � , rg to find a set of optimal a vectors those fulfill

this directive: Choose q of the outputs which are ‘easier’
(regarding Lemma 1) to be steered to their desired values.

Static output feedback

Now, consider the static output feedback stabilization prob-
lem where the stabilizing input is in the form of ut =Kyt. The

optimization problem associated with this setting is to find a

SOF gain K that places the eigenvalues of the closed-loop sys-
tem matrix Acl =A+BKC inside the unit circle.

The SOF stabilization is known to be an NP-hard prob-

lem, that is, it is difficult to find a computationally efficient

algorithm for its solution in complete generality (Mercado

and Liu, 2001; Nemirovskii, 1993; Polyak and Shcherbakov,
2005; Toker and Özbay, 1995). However, the SOF problem is

considered as an important question in the control theory

and studied in many research papers (Bara and Boutayeb,
2005; Gadewadikar et al., 2007; Garcia et al., 2001; Gu, 1990;

Rosinová et al., 2003; Trofino-Neto and Kučera, 1993).

Furthermore, many control problems can be reduced to a
SOF stabilization problem by an appropriate augmentation

of the system matrices. There is neither a generally applicable

way of finding a stabilizing K nor determining the existence
of such a K. In the literature, it is investigated from different

aspects. In Fu (2004), SOF is formulated as a pole placement

problem; the author concludes with a result that strengthens

the NP-hardness assertion. Garcia et al. (2001) proposed a
direct solution for the discrete time SOF stabilization by

using the system matrices if the system suits some restrictive

conditions. There are approaches those use LMIs derived

from Lyapunov equation (Bara and Boutayeb, 2005) and

iterative solution of Riccati equations (Gadewadikar et al.,

2007; Rosinová et al., 2003). For a recent survey on the SOF

problem, see Sadabadi and Peaucelle (2016).
In the proposed method, K is found as a projected solution

of the HJB equation for discrete time LTI systems. Solution is
analogous to approximate dynamic programming (ADP)

approach since the policy iteration step is approximated by a

least squares solution (Lagoudakis and Parr, 2003). We note

that balanced form of the system is advantageous to over-

come the convergence issues of the dynamic programming

iterations.
Definition of the finite horizon discrete time LQR problem

starts with a quadratic cost V given by

V = xT
tf

Qxtf
+
Xtf�1

t= 0

xT
t Qxt + uT

t Rut

which must be minimized subject to the system dynamics

xt+ 1 =Axt +But:

Related HJB equation can be written as (Bertsekas, 1995)

Vt = xT
t Qxt + uT

t Rut + xT
t+ 1St+ 1xt+ 1 ð17Þ

= xT
t Qxt + uT

t Rut +(Axt +But)
T St+ 1(Axt +But), ð18Þ

where Vt is the cost at time t which can be minimized by

ut = � (R+BT St+ 1B)�1BT St+ 1Axt =Ftxt. When ut is substi-

tuted into (18)

Vt = xT
t Q+FT

t RFt +(A+BFt)
T St+ 1(A+BFt)

� �
xt ð19Þ

St =Q+FT
t RFt +(A+BFt)

T St+ 1(A+BFt), ð20Þ

is obtained where (20) is the value iteration step. If (A,B) is
stabilizable, R=RT . 0, Q=QT ø 0 and starting from

Stf
=Q, as t! �‘, St converges to a symmetric and non-

negative definite solution St = S that satisfies the discrete time

algebraic Riccati equation (DARE) (Lancaster and Rodman,

1995)

S =Q+FT RF +(A+BF)T S(A+BF),

where

F = � (R+BT SB)�1BT SA, ð21Þ

is a stabilizing state feedback gain.
For the SOF case, feedback gain matrix must be struc-

tured as F =KC. Therefore, a SOF gain K and symmetric
S ø 0 must be found satisfying

S =Q+CT KT RKC +(A+BKC)T S(A+BKC)

for the closed-loop stability. An optimal F in this structure

may not be achievable, but at each iteration of (20) a
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sub-optimal Kt can be found by solving the following least

squares problem

KtC =Ft

Kt =FtC
T (CCT )�1 =FtC

y,

where C is full row rank. Now KtC can be substituted into

(20) instead of Ft. If St converges to a St = S by using the

sub-optimal least squares solution, it can be said that

K = � (R+BT SB)�1BT SACy is a stabilizing SOF gain.

Lemma 2: Given a realization (A,B,C) of an observable and

controllable system and a matrix Q=gCT C, a necessary con-

dition for the existence of a stabilizing SOF gain K that

satisfies

S =Q+CT KT RKC +(A+BKC)T S(A+BKC), ð22Þ

for a symmetric S . 0 is such that the projected
system matrix AP�c must be stable where
P�c = In � CT (CCT )�1C is the orthogonal projection on
null(C) and In is the n-dimensional identity matrix.

Proof: Eigenvalue decomposition of the orthogonal

projection matrix Pc =CT (CCT )�1C is in the form of

Pc =UcLcUT
c , where Uc is unitary and Lc =diag(Ir, 0n�r)

where 0n�r is an (n� r)3 (n� r) matrix of zeros. Use Uc as

a similarity transformation to obtain ~A=U T
c AUc,

~B=UT
c B, ~C =CUc, ~Q=g ~CT ~C and ~S =UT

c SUc where ~C is

now in the form of ~C = ~C1 0
� �

and the corresponding pro-

jection matrix on the null space of C is L�c = In � Lc. Project
~S by multiplying L�c from both sides to obtain

L�c
~SL�c =L�c

~AT ~S~AL�c

~S ø L�c
~AT ~S~AL�c

~S1
~S3

~ST
3

~S2

� �
ø

0 0
~AT

12
~AT

22

� �
~S1

~S3
~ST

3
~S2

� �
0 ~A12

0 ~A22

� �

~S can be decomposed to

~S =
~S1

~S3

~ST
3

~S2

" #

=
Ir 0

~ST
3

~S�1
1 In�r

� � ~S1 0

0 �S2

" #
Ir

~S�1
1

~S3

0 In�r

" #

=UT
p

�SUp,

where ~S1 and �S2 = ~S2 � ~ST
3

~S�1
1

~S3 are positive definite. Then

�S ø UT
p

	 
�1

L�c
~AT UT

p
�SUp

~AL�cU�1
p

~S1 0

0 �S2

" #
ø

0 0

~AT
12 +

~AT
22

~ST
3

~S�1
1

~AT
22

� �

3
~S1 0

0 �S2

" #
0 ~A12 + ~S�1

1
~S3

~A22

0 ~A22

" #
,

leads to

�S2 ø ~AT
22

�S2
~A22

+(~A12 + ~S�1
1

~S3
~A22)

T ~S1(~A12 + ~S�1
1

~S3
~A22)

. ~AT
22

�S2
~A22,

0 . ~AT
22

�S2
~A22 � �S2,

which imposes stability of ~A22 meaning that ~AL�c is stable.

Hence, the proof can be concluded by saying AP�c must be
stable, since the similarity transformation Uc is unitary.

Furthermore, Lemma 2 may be fulfilled for a realization
of the system while being unsatisfied for an other. The conver-
gence of St highly depends on the realization. In the next sec-
tion, simulation results are obtained for the balanced

realization. In the balanced form, states ordered from the
higher observable and controllable to the lower ones. If
C1 2 R

q 3 q in C = C1 C2½ � is non-singular, there is one-to-
one relation between the output yt and the highest observable
and controllable states. It can be said that yt holds a large
amount of information about the system in the balanced

form. Furthermore, it allows to neglect the states which corre-
spond to zero Hankel Singular Values and reduce the system’s
dimension. Hence, using the proposed method for the
balanced system remarkably improves the results.

The SOF gain calculation procedure can be summarized as
follows. Recall from (16) that q is the number of sensors used:

(1) Start from q= 1.
(2) Solve the output controllability gramian maximiza-

tion problem for the given (A,B, ~C) and q.
(3) Solve the SOF problem by using the output matrix

C = diagfag~C found in Step 2 for the balanced reali-
zation of the system.

(4) If St diverges, increase q by one (q q+ 1) and go to
Step 2.

(5) If St converges, exit.

Examples

The proposed method is applied to five different examples.

The results are compared with the ones in the referenced
papers when possible. The solutions are obtained for the
balanced realization of the system. The states corresponding
to zero Hankel Singular Values are neglected in the SOF gain
calculation. The stability condition in Lemma 2 is satisfied
for all the examples considered below.

Example 1

The system matrices and the compared SOF gains are taken
from Garcia et al. (2001) and Bara and Boutayeb (2005) that
are sub-scripted by g and b, respectively
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Ag =

0:5 0 0:2 1:0

0 �0:3 0 0:1

0:01 0:1 �0:5 0

0:1 0 �0:1 �1:0

2
6664

3
7775,

Bg =

1 0

0 1

0 0

�1 0

2
6664

3
7775,Cg =

1 0 0 1

1 0 1 1

� �
,

Ab =

0:7286 0:8840 0:1568 0:3916 0:9398

0:9551 0:3472 0:4164 0:2528 0:8328

0:6564 0:0595 0:0940 0:3544 0:4700

0:7423 0:7184 0:4499 0:7430 0:6299

0:3450 0:9582 0:8692 0:6508 0:0582

2
6666664

3
7777775
,

Bb =

0:5422 0:7869

0:4557 0:6560

0:8631 0

0:8552 0:1312

0:4723 0:4949

2
6666664

3
7777775
,

Cb =
0:0383 0:3279 0:3137 0:4330 0:1845

0:2274 0:8995 0:2517 0:8424 0:5082

� �
:

System matrix Ag and Ab have unstable eigenvalues at

�1:0677 and 2:8034, respectively.
In Garcia et al. (2001), the SOF gain is directly obtained

from the system matrices if the system satisfies some strict

conditions. The author present three different cases: First one

is the case in which both input and outputs are used. In the

second and third cases, second input and second output are

neglected respectively. The results are compared with these

three different cases. The cost function weights are chosen as

Q= 5 3 103CT C and R= I . The compared SOF gain and

spectral radius are denoted by Kg and rg. The results of our

proposed method are denoted by K and r. The SOF gains

and spectral radius r, of the closed-loop system matrix are

given in Table 1. Spectral norm of the closed-loop transfer

function T (z) and sensitivity transfer function S(z),

T (z)=C zI � (A+BKC)ð Þ�1
B

S(z)= I � KC(zI � A)�1B
� ��1

are given in Figures 1 and 2. As shown in these figures, the

SOF gain K leads to better robustness measures in terms of

high frequency noise rejection and sensitivity to low fre-

quency reference inputs at the cost of decreasing robustness

at mid-frequencies. However, T (z) and S(z) can be shaped by

adjusting the cost function weight Q. Additionally, as the

table illustrates, there is a significant improvement in the

spectral radius of the closed loop system.
On the other hand, Bara and Boutayeb (2005) formulates

the problem as an LMI. Their results are obtained by solving

two LMI problems for a particular realization of the system

if it satisfies a condition similar to the one in Lemma 2. For

Bara’s example the results are obtained by choosing R= I

and Q=gCT C for several different g values. They are

compared with the result in Bara and Boutayeb (2005), that is

given by

Kb =
�0:5045 �0:9594

0:4777 �0:4503

� �
, rb = 0:5857:

The SOF gains and spectral radius r, of the closed-loop sys-

tem matrix are given in Table 2. Spectral norm of the closed-

loop transfer function T (z) and sensitivity transfer function

S(z), are given in Figures 3 and 4. The spectral radius exceeds

rb when g = 10 but there is a big improvement in the sensitiv-

ity at low frequencies for all g.

Example 2: Aircraft model

The second example is the continuous time model of the

lateral-directional command augmentation system of an F-16

Table 1. Example 1: The SOF gains and spectral radius of the

closed-loop system matrix for three cases in Garcia et al. (2001).

Case Kg K rg r

1st �0:717 �0:283
�1:588 1:488

� �
�0:818 �0:343
0:509 �0:937

� �
0:793 0:476

2nd �0:325 �0:650½ � �0:632 �0:551½ � 0:590 0:491

3rd �0:856
�0:856

� �
�1:184
�0:348

� �
0:646 0:479
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Figure 1. Example 1: Maximum singular value of the closed-loop

transfer function T(z) compared with Garcia et al. (2001).
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aircraft linearized around its nominal conditions

(Gadewadikar et al., 2007; Stevens et al., 2016). The continu-

ous time state space realization (Ac,Bc,Cc) are given by

Ac =

�0:3220 0:0640 0:0364 �0:9917 0:003 0:0008 0

0 0 1 0:0037 0 0 0

�30:6492 0 �3:6784 0:6646 �0:7333 0:1315 0

8:5396 0 �0:0254 �0:4764 �0:0319 �0:0620 0

0 0 0 0 �20:2 0 0

0 0 0 0 0 �20:2 0

0 0 0 57:2958 0 0 �1

2
666666666664

3
777777777775

Bc =
0 0 0 0 20:2 0 0

0 0 0 0 0 20:2 0

� �T

,

Cc =

0 0 0 57:2958 0 0 �1

0 0 57:2958 0 0 0 0

57:2958 0 0 0 0 0 0

0 57:2958 0 0 0 0 0

2
6664

3
7775,

xc = b f p r da dr xw½ �,

where xc is the state vector and the states are side-slip angle b,

bank angle f, roll rate p, yaw rate r (see Figure 5). The vari-

ables da and dr come from the aileron and rudder actuator

models. The washout filter state is denoted by xw. They con-

stitute a stable system with the given system matrix Ac. The

model is discretized by zero order hold (ZOH) with the sam-

pling period h= 0:01sec. The discrete time model is

xt+ 1 =Axt +But

yt = ~Cxt

where A= ehAc ,B= ð
Ð h

0
eActdtÞBc and ~C =Cc. The results

are compared with the discrete time version of the method in

Gadewadikar et al. (2007). However, the effect of distur-

bance in their model is neglected.
In the simulations, the cost function weights are chosen as

Q=gCT C and R= I . The proposed method will be denoted

as Method1 and the compared method is Method0. The results

found for different values of g are shown in Table 3. For

small values of g \ 10, the spectral radius of the closed loop

system matrix for both methods are approximately the same.

The spectral radius decreases for Method1 as g is increased.

For the case in which g = 100, Method0 does not converge.
Furthermore, the SOF gain is calculated by using less

than four available outputs after solving the output con-

trollability gramian maximization problem for

q= f1, 2, 3g. The resulting optimal a vectors are given in

Table 4. The most significant output is the bank angle fol-

lowed by the roll rate and yaw rate. Comparison of the

SOF gains and spectral radius of the closed-loop system

matrices are in Table 5. Method1 gives approximately the

same r as Method0 for all cases, but it has a big advantage

as the peak sensitivity is significantly smaller.

Example 3: Aircraft model with actuator failure

In the continuous time model, the rudder actuator is mod-

eled as Ar(s)= 20:2=(20:2+ s). In this example, the rudder

actuator is assumed to have failed and its model is replaced

by SrðsÞ= 1=ðs+ eÞ to approximate a stuck actuator inte-

grating (we take e= � 0:001 to avoid imaginary axis poles in

the system). Stabilization by using a minimum number of out-

puts is investigated for this unstable aircraft model.
The output controllability gramian maximization problem

is solved for different q (see Table 6). When a rudder failure

occurs, sensing the side-slip angle is now preferred to the roll

rate. The proposed method can find a stabilizing gain for all

q values. Results are given in Table 7. Method0 fails to find a

stabilizing solution for this unstable aircraft model.

Example 4: Simply supported beam

The example is taken from Hiramoto et al. (2000). First, 10

natural modes are used to approximate the continuous time

transfer function of the simply supported flexible beam with

length Lb, Young’s modulus Eb, moment of inertia Ib, density

rb and cross-sectional area Sb. The natural modes of the beam

are represented by the resonance frequencies

vi =(ip)2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EbIb

rbSbL4
b

s

and the damping terms zi for i= 1, � � � , 10. The continuous

time system’s state space matrices are constructed from blocks
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Figure 2. Example 1: Maximum singular value of the sensitivity transfer

function S(z) compared with Garcia et al. (2001).
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Ai =
0 vi

�vi �2zivi

� �

Bi =
0

Hi=vi

� �
,Ci = 0 viLi½ �,

where

Hi = ci(s1) ci(s2) � � � ci(sm)½ �

Li = ci(s1) ci(s2) � � � ci(sr)½ �T

ci(s)=

ffiffiffiffiffi
2

Lb

r
sin

ips

Lb

� 

,

and s denotes the position. It is assumed that there are m

inputs at positions si for i= 1, � � � ,m and r available output
locations at positions si for i= 1, � � � , r where si\si+ 18i.
The overall system matrices are

A=blkdiag(Ai) for i= 1, � � � , 10,

B=

B1

B2

..

.

B10

2
6664

3
7775,C = C1 C2 � � � C10½ �:

The parameters of the system are chosen as
Eb =Lb = Ib = rb = Sb = 1 and zi = 0:0058i. The cost

function weights are chosen as Q= I and R= I . The system

is discretized with the sampling period Dt = 1 3 10�3sec.

It is assumed that four actuators are placed at the posi-

tions 0:2, 0:4, 0:6 and 0:8m. Twenty sensors sites are assigned

Table 2. Example 1: The SOF gains and spectral radius of the

closed-loop system matrix for different g.

g K r

1 �0:6803 �0:7261
�0:0981 �0:5116

� �
0:5643

10 �0:9078 �0:7429
0:1071 �0:5641

� �
0:6110

100 �0:9927 �0:7380
0:1930 �0:5872

� �
0:6310
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Figure 3. Example 1: Maximum singular value of the closed-loop

transfer function T(z) compared with Bara and Boutayeb (2005).
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Figure 4. Example 1: Maximum singular value of the sensitivity transfer

function S(z) compared with Bara and Boutayeb (2005).

Table 3. Example 2: The SOF gains and spectral radius of the

closed-loop system matrix for different g values.

g K r

1
K0 =

0:2748 0:6781 �1:5333 0:8157
0:8208 �0:1383 0:3504 �0:1500

� �
r0 = 0:9885

K1 =
�0:0485 0:4144 �0:3814 0:4876
0:3555 �0:1337 �0:0790 �0:1547

� �
r1 = 0:9893

10
K0 =

0:7017 1:5227 �2:8858 1:7705
2:8201 �0:3465 �0:5327 �0:3237

� �
r0 = 0:9935

K1 =
�8310�4 0:8738 �0:2666 0:9621

1:2287 �0:4213 �1:1752 �0:4915

� �
r1 = 0:9897

50
K0 =

1:2726 2:0055 �4:0221 2:3270
5:9145 �0:5376 �3:2253 �0:4304

� �
r0 = 0:9940

K1 =
0:1749 1:0544 �0:5354 1:1439
2:5306 �0:8876 �3:6937 �1:0166

� �
r1 = 0:9898

100 Method0 does not converge.

K1 =
0:2896 1:0569 �0:7656 1:1433
3:3035 �1:2179 �5:3348 �1:3803

� �
r1 = 0:9898

500 Method0 does not converge.

K1 =
0:5684 0:9565 �1:3692 1:0320
5:2737 �2:2629 �9:6825 �2:5113

� �
r1 = 0:9898

Table 4. Example 2: Optimal a vectors in terms of output

controllability. Indices of ones in a shows the indices of sensed outputs.

q aT

yaw (rw) roll (p) side-slip (b) bank (f)

1 0½ 0 0 1�
2 0½ 1 0 1�
3 1½ 1 0 1�
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at equidistant points between 0 and Lb = 1m. The optimal
sensor configurations for q= 1, � � � , 5 are given in Table 8.

The suppression ratios of the first three natural modes are
given in Table 9 where

P(z)=C zI � Að Þ�1
B

T (z)=C zI � (A+BKC)ð Þ�1
B:

Table 9 shows that using larger number of sensors leads to
more efficient suppression of modes.

Then, an unstable beam is considered by introducing a
negative damping to one of the natural modes. In this case,

the unstable system can be stabilized by using a few outputs
that is obtained from the solution of optimal sensor problem.
The results for this case are given in Table 10.

Example 5: Biological network

Our last example is a linearized version of the partial differen-

tial equation (PDE) that models aggregation of cellular slime
molds taken from Edelstein-Keshet (2005). According to the
model, slime molds produce cAMP chemical which attracts

the slime mold cells and leads to the aggregation of cells. The
cAMP concentration decreases with respect to a decay rate.
In the model, s and t are continuous position and time vari-

ables. a(s, t) is the density of slime molds and c(s, t) is the con-
centration of cAMP chemical

∂a(s, t)

∂t
=m

∂2a(s, t)

∂s2
� x�a

∂2c(s, t)

∂s2

∂c(s, t)

∂t
=D

∂2c(s, t)

∂s2
+ f (s)a(s, t)� k(s)c(s, t),

where m determines the cell mobility, x is the chemotactic
coefficient, D is the diffusion rate of cAMP, f (s) and k(s) are

cAMP generation and decay rates. The PDE is discretized
with spatial period Ds. The discretized version is given by

a(i, t)

dt
=m

a(i+ 1, t)� 2a(i, t)+ a(i� 1, t)

Ds2

� x�a
c(i+ 1, t)� 2c(i, t)+ c(i� 1, t)

Ds2

c(i, t)

dt
=D

c(i+ 1, t)� 2c(i, t)+ c(i� 1, t)

Ds2

+ f (i)a(i, t)� k(i)c(i, t),

where a(i, t)= a(iDs, t), c(i, t)= c(iDs, t). In the state space
form

dxc

dt
(i)=

�2m=Ds2 2x�a=Ds2

f (i) �2D=Ds2 � k(i)

� �
xc(i)

+
m=Ds2 �x�a=Ds2

0 D=Ds2

� �
xc(i� 1)

+
m=Ds2 �x�a=Ds2

0 D=Ds2

� �
xc(i+ 1)

_xc(i)=Aix(i)+Mi, i�1xc(i� 1)+Mi, i+ 1xc(i+ 1),

fori= 1, � � � ,N ,

where xc(i)= a(i, t) c(i, t)½ �T . It is assumed that for some
i 2 Y the concentration of slime molds can be sensed and for
some i 2 U, the cAMP concentration can be modified exter-
nally. In particular

Bi =
½0 1�T if i 2 U

½0 0�T otherwise

�

Ci =
1 0½ � if i 2 Y

0 0½ � otherwise

�
:

State vectors x(i) of the subsystems can be combined in a large

scale system with sparse Ac,Bc and Cc matrices. The subsys-
tems are connected to each other to create a ring shaped struc-
ture (Figure 7b). Nonzero structure of the system matrix Ac

can be found in Figure 8. The symmetry is broken by scaling
M1, 17 by a factor of 0:95 to eliminate poles on the imaginary
axis. Continuous time model is discretized by the sampling
rate h= 0:01sec. In the simulations, parameters are chosen as

Ds= 1 3 10�4,m= 1 3 10�7,x = 4 3 10�4,

�a= 1:6 3 10�3,D= 3 3 10�8, k(i)= 1:5, f (i)= 0:3,

R= I ,Q= I :

In the ring, there is an anomalous subsystem that generates

cAMP with a higher rate and destabilizes the network. The
generation rate is f (i)= 0:6 for this anomalous subsystem. In
Figure 8, destabilizing subsystem (A9) is shown by the box
with dashed pattern. There are two gray boxes, A1 is con-
nected to the first input and A17 connected to the second
input. The boxes with gray edges are the subsystems from
which slime mold density is sensed.

The system matrix A has 3 unstable eigenvalues at
1:00145, 1:00007, 1:00006. The proposed SOF calculation

Figure 5. In the aircraft model, Aa and Ar are aileron and rudder

actuators. ai 2 f0, 1g determines that corresponding output is used for

feedback.
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method converges when q= 6 and the corresponding optimal

sensor locations are given by indices Y= f1; 3; 4; 5; 9; 17g.
The sensors are not distributed symmetrically due to the bro-

ken symmetry of the network. Finally, the stabilizing SOF

gain is

K =
�0:5032 �4:1974 6:3807 �9:1076 �5:2413 0:9617

1:2853 9:6815 �12:8261 21:6236 15:9835 �1:6436

� �

Table 6. Example 3: Optimal a vectors in terms of the output

controllability for the unstable aircraft model. Ones in a show the

indices of sensed outputs.

q aT

yaw (rw) roll (p) side-slip (b) bank (f)

1 0½ 0 0 1�
2 0½ 0 1 1�
3 0½ 1 1 1�

Table 7. Example 3: The SOF gains and spectral radius of the closed-

loop system matrix found when Q= In for the unstable aircraft model.

q K1 r1

1 0:1510
0:0123

� �
0:9999

2 �2:3592 0:1921
�0:4587 0:0195

� �
0:9990

3 0:2082 �6:2837 0:2926
0:0246 �1:1207 0:0347

� �
0:9984

Table 8. Example 4: Optimal sensor locations for the simply

supported beam.

q Positions (m)

1 0:60½ �
2 0:55 0:60½ �
3 0:45 0:50 0:55½ �
4 0:45 0:50 0:55 0:60½ �
5 0:45 0:50 0:55 0:60 0:65½ �

Table 9. Example 4: The ratios T(z)=P(z) of the open-loop P(z) and

closed-loop transfer functions T(z) at the first three natural frequencies.

q v1 v2 v3

1 T(z)=P(z) 0:122 0:664 0:734

K 3:0378
�0:1563
�20:7966
�0:3230

2
664

3
775

2 T(z)=P(z) 0:063 0:590 0:511

K �2:5526 3:9562
1:1568 0:6201
6:0144 �26:0426
3:1983 �2:3966

2
664

3
775

3 T(z)=P(z) 0:034 0:561 0:334

K �4:8918 6:7666 �4:8325
�28:6315 14:0868 �9:2647
�5:6612 13:3971 �13:1737
5:7253 �5:0376 3:4417

2
664

3
775

4 T(z)=P(z) 0:025 0:347 0:265

K �3:7686 5:8887 �5:6001 4:9707
�26:2349 9:9476 �5:7996 2:1756

2:1756 �5:7996 9:9476 �26:2349
4:9707 �5:6001 5:8887 �3:7686

2
664

3
775

5 T(z)=P(z) 0:020 0:250 0:254

K �3:660 5:939 �4:146 3:042 0:957
�30:521 17:058 �15:928 13:507 �8:711
�0:266 0:322 �0:029 �14:746 �11:670
7:856 �9:502 13:170 �11:233 5:031

2
664

3
775

(a)

(b)

Figure 6. Example 4: Illustration of the sensor and actuator locations

for the unstable flexible beam example: When the unstable mode is

z1 = � 0:005 in (6) and z10 = � 0:005 in (7).

Gray arrows show the input locations and black arrows are the outputs.

Table 5. Example 2: Comparison of the SOF gains, the sensitivity transfer function peak k S(z)k‘ and the spectral radius of the closed-loop system

matrix r found by Method0 and Method1 for g = 1 and different sensors configurations given in Table 4.

q K0 r0 k S0(z)k‘ K1 r1 k S1(z)k‘

1 0:8172
�0:4283

� �
0:9950 1:72 0:31178

�0:2233

� �
0:9919 1:45

2 0:6794 0:8135
�0:1390 �0:1897

� �
0:9953 2:70 0:4270 0:5025

�0:1081 �0:1431

� �
0:9953 1:98

3 0:2059 0:6786 0:8121
0:7516 �0:1445 �0:2021

� �
0:9895 3:44 �0:0641 0:4176 0:4850

0:3644 �0:1368 �0:1623

� �
0:9894 2:48
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which results to a spectral radius of r= 0:9994.

Discussion

The proposed algorithm yields promising results but the con-

vergence of the approximate solution of LQR problem is not

easily tractable. In Bertsekas (1995), a proof of convergence is

given when (A,B) is controllable and (A,Q) is observable for

Q=CT C. Controllability condition is relaxed and replaced by

stabilizability in Lancaster and Rodman (1995). Nevertheless,

the method described in this study considers a sub-optimal

state feedback gain in the form of F̂ =KC where K =FCy. It

can also be represented by

F̂ =FCyC =FPc,

where Pc is the orthogonal projection matrix on range(CT ).

Remark 2. Equation (22) can be equivalently written as

S =Q+AT S � SB�R
�1

BT S
	 


A

+P�cAT SB�R
�1

BT SAP�c,

where �R=R+BT SB and P�c = In �Pc is the orthogonal pro-

jection on null(C). Hence, the proposed SOF calculation

method satisfies the following DARE

S = ~Q+AT S � SB�R
�1

BT S
	 


A,

where ~Q=Q+P�cAT SB�R�1BT SAP�c ø Q.
Assume that the second term in ~Q is already known, the

total cost V of the LQR problem with the cost function

V = xT
tf

~Qxtf
+
Xtf�1

t= 0

xT
t

~Qxt + uT
t Rut

is given by

V = xT
tf

~Qxtf +
Xtf�1

t= 0

xT
t (

~Q+FT RF)xt

= xT
tf

~Qxtf +
Xtf�1

t= 0

xT
t S � (A+BF)T S(A+BF)
� �

xt

= xT
tf

~Qxtf +
Xtf�1

t= 0

xT
t Sxt � xT

t+ 1Sxt+ 1

= xT
0 Sx0 + xT

tf
(~Q� S)xtf ,

when ut = � �R�1BT SAxt =Fxt. Our method proposes a sub-

optimal state feedback ût =FPcxt = F̂xt. Similarly, the total

cost V̂ for the input ût can be written as

V̂ = xT
tf

Qxtf +
Xtf�1

t= 0

xT
t Qxt + ûT

t Rût

= xT
0 Sx0 + xT

tf
(Q� S)xtf :

Since the closed loop system is stable for both cases, V’V̂ for

an arbitrarily large tf . Eventually, it can be said that the pro-

posed algorithm leads to a similar quadratic cost as the LQR

problem with a larger weight (~Q) on the system’s states.
Additionally, efficiency of the proposed method for sensor

placement can be demonstrated by solving the SOF problem

for non-optimal sensor sets. It is observed that the proposed

SOF calculation converges slower to a worse minimum

when other possible a configurations are used. The results for

non-optimal sensor placement combinations for the unstable

aircraft model are given in Table 11.

Conclusion

In this paper, the SOF problem is investigated along with the

optimal selection of the system outputs. First, the optimal

sensor placement problem by the output controllability gra-

mian maximization is described and its relation with the mini-

Table 10. Example 4: The optimal sensor positions and spectral radius

of the closed-loop system matrix for the unstable beam for two different

unstability conditions where r(A) is spectral radius of the unstable open-

loop system matrix (see Figure 6 for an illustration of the actuator/

sensor locations).

Unstable mode Positions (m) K r

z1 = � 0:005 0:45½ � �0:3260
�20:8119
�0:1653
3:0313

2
664

3
775

0:9988

r(A)= 1:00004

z10 = � 0:005 0:45 0:50½ � �3:2073 8:0214
�28:363 12:664
�1:0227 1:3668
3:9430 �5:5116

2
664

3
775

0:9988

r(A)= 1:0071

(a) (b)

Figure 7. Example 5: (7a) Interconnection of the subsystems at

discrete positions. (7b) The circular interconnection of systems.
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mization of the required input energy is shown. Since the sys-

tem is not necessarily stable, a procedure for calculating the

generalized gramians of unstable discrete time LTI systems is

developed. Also, it is shown by the examples that norm of the

output controllability gramian can be used as a reliable metric

to determine optimal sensor locations for the SOF

stabilization.
After a full system realization (A,B,C) is obtained by

structuring the output matrix C, the next problem addressed

is to calculate a stabilizing SOF gain. The SOF gain is calcu-

lated as a projected solution of the LQR problem by approxi-

mate dynamic programming. Efficiency of the sensor

placement method and the the SOF calculation method are

compared with the examples from the literature in terms of

spectral radius and robustness measures. A necessary

condition for the existence of such a SOF gain is introduced.

It is pointed out that the proposed SOF stabilization method

leads to a quadratic cost similar to an LQR problem with a

larger cost function weight on the state vector.
The proposed solution for the SOF problem lacks the con-

vergence guarantee similar to the counterparts in the litera-

ture. A promising approach would be to use the balanced

form of the system. Nevertheless, the convergence characteris-

tics and the optimal selection of the state space realization are

still open problems to be studied in the future.
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Appendix

Proof of Lemma 1

Proof: Proof is based on the solution of optimal state feed-

back problem with fixed terminal condition in Lewis et al.

(1995: Chapter 4). Start by defining quadratic cost

min
ut

J =
1

2
xT

tf
Stf

xtf +
1

2

Xtf�1

t= 0

uT
t ut, ð23Þ
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with terminal condition yf = ytf =Cxtf , which can be equiva-

lently written with Lagrange multipliers lt and n

J =
1

2
xT

tf
Stf xtf

+ yf � Cxtf

� �T
n

+
Xtf

t= 0

1

2
uT

t ut +lt+ 1 Axt +But � xt+ 1ð Þ:

The Hamiltonian is given by

Ht =
1

2
uT

t ut + lT
t+ 1 Axt +Butð Þ,

where the optimal solution satisfies

xt+ 1 =
∂Ht

∂lt+ 1

=Axt +But

lt =
∂Ht

∂xt

=AT lt+ 1,

with ut is given by

ut = � BT lt+ 1: ð24Þ

By considering the fixed terminal condition ytf = yf , guess a

solution given by

lt = Stxt +Vtn, ð25Þ

where St and Vt are (Lewis et al., 1995)

St =AT St+ 1(A+BFt), for a given Stf ,

Vt =(A+BFt)
T Vt+ 1,Vtf

=CT ,

where Ft = � (I +BT St+ 1B)BT St+ 1A. If Vt is iterated back-

wards, we obtain

Vt =F(tf , t)
T CT ,

where

F(t, t)= (A+BFt�1)(A+BFt�2) � � � (A+BFt),

for t\t:

Optimal ut (24) can be written as

ut = � BT (St+ 1xt+ 1 +Vt+ 1n)

= � BT St+ 1(Axt +But)+Vt+ 1nð Þ
= � (I +BT St+ 1B)�1BT St+ 1A

� (I +BT St+ 1B)�1BT Vt+ 1n

=Ftxt + rt =wt + rt:

The boundary condition n can be found from the system’s

output response at time tf for the input ut =wt + rt.

xtf =F(tf , 0)x0 +
Xtf�1

t = 0

F(tf , t + 1)Brt

=F(tf , 0)x0 �
Xtf�1

t = 0

F(tf , t + 1)

3 B(I +BT St + 1B)�1BT Vt+ 1n

=F(tf , 0)x0 �
Xtf�1

t = 0

F(tf , t + 1)

3 B(I +BT St + 1B)�1BT F(tf , t + 1)T CT n

ytf =CF(tf , 0)x0 � Yc(tf )n,

where

Yc(tf )=C
Xtf�1

t = 0

F(tf , t + 1)

3 B(I +BT St + 1B)�1BT F(tf , t + 1)T CT :

That leads to

n=Yc(tf )
�1 CF(tf , 0)x0 � ytf

� �
:

For simplicity, let us choose Stf
= S of (6) and x0 = 0. Then

St = S8t ł tf

Ft =F = � (I +BT SB)�1BT SA

F(t, t + 1)= (A+BF)t�t�1 =At�t�1
cl

ut =Fxt + rt,

where

rt = � (I +BT SB)�1BT AT
cl

� �tf�t�1
CT Yc(tf )

�1yf : ð26Þ

Substitute ut into the cost function (23)

J =
1

2
xT

tf
Stf xtf

+
1

2

Xtf�1

t= 0

Jt

Jt =wT
t wt + 2rT

t wt + rT
t rt:

From (24)

wt = � BT (Sxt+ 1 +Vt+ 1n)� rt:

Then

rT
t wt = � rT

t BT Sxt+ 1 � rT
t BT Vt+ 1v� rT

t rt

= � rT
t BT Sxt+ 1 + rT

t (I +BT SB)rt � rT
t rt,

is obtained. By adding and subtracting xT
t+ 1Sxt+ 1, Jt can be

simplified
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Jt =wT
t wt � 2rT

t BT Sxt+ 1 + 2rT
t (I +BT SB)rt

� 2rT
t rt + rT

t rt � xT
t+ 1Sxt+ 1 + xT

t+ 1Sxt+ 1

= xT
t FT Fxt � xT

t+ 1Sxt+ 1 + xT
t+ 1Sxt+ 1

� 2rT
t BT Sxt+ 1 + rT

t BT SBrt + rT
t (I +BT SB)rt

= xT
t FT Fxt +(xt+ 1 � Brt)

T S(xt+ 1 � Brt)

� xT
t+ 1Sxt+ 1 + rT

t (I +BT SB)rt

= xT
t (F

T F +AT
clSAcl)xt � xT

t+ 1Sxt+ 1

+ rT
t (I +BT SB)rt

= xT
t Sxt � xT

t+ 1Sxt+ 1 + rT
t (I +BT SB)rt

by using the equality S =FT F +AT
clSAcl which is an other

representation of the DARE in (6). Finally, substitute Jt into
J and by using (26)

J =
1

2
xT

tf
Sxtf +

1

2

Xtf�1

t= 0

Jt

=
1

2
xT

tf
Sxtf +

1

2

Xtf�1

t= 0

xtSxt � xt+ 1Sxt+ 1ð Þ

+
1

2

Xtf

t= 0

rT
t (I +BT SB)rt

=
1

2
xT

tf
Sxtf +

1

2

Xtf�1

t= 0

xT
t Sxt � xT

t+ 1Sxt+ 1

� �
+

1

2
yT

f Yc(tf )
�1yf

=
1

2
xT

0 Sx0 +
1

2
yT

f Yc(tf )
�1yf =

1

2
yT

f Yc(tf )
�1yf :
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