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Unseen Face Presentation Attack Detection Using
Sparse Multiple Kernel Fisher Null-Space

Shervin Rahimzadeh Arashloo

Abstract— We address the face presentation attack detection
problem in the challenging conditions of an unseen attack
scenario where the system is exposed to novel presentation
attacks that were not available in the training stage. To this
aim, we pose the unseen face presentation attack detection (PAD)
problem as the one-class kernel Fisher null-space regression
and present a new face PAD approach that only uses bona
fide (genuine) samples for training. Drawing on the proposed
kernel Fisher null-space face PAD method and motivated by the
availability of multiple information sources, next, we propose a
multiple kernel fusion anomaly detection approach to combine
the complementary information provided by different views of
the problem for improved detection performance. And the last
but not the least, we introduce a sparse variant of our multiple
kernel Fisher null-space face PAD approach to improve inference
speed at the operational phase without compromising much
on the detection performance. The results of an experimental
evaluation on the OULU-NPU, Replay-Mobile, Replay-Attack
and MSU-MFSD datasets illustrate that the proposed method
outperforms other methods operating in an unseen attack detec-
tion scenario while achieving very competitive performance to
multi-class methods (that benefit from presentation attack data
for training) despite using only bona fide samples in the training
stage.

Index Terms— Face presentation attack detection, anti-
spoofing, unseen attacks, novelty detection, one-class clas-
sification, kernel regression, multiple kernel fusion, sparse
regularisation.

I. INTRODUCTION

THE face recognition technology has made great advances
during the past couple of decades [1]–[4]. Neverthe-

less, the functionality of these systems in practical situa-
tions is compromised by their susceptibility to presentation
attacks (PA’s) where an imposter tries to be authenticated
as a genuine client by presenting fake biometric traits to
system sensors. Due to potential security risks associated
with the problem, face presentation attack detection (a.k.a.
anti-spoofing) has received increasing attention over the past
years, resulting in a variety of different countermeasures [5],
[6]. A majority of the existing approaches assume that the
face presentation attack detection (PAD) problem is a closed-
set recognition task, and subsequently formulate and train
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a binary classifier using the available positive (bona fide)
and negative (PA) training samples. Nevertheless, even with
the impressive performances reported on some databases, the
technology is not mature yet. The discrepancies in samples
due to varying image acquisition settings, including different
environmental conditions, sensor interoperability issues, etc.
degrade the performance of face PAD techniques. In this
context, a particularly challenging facet of the problem is
due to the previously “unseen” attack types for which no
similar training samples in terms of the presentation attack
instruments are available at training time. In these situations,
the common closed-set two-class formulation of the problem
tends to generalise poorly, degrading the performance of face
PAD methods. The unseen PA detection problem is not only
pertinent to the face modality [7]–[12] but also to other
biometric modalities including fingerprint [13]–[16], iris [17],
voice [18], etc. From a general perspective beyond biometrics,
different attacks including adversarial attacks may pose serious
challenges to the operation of different classification systems
including deep learning methods [19].

While early face PAD benchmark datasets only included
a single attack type (typically printed paper), more recent
databases incorporate a more diverse set of attacks, including
digital photo attacks, replay attacks, mask attacks, make-up
attacks, etc. Although introducing new datasets [20], [21]
that cover a wider variety of possible presentation attack
mechanisms and instruments is desirable, yet, it may not
completely solve the problem. The limitation arises from the
fact that not all possible attack scenarios can be anticipated
and covered in the datasets since there is always the possibility
of developing a new attack strategy to bypass the existing
countermeasures. Consequently, the error rates obtained on
one or more datasets under a closed-set attack assumption may
not be generalised and regarded as representative error rates
corresponding to a real-world operation of the system.

In practice, presentation attacks may potentially appear as
fairly diverse, or novel and unpredictable while bona fide
sample distributions tend to have relatively less diversity.
Notwithstanding other strategies, an alternative approach to the
face PAD problem is to try to capture the distribution of bona
fide samples. This objective may be realised through a one-
class classification (OCC) [22] formalism to identify patterns
from a target class, conforming to a specific condition, and
differentiate them from non-target objects. OCC differs from
the conventional multi-class formulation in that it mainly relies
on observations from a single (target) class for training. In the
context of biometric PAD, this approach has been examined,
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for instance, in speech [23], fingerprint [15], or iris [24] anti-
spoofing as well as in face PAD [7], [8] by considering bona
fide samples as target objects and then trying to detect PA’s as
novelties in reference to the population of target observations.

Motivated by the merits of an OCC formulation in detecting
unseen presentation attacks, this study follows a one-class
classification methodology to the face PAD problem. For this
purpose, we approach the problem in a reproducing kernel
Hilbert space (RKHS) and formulate the unseen face PAD as
a one-class kernel Fisher null-space OCC problem. By virtue
of achieving an optimal Fisher classification criterion (i.e. zero
within-class and positive between-class scatters) and in spite
of operating in a pure one-class approach that avoids the use
of negative training samples altogether, the proposed method
achieves a superior detection performance as compared with
other OCC face PAD methods in the literature. Operating
in a pure one-class scenario and circumventing the use of
negative training samples is particularly important to assess
the generalisation capability of the method in practical real-
world settings.

While ensemble techniques have been widely deployed in
the literature to enhance the classification performance in dif-
ferent problem domains [25], their application to the face PAD
problem has been very limited. In this context, formulation of
the unseen face PAD problem as a kernel-based method in this
work opens the door to benefit from multiple complementary
sources of information for improved performance. In this
respect, we propose a multiple kernel fusion mechanism to
combine different views of the problem at hand each of
which is derived by introducing diversity in the representations
obtained from face images. While a kernel fusion approach for
face PAD has not been considered previously and is novel,
its efficacy in improving the performance of the proposed
Fisher null-space face PAD approach (as well as other widely
used one-class classifiers) is verified thoroughly on different
datasets in this work.

A drawback of kernel-based approaches is that the com-
putational complexity of these methods in the operational
phase which scales linearly in the number of training samples.
As a final contribution, we advocate a sparse variant of
the proposed face PAD approach and illustrates its utility
in reducing the complexity of the naïve approach by tens
of orders of magnitude without compromising much on the
detection performance.

In summary, the main contributions of the present study are
as follows:

1) We formulate the unseen face PAD problem as a one-
class kernel Fisher null-space regression anomaly detec-
tion problem. Despite operating in a pure one-class
paradigm and avoiding the use of negative training
samples altogether, the proposed formulation is shown
to be superior to the existing one-class unseen face PAD
methods.

2) We propose a multiple kernel fusion anomaly detection
strategy to combine the complementary information pro-
vided by different views of the problem for improved
detection performance. The improvements obtained by
the proposed kernel fusion approach underlines the

importance of fusing multiple information sources in an
OCC face PAD approach.

3) We present a sparse representation-based variant of the
proposed multiple kernel fusion one-class Fisher null-
space approach to speed up inference at the operational
stage.

4) Finally, a thorough evaluation of the proposed face
PAD approach is carried out on four publicly available
datasets in an unseen (zero-shot) presentation attack
detection scenario demonstrating the competitive perfor-
mance of the proposed approach against other one-class
as well as multi-class face PAD techniques.

The rest of the paper is organised as follows: Section II
reviews related work with an emphasis on the unseen face
PAD approaches. In Section III, the proposed one-class
approach for unseen face PAD based on kernel regression
is introduced where multiple kernel fusion, sparse regular-
isation of the solution and other related technical aspects
of approach are discussed. The results corresponding to
an experimental assessment of the proposed method are
presented in Section V. Finally, conclusions are drawn in
Section VI.

II. RELATED WORK

Different countermeasures including those based on special-
purpose hardware, software and challenge-response methods
have been proposed for face presentation attack detection [26].
The software-based approaches classify an image (sequence)
based on different features derived from image content. In this
study, we follow a software-based approach to face PAD using
a single modality (i.e. visible spectrum RGB images) for PA
detection in contrast to some other studies operating beyond
the visible spectrum [27]. Texture is the most commonly
deployed cue for face PAD among the features derived from an
image/image sequence [28], [29]. A different category of face
PAD methods constitutes motion-based approaches [30]–[32].
An alternative category of methods relates to frequency-based
approaches to detect PA’s in the Fourier domain [32]–[34].
Colour characteristics [35], [36] as well as shape information
are also utilised as different mechanisms to detect presentation
attacks [37]. As bona fide and PA attempts appear differently
under the same illumination conditions, some other methods
[38] use reflectance for face PAD. Other work [39] uses a
statistical model of image noise for face PAD. A different
study [40] develops a generic classifier for detecting face
presentation attack images by focusing on the contours of
the spoofing medium. For this purpose, face presentation
attack detection is posed as the problem of detecting contours
in the image. The authors then train a deep CNN network
to classify an image as a bona fide or attack sample by
measuring the probability of incorporating spoofing contours
in an object. The results of an experimental evaluation on
two datasets confirms the effectiveness of the approach in
cross-database scenarios. Nevertheless, as the method relies
on spoofing medium contours, its applicability is limited to
certain cases where such contours are visible in the image.
A recent category of approaches relates to deep learning
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methods, and in particular, deep convolutional neural networks
(CNN’s) [41]–[43].

In terms of the two-class classification schemes, different
alternatives have been examined. These include discriminant
classifiers including the Support Vector Machines [44], [45],
the linear discriminant analysis [35], [46], neural networks
[31], convolutional neural networks [41], [42], Bayesian net-
works [47] as well as Adaboost [48]. An alternative category
includes regression-based approaches trying to project input
features onto their labels [49]. Methods trying to learn a
distance metric [50] as well as some heuristic methods have
been also examined for classification in face PAD [30], [51].

In contrary to the common close-set two-class formulation
of the problem, there also exists a different category of
approaches trying to address the face PAD problem in an
unseen attack scenario. One main group of these methods
formulates the problem as an OCC task to detect unseen
PA’s [7]. The work in [8] considers a Gaussian mixture
model (GMM) one-class learner for classification operating
on image quality measures. A different study [9] analyses
One-Class SVM and Auto Encoder-based classifiers to address
unseen face PAD. The work in [10] examines a new strategy
to utilise the client-specific information to train one-class
classifiers using only bona fide data. In an alternative study
[11], detection of unknown PA’s was addressed in a Zero-Shot
Face Anti-spoofing (ZSFA) scenario via a deep tree network
(DTN) to partition the PA samples into semantic sub-groups in
an unsupervised fashion. The work in [12] introduces a method
where a deep metric learning model is proposed using a triplet
focal loss as regularisation for the so-called metric-softmax
approach.

For a more detailed review of the face PAD methods one
may consult [5], [6], [52].

III. KERNEL REGRESSION FOR ONE-CLASS FACE PAD

In this section, first, a brief background on regression in the
reproducing kernel Hilbert space (kernel regression) shall be
provided. Next, kernel regression is used as a tool for face PA
anomaly detection.

Let F be a feature space induced by a non-linear mapping
φ : R

d → F . For a suitably chosen mapping, an inner product
�., .� on F may be represented as �φ(xi ),φ(x j )� = κ(xi , x j ),
where κ(., .) is a positive semi-definite kernel function. In
kernel regression, each point x is first projected onto φ(x)
followed by seeking a real-valued function g(φ(x)) = f (x)
minimising a sum of squared differences between the expected
and the generated responses. The relation for f (z) may be
written as

f (z) = [�φ(z), φ(x1)�, . . . , �φ(z), φ(xn)�](φ(X)φ(X)�)−1y

= [κ(z, x1), . . . κ(z, xn)]K−1y (1)

where we have used the notation K = φ(X)φ(X)� to denote
the so-called kernel matrix. Denoting α = K−1y, function f (.)
may be represented as

f (.) = [κ(., x1), . . . κ(., xn)]α =
n∑

i=1

αiκ(., xi ). (2)

The full responses on the training set X may be derived as
f (X) = Kα and the corresponding cost function in this case
is �Kα − y�2

2 where �.�2
2 denotes the squared l2-norm.

In a one-class classification task it is desirable to have
normal samples forming a compact cluster while being distant
from anomalies. In a reproducing kernel Hilbert space (RKHS)
and in the absence of outlier training data, in a one-class
classification paradigm, it is common practice to consider the
origin as an artificial exemplar outlier with respect to the
distribution of positive samples [53].

In this work, similar to [54], a projection function (defined
in terms of kernel regression) is used such that it maps
bona fide samples onto a compact cluster, distant from a
hypothetical non-target observation lying at the origin. This
objective may be achieved by setting the responses for all
target observations to a common fixed real number, distinct
from zero, i.e. yi = c, for all i , s.t. c �= 0. In this case,
the kernel regression approach would form a compact cluster
of target samples as they would be all mapped onto the
same point. Note that kernel regression performs an exact
interpolation when the parameters characterising the regression
(i.e. α) can be uniquely determined. This is the case when the
kernel matrix is positive-definite. Since by assumption c �= 0,
the projected normal observations would lie away from the
(hypothetical) outlier, i.e. the origin. Without loss of generality
one may set c = 1, as the exact value for c would only act
as a scaling factor. Having set the response vector y to 1n×1,
one may solve for α as α = K−1y = K−11n×1.

The procedure discussed above provides the best separabil-
ity of normal samples from outliers with respect to the Fisher
criterion [54], stated formally in the following proposition.

Proposition: Assuming the origin as a hypothetical outlier,
the kernel regression approach with the responses for all
target samples set to a common fixed real number other than
zero, corresponds to the optimal kernel Fisher criterion for
classification (i.e. kernel Fisher null-space), resulting in a zero
within-class variance while providing a positive between-class
scatter.

Proof: In a Fisher classifier, the objective function may be
expressed as the ratio of the inter-class scatter to the total
intra-class scatter as [55]

J = sB

sW
= (m1 − m2)

2

s2
1 + s2

2

(3)

where m1 and m2 denote the mean of the first and the second
class, respectively while s2

1 and s2
2 represent the corresponding

within-class scatters. As noted earlier, the Fisher analysis,
originally developed for a binary classification problem, may
be applied to the one-class scenario by assuming the origin
as an exemplar outlier. As all positive samples are projected
onto the same point (i.e. 1), the associated mean of the positive
class would be m1 = 1. In this case, the within-class scatter
of the transformed bona fide samples is

s2
1 =

∑
C1

(yi − m1)
2 =

∑
C1

(1 − 1)2 = 0 (4)

where C1 stands for the bona fide class while yi denotes the
mapping of the observation xi ∈ C1 onto the subspace.
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Regarding the PA class, only a single hypothetical sample
is assumed to exist at the origin and hence the average of the
negative class shall be m2 = 0 while its within-class scatter is
s2 = 0. The total within-class scatter in this case would then
be sW = s2

1 + s2
2 = 0.

Regarding the between-class scatter (the numerator of J in
Eq. 3) we have

sB = (m1 − m2)
2 = (1 − 0)2 = 1. (5)

Thus, as discussed in [54], the one-class kernel regression
when the responses of all target (bona fide) samples are equal
and distinct from zero, corresponds to a projection function
(i.e. f (.)) leading to sW = 0 and sB = 1, and consequently,
represents a kernel Fisher null-space analysis [56], [57]. �

The foregoing kernel regression-based classification
approach may be considered as a one-class variant of our
earlier two-class kernel Fisher analysis [58] introduced for
face PAD and that of [59] developed for face verification.

A. Regularisation

Formulating a one-class classifier based on the kernel
regression formalism opens the possibility to regularise the
solution. Regularising the solution of a regression problem
may be driven by different objectives. First, when the number
of observations is smaller than the number of variables, the
least-squares problem is ill-posed. In this case, additional
constraints are introduced into the problem to uniquely specify
the solution. The second scenario is when the model suffers
from poor generalisation. In this case, regularisation improves
the generalisation capability of the model by introducing a
limitation on the available function space via imposing a
penalty to discourage specific regions of the function space.
This latter case corresponds to imposing priors on the solution
to maintain a desired trade-off between data fidelity and some
condition on the solution.

A regularised kernel regression problem may be expressed
as finding the vector minimser of the following cost function:

Q(α) = �Kα − y�2
2 + R(α) (6)

where, as before, �Kα − y�2
2 measures the closeness of the

generated responses to the expected responses y while R(α)
encodes a desired regularisation on the solution α.

Regularisation schemes favouring sparseness of the solution
are among the widely applied techniques [60]. These methods
try to represent an observation in terms of a few atoms
from a given dictionary. Sparsity of the solution to a least
squares problem may be encouraged via an l1-norm, which,
in statistics, is known as Lasso and in the signal processing
community is referred to as a basis pursuit. In addition to
enhanced generalisation performance, sparse L1-norm models
provide scalable techniques that can be used in large-scale
problems. This is particularly important in kernel-based meth-
ods as the complexity of these techniques grows linearly in
the number of training samples. Thus, besides other benefits
discussed above, a sparse solution is also advantageous in
enhancing the computational complexity of the method. In
this work, sparseness of the solution of the one-class kernel

regression is encouraged by prescribing an L1-regulariser on
α, i.e. R(α) = δ

∑n
i=1 |αi |. The objective function for the

sparse one-class kernel regression may then be expressed as

Q(α) = �Kα − y�2
2 + δ

n∑
i=1

|αi | (7)

where parameter δ controls the sparseness of the solution. By
imposing a strong sparseness prior on α, each response yi

would be characterised by only a few samples from among the
training set. A desirable outcome of a sparse representation is
a reduction in the computational complexity in the operational
stage, determined by the number of non-zero elements of α.

IV. ONE-CLASS MULTIPLE KERNEL FUSION

In kernel-based methods, the kernel function plays an
important role as it specifies the embedding of the data
in the feature space. While ideally the kernel function and
consequently the corresponding embedding is to be learnt
directly from training samples, in practice, a relaxed alternative
of the problem is considered by trying to learn an optimal
combination of multiple kernels providing different views
of the problem at hand. The coefficients characterising the
combination may then be learnt using training instances from
multiple classes [61]. In a one-class novelty detection approach
and in the absence of non-target (PA) training samples (i.e.
unseen face PAD), we opt for the average fusion of multiple
base kernels. In the proposed approach, diverse views of the
face PAD problem are constructed following two mechanisms:
using multiple (local) face image regions and deployment of
multiple representations derived from these regions, discussed
next.

Multiple Regions: In addition to the whole face image pro-
viding discriminatory information at a global level, different
local regions of the face image convey distinctive information
and characteristics for face PAD decision making. In order
to benefit from local information, along with the whole face
image tightly cropped to minimise the background effects
(identified as region R1), three additional local regions are
also considered. These include eyes and nose as region R2,
nose and the surrounding as region R3 and region R4 which
focuses on the areas surrounding the nose and the mouth,
Fig. 1. In this study, the regional representations corresponding
to main facial features are considered. One may also consider
increasing local regions. However, simply increasing the num-
ber of regional representations does not guarantee improved
performance as inclusion of less informative representations to
the multiple kernel fusion approach in a uniformly weighted
combination scheme followed in this study may disturb the
fusion mechanism and may even deteriorate the performance.

Multiple Representation: The second source of diversity
for multiple kernel fusion is derived through using different
image representations. While a wide range of different image
features including LBP and its variants [59], [62], image
quality measures [8], [62], etc. are applied to face PAD,
more recently, a great deal of research has been directed
towards investigating the applicability of deep convolutional
neural network (CNN) representations for face PAD [43]
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Fig. 1. Multiple regions used to derive representations: (a): region R1; (b):
region R2; (c): region R3; (d): region R4.

illustrating that such features may provide discriminative infor-
mation for detection of presentation attacks. The application
of CNN-based representation may also simplify the overall
design architecture of biometric systems through adoption of
common representation for the face matching problem. Fol-
lowing the same methodology, the current study utilises CNN
representations as features for face PAD. For this purpose,
features obtained from the penultimate layers of pre-trained
GoogleNet [63], ResNet50 [64] and VGG16 [65] networks
are used to construct multiple representations for each facial
region.

A. Learning the Discriminant

Once multiple representations from different regions are
derived, the learning process of the proposed subject-specific
sparse one-class multiple kernel fusion regression approach for
subject c is given as

αc = arg min
α

� 1

RN

R∑
r=1

N∑
n=1

Kc
rnα − y�2

2 + δ

n∑
i=1

|αi | (8)

where R = 4 and N = 3 denote the number of facial
regions and deep CNN networks used for face image repre-
sentation, respectively while Kc

rn stands for the kernel matrix
associated with region r whose representation is obtained via
CNN with index n. In a subject-specific approach, the kernel
matrices Kc

rn’s are constructed by using the training instances
(i.e. features extracted from bona fide frames) of subject c
only. In this study, Eq. 8, is solved using the Least Angle
Regression (LARS) algorithm [66] which facilitates deriving
solutions with all possible cardinalities on α.

B. Decision Strategy

Once the projection parameter αc is inferred for client c,
the projection of a test sample (z) onto the feature subspace
of subject c is given as

f c(z) = 1

RN

M∑
i=1

αc
i

R∑
r=1

N∑
n=1

κrn(z, xc
i ) (9)

where αc
i denotes the i th (non-zero) element of the discrimi-

nant in the Hilbert space for the cth subject while xc
i denotes

the i th training instance of subject c. M is the total number
of non-zero elements of α. κrn(z, xc

i ) is the kernel function,
capturing the similarity between the r th region of the test
sample z and that of the i th training instance of subject c
based on the representation derived through the nth deep CNN
network.

1) Raw Score Fusion: Eq. 9 provides the raw projection
score for a single frame of a test video sequence. In order
to derive a score for the whole test video, one possibility is
to simply average the raw scores corresponding to individual
frames comprising the video, leading to a decision rule as

1

F

F∑
f =1

f c(z f ) ≥ τ c bona fide,

1

F

F∑
f =1

f c(z f ) < τ c PA (10)

where F denotes the total number of frames in a video
sequence while τ c is the threshold for decision making for
subject c.

2) Fusion of Probabilistic Scores: Next, we approximate
the probability density function of the score distributions
corresponding to bona fide samples using a Gaussian distrib-
ution and use the cumulative density function of the inferred
Gaussian as a probabilistic measure of normality. In this case,
the decision rule for a video sequence is defined as

1

F

F∑
f =1

∫ z f

−∞
Nμ,σ (x) dx ≥ τ c bona fide,

1

F

F∑
f =1

∫ z f

−∞
Nμ,σ (x) dx < τ c PA (11)

where Nμ,σ denotes a normal distribution with mean μ and
standard deviation σ .

V. EXPERIMENTAL EVALUATION

In this section, the results of an experimental evaluation of
the proposed approach on four publicly available datasets in an
“unseen” attack scenario are presented. Driven by the success
of client-specific modelling for face PAD [10], [67], we build
a separate model for each individual client in the dataset.

A. Implementation Details

A number of details regarding implementation of the pro-
posed approach are in order. Each frame is initially pre-
processed using the photometric normalisation method of [68]
to compensate for illumination variations. The face detection
bounding boxes provided along with each dataset are used
to locate the face in each frame. The coordinates associated
with the last detected face in a video sequence is used for
a frame missing a bounding box. In order to select facial
regions (Fig. 1) in a consistent fashion across different frames,
the OpenFace library [69] is used to detect landmarks around
facial features. The deep CNN representations yield 1024-,
2048- and 4096-dimensional feature vectors for the GoogLenet
(N1), ResNet50 (N2) and VGG16 (N3) networks, respectively.
The thus obtained feature vectors are normalised to have a
unit L2-norm. The kernel function used is that of a Gaussian
(i.e. κ(xi , z) = exp(−θ�xi − z�2

2) kernel yielding a positive
definite kernel matrix where θ is set to the reciprocal of
the average pairwise Euclidean distance between bona fide
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training samples. The proposed method is implemented as un-
optimised Matlab codes running on a 64-bit 4.00GHz Intel
Core-i7 Ubuntu machine with 32GB memory.

B. Datasets

The datasets used in the current work are briefly introduced
next.

1) The Replay-Mobile Dataset: The Replay-Mobile dataset
[70] includes 1190 video recordings of both bona fide and
attack samples of 40 individuals recorded under different
illumination conditions using two different acquisition devices.
The dataset is divided into three disjoint subsets of training,
development and testing and an additional partition corre-
sponding to enrolment data.

2) The Replay-Attack Dataset: The Replay-Attack database
[71] includes 1300 video recordings of bona fide and attack
samples of 50 different individuals. Attacks are created either
using a printed image, a mobile phone or a high definition
iPad screen. The data is randomly divided into three subsets
for training (60 bona fide and 300 PA samples), development
(60 bona fide and 300 PA samples) and testing (80 bona fide
and 400 PA samples) purposes without any overlap between
subjects of different sets.

3) The OULU-NPU Dataset: The OULU-NPU database
[72] consists of 4950 bona fide and attack video recordings of
55 subjects recorded using six different cameras in three ses-
sions with different illumination conditions and backgrounds.
The dataset includes previously unseen input sensors, attack
types and acquisition conditions. The videos of the 55 subjects
in this database are divided into three subject-disjoint subsets
for training (360 bona fide and 1440 PA samples), development
(270 bona fide and 1080 PA samples) and testing (360 bona
fide and 1440 PA samples) purposes. For the evaluation
purposes, four protocols are designed amongst which, the forth
protocol is the most challenging one which is used in this
study.

4) The MSU-MFSD Dataset: The MSU MFSD database
[73] includes 440 videos of photo and video attack attempts
of 55 individuals recorded using two different cameras. The
publicly available subset, however, includes 35 subjects. The
dataset is divided into two subject-disjoint sets for training
(30 bona fide and 90 PA’s) and testing (40 bona fide and
120 PA’s) purposes.

C. Performance Metrics

For performance reporting ISO metrics BSISO-IEC30107-
3-2017 are used (APCER↓, BPCER↓ and ACER↓). In addi-
tion to the ISO metrics, the efficacy of the proposed method
is also reported in terms of AUC (the Area Under the ROC
Curve ↑) as well as the Half Total Error Rate (HTER↓) and the
Equal Error Rate (EER↓), whenever required for a comparison
to other techniques.

D. Effect of Multiple Kernel Fusion

First, the effect of fusing multiple views of the problem
via a kernel fusion strategy is analysed. For this purpose and

TABLE I

EFFECT OF MULTIPLE KERNEL FUSION IN TERMS OF ACER (%).
R.M.:REPLAY-MOBILE; R.A.: REPLAY-ATTACK; M.M.: MSU-MFSD;

O.N.: OULU-NPU; ALL: AVERAGE OVER ALL DATASETS

in order to summarise the performance of each individual
kernel to facilitate a comparison, ACER’s corresponding to
different facial regions and different CNN representations are
reported in Table I where RxNy denotes the representation
for region x ∈ {1, . . . , 4} derived from the yth deep CNN
(N1 = GoogLenet, N2 = ResNet50, N3 = VGG16). From the
table, the following observations may be made. First, the best
performing regional representation among others in terms of
average ACER is R4N3 (i.e. VGG16 applied to the region
focusing on the areas surrounding the nose and the mouth).
Interestingly, the performance of R4 is better than the whole
face image (R1) using the same deep CNN representation. Sec-
ond, among three different deep representations one observes
that the VGG16 network provides the most discriminative
features for presentation attack detection. Third, regardless of
the region and the deep CNN features employed, the Replay-
Mobile and the OULU-NPU (forth protocol) appear to be more
challenging as compared with other datasets. In terms of the
kernel fusion strategy, the average ACER for the fusion is
5.58% whereas the best performing single kernel provides an
average ACER of 7.01% while the worst performing kernel
yields an average ACER of 12.83%. That is, the kernel
fusion improves the average ACER w.r.t. the best single kernel
by more than 20% and by more than 56% w.r.t. the worst
performing single kernel.

E. Effect of Sparse Regularisation

Next, the effectiveness of sparse regularisation on the one-
class kernel regression approach is examined. For this purpose,
using the LARS algorithm [66], solutions (α) with different
cardinalities (number of non-zero elements) of 2, 3, 4, 5, 10,
20, 30 and 50 are obtained. Cardinalities of higher than 50
are found not to improve the overall average ACER. The
performances corresponding to different cases in terms of
ACER are reported in Table II. The last column of the table
(ARSG), reports the Average Relative Speed-up Gain achieved
compared to the non-sparse solution in the test phase. From the
table, it may be observed that, interestingly, even by using 2
training frames, one may achieve an impressive overall average
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TABLE II

EFFECT OF SPARSITY IN TERMS OF ACER (%). NNZ: NUMBER OF
NON-ZERO ELEMENTS OF α; R.M.: REPLAY-MOBILE; R.A.: REPLAY-

ATTACK; M.M.: MSU-MFSD; O.N.: OULU-NPU; ALL: AVERAGE

OVER ALL DATASETS; ARSG: THE AVERAGE RELATIVE

SPEED UP GAIN

ACER of 8.10%. Increasing the cardinality from 2 towards 5,
a reduction in the average ACER over four datasets is achieved
where by using only 5 bona fide training frames, the proposed
approach yields an average ACER of 5.58%. Increasing the
cardinality beyond 5 towards 50, no further improvement in
terms of the overal average ACER is obtained. Regarding the
ARSG, the best performing method in terms of average ACER
with NNZ=5 (NNZ: Number of Non-Zero elements in α),
yields an impressive 160× speed-up gain in the test phase
compared to its non-sparse counterpart. The inference time (in
milliseconds), excluding the feature extraction step, for differ-
ent NNZ’s are reported in the rightmost column of Table II.
Considering the average performance over four datasets and
the inference times, the sparse solution with NNZ=5 seems
to be good trade-off between computational complexity and
performance. The inference time for the case of NNZ=5 is
0.038 milliseconds. Note that, however, the reported inference
times are obtained on a PC with the specifications as described
in Section V-A using conventional serial code. Since the
decision strategy of the proposed approach is amenable to
parallel processing (see Eq. 9), in practical situations, during
the testing phase, the inference time may be substantially
reduced by porting the corresponding computations onto a
graphical processing unit (GPU) for parallel processing.

F. Effect of Temporal Aggregation

The impact of temporal aggregation of frame-level scores
to derive a video-level decision using a sum fusion rule over
raw scores and over probabilistic scores is analysed in this
section. The frame-level and video-level performances of the
proposed approach on different datasets along with the average
ACER’s are reported in Table III. From the table it may
be observed that the sum fusion over raw scores (Video-
level (raw)) improves the average ACER on four datasets
from 8.99% to 5.58%. That is, more than 37% reduction in
the average ACER. The average fusion rule applied to the
probabilistic scores yields an even further reduction in the
average ACER, from 5.58% to 4.97%, corresponding to more
than 10% improvement.

G. Comparison to Other Methods

In this section, the performance of the proposed sparse one-
class kernel fusion regression approach (NNZ=5) is compared

TABLE III

EFFECT OF TEMPORAL AGGREGATION IN TERMS OF ACER (%).
R.M.:REPLAY-MOBILE; R.A.: REPLAY-ATTACK; M.M.: MSU-MFSD;

O.N.: OULU-NPU; ALL: AVERAGE OVER ALL DATASETS

against other methods on four datasets. Note that the proposed
approach does not utilise any PA samples for training (i.e.
operates in a zero-shot attack scenario). Nevertheless, we
provide comparisons between the proposed method and both
one-class (not utilising PA training data) as well as multi-class
approaches (utilising PA training data).

In addition to other existing face PAD techniques in the lit-
erature, in order to provide further baseline performances and
enable a more critical assessment of the proposed technique,
three other kernel-based one-class classifiers are included
for comparison. These are Support Vector Data Description
(SVDD) [74], Kernel Principal Component Analysis (KPCA)
[75] and the Gaussian Process (GP) [76]. For a fair compari-
son, the SVDD, KPCA and GP benefit from a similar kernel
fusion strategy as that of the sparse kernel regression approach.

1) OULU-NPU: The results of a comparison between the
proposed approach and some other methods on the fourth
protocol of the OULU-NPU dataset are reported in Table IV.
From the table, it may be observed that the average ACER
of the proposed kernel Fisher null-space approach on the
OULU-NPU dataset (6.25 ± 6.85) is better than other unseen
methods including SVDD, KPCA and GP. Compared to the
multi-class methods, the proposed approach outperforms the
majority of the existing methods in Table IV (except for [77])
that use PA data for training. As an instance, the proposed
approach performs better than the FAS-BAS approach [20]
with an ACER of 9.5 ± 6.0. The GRADIANT method [78]
with an ACER of 10.0 ± 5.0 represents the best performing
method on the fourth protocol of the OULU-NPU dataset in
the “Competition on Generalized Software-based Face Presen-
tation Attack Detection in Mobile Scenarios” [78].

2) Replay-Attack: The results of a comparison between the
proposed approach and other methods in an unseen attack
detection scenario on the Replay-Attack dataset are presented
in Table V. As it may be observed from the table, the
proposed approach achieves perfect detection performance on
this dataset (AUC = 100%) while the best unseen face PAD
method from the literature obtains a detection performance of
99.8% in terms of AUC (AUC is chosen as a the performance
metric to enable a comparison with other methods). The pro-
posed method also performs better than the SVDD approach
while yielding a similar performance as those of KPCA and
GP which both benefit from a similar multiple kernel fusion
strategy.

Table VI presents a comparison between the state of the
art multi-class methods and the proposed approach on the
Replay-Attack dataset in terms of HTER. The proposed
approach achieves a zero HTER, outperforming the majority of
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TABLE IV

COMPARISON OF THE PERFORMANCE OF THE PROPOSED APPROACH TO
OTHER METHODS (INCLUDING MULTI-CLASS METHODS) ON PROTO-

COL 4 OF THE OULU-NPU DATASET. (SVDD, KPCA AND GP
BENEFIT FROM THE SAME MULTIPLE KERNEL FUSION STRAT-

EGY AS THAT OF THIS WORK.)

TABLE V

COMPARISON OF THE PERFORMANCE OF THE PROPOSED APPROACH TO
OTHER METHODS ON THE REPLAY-ATTACK DATASET IN AN UNSEEN

ATTACK SCENARIO IN TERMS OF AUC (%).(SVDD, KPCA AND

GP BENEFIT FROM THE SAME MULTIPLE KERNEL FUSION
STRATEGY AS THAT OF THIS WORK.)

TABLE VI

COMPARISON OF THE PERFORMANCE OF PROPOSED APPROACH TO THE

STATE-OF-THE-ART MULTI-CLASS METHODS ON THE REPLAY-ATTACK

DATASET IN TERMS OF HTER (%)

multi-class methods. The only method among others achieving
a zero HTER is that of [79].

3) MSU-MFSD: Table VII presents a comparison between
the proposed approach and other methods operating in an
unseen PAD scenario in terms of AUC. The following obser-
vations may be made from the table. The purposed method

TABLE VII

COMPARISON OF THE PERFORMANCE OF THE PROPOSED APPROACH TO
OTHER METHODS ON THE MSU-MFSD DATASET IN AN UNSEEN

ATTACK SCENARIO IN TERMS OF AUC (%). (SVDD, KPCA AND

GP BENEFIT FROM THE SAME MULTIPLE KERNEL FUSION

STRATEGY AS THAT OF THIS WORK.)

TABLE VIII

COMPARISON OF THE PERFORMANCE OF PROPOSED APPROACH TO THE

STATE-OF-THE-ART MULTI-CLASS METHODS ON THE

MSU-MFSD DATASET IN TERMS OF EER (%)

performs better than other existing face PAD methods, achiev-
ing a perfect detection performance as compared to an AUC of
93% for the DTL method [11]. Compared with SVDD, KPCA
and GP, the proposed solution performs better than SVDD,
while KPCA and GP, benefiting from a similar multiple kernel
fusion strategy, achieve a similar performance as that of the
proposed approach.

The results of a comparison between this work and the state
of the art multi-class methods in terms of EER are presented
in Table VIII. As it may be observed from the table, the
proposed approach (achieving a perfect detection performance)
outperforms many multi-class methods. Among others, only
the RD method [85] provides a similar performance.

4) Replay-Mobile: A similar comparison as those on other
datasets is performed on the Replay-Mobile dataset. The
results are reported in Table IX in an unseen PAD scenario
and compared against others in terms of HTER (HTER is
chosen for comparison as the majority of the existing unseen
PAD results on this dataset have reported their performances
in terms HTER). From the table, it may be observed that the
proposed approach performs better than other methods in an
unseen PAD scenario reported in the literature, achieving a
HTER of 13.64% compared to the best performing unseen
method of [10] with a HTER of 14.34%. The proposed one-
class method also performs better than SVDD, KPCA and GP
approaches for face PAD in an unseen attack scenario.

A comparison of the proposed approach to the state of the
art multi-class methods is provided in Table X. As it may be
observed from the table, the proposed method performs better
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TABLE IX

COMPARISON OF THE PERFORMANCE OF THE PROPOSED APPROACH TO
OTHER METHODS ON THE REPLAY-MOBILE DATASET IN AN UNSEEN

ATTACK SCENARIO IN TERMS OF HTER (%).(SVDD, KPCA AND

GP BENEFIT FROM THE SAME MULTIPLE KERNEL FUSION

STRATEGY AS THAT OF THIS WORK.)

TABLE X

COMPARISON OF THE PERFORMANCE OF PROPOSED APPROACH TO THE

STATE-OF-THE-ART MULTI-CLASS METHODS ON THE REPLAY-MOBILE

DATASET IN TERMS OF HTER (%)

than some other multi-class methods, yet it performs inferior
compared to some multi-class techniques.

H. Summary of Performance Evaluations

Based on the evaluations conducted on four datasets, the
proposed approach, when compared to other methods operat-
ing in an unseen attack scenario (not using PA samples for
training) obtains the-state-of-the-art performance. Moreover,
the performance of the proposed approach is also very compet-
itive to the state-of-the-art multi-class methods. In this context,
on two out of four datasets, the proposed approach achieves
better or similar performance compared to methods that benefit
from PA training samples for training.

The ROC curves corresponding to the proposed approach
on different datasets are presented in Fig. 2. While on the
Replay-Attack and MSU-MFSD datasets a perfect detection
rate is obtained for all subjects, on the Replay-Mobile and
Oulu-NPU datasets one observes that the performances of
different subjects may vary to some extent. As an instance,
for some subjects from the Oulu-NPU dataset a zero error rate
is obtained while for the worst performing subject, the error
rate could be around 30%. Similarly, on the Replay-Mobile
dataset, while for some subjects perfect detection is achieved,
for the worst performing subject, the error rate may be more
than 28%.

In Fig. 3, the subjects with the worst detection rates from the
Oulu-NPU and Replay-Mobile datasets are depicted. While the
environmental imaging conditions do impact the detection, a
common attribute among the subjects with the lowest detection

Fig. 2. ROC curves of the proposed approach on different datasets for
different subjects (curves of clients with similar performances overlap).

Fig. 3. Subjects with the highest detection error rates from the Oulu-NPU
(left, ACER = 33.3%) and Replay-Mobile (right, HTER = 28.1%) datasets.

rates may be that of eyeglasses with prominent frames. In
this respect, the low detection rates associated with these
subjects may be attributed to distinctive eyeglasses which
could potentially alter the frequency information content of
images (in addition to possible specular reflections) as a result
of strong edges in the image in a way that the frequency
content of presentation attacks may resemble more that of
bona fide samples, and potentially be reflected in the features
derived from (local) images. A deep investigation of this aspect
of the method is flagged as a future direction investigation.

I. A Note on Inter-Dataset Evaluation

As discussed previously, the proposed face PAD technique
based on the sparse one-class kernel fusion regression oper-
ates in a class-specific framework. For this purpose, subject-
specific data is required to build client-specific classifiers.
However, as there is not overlap between subjects from
different datasets, the client-specific approach prevents an
inter-dataset evaluation. While the cross-dataset evaluation
is expected to be more challenging than the intra-dataset
evaluation, it should be noted that the current study addresses
a different, and possibly more challenging aspect of the
face PAD problem, i.e. the unseen attack detection prob-
lem. In this respect, the difficulties associated with an inter-
dataset evaluation attributed to, for instance, different imaging
sensors, different illumination conditions, etc. are addressed
in the experiments conducted on different datasets such as
the OULU-NPU database which naturally incorporate such
variations.

J. Remarks

• In a novelty detection task where no information regard-
ing novel samples is accessible, it is challenging to
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set the decision threshold. A common practice in this
case is to set the decision threshold at a pre-specified
confidence level such that a desired small proportion of
positive samples is rejected. In the case of availability of
a separate development set specific for each subject, one
would be able to set the threshold such that a desired
trade-off between FAR and FRR is maintained. In the
anomaly approach followed in this work, the HTER
corresponds to the confidence level point closest to the
EER point. However, setting the decision threshold in an
OCC approach to ensure a suitable practical performance
remains an open problem, subject to future investigation.

• An important practical aspect of a face PAD approach
is that of computational complexity. The recent trend
in the field is directed towards utilising effective deep
convolutional architectures. We have follow this approach
but with two distinctions. First, the current study uses pre-
trained networks. As such, it completely circumvents the
difficulties associated with over-fitting due to small face
PAD sample size or the computationally demanding train-
ing stage of the network. Second, instead of a single deep
CNN, we have applied multiple networks not only to the
whole face image but also to different local regions of the
images. While understandably such a procedure increases
the computational load as compared with a single network
applied only to the whole face region, as demonstrated
in the experiments, the kernel combination of multiple
representations is effective in improving the detection
performance. In this direction and in order to moderate
the computational complexity at the operational phase,
we developed a sparse variant of the proposed approach
that effectively improves the computational complexity at
the inference stage. The impact of such a sparse approach
and its running times were studied in §V-E.

• In the current study, four different regional representa-
tions and three networks are used to construct multiple
kernels. A further path of future investigation might be
to examine different regional representations or to design
a one-class Fisher null-space multiple kernel learning
approach to enhance detection performance. In an ideal
scenario, a face PAD system should be able to benefit
from any previously seen presentation attacks. This may
be done by refining the solution of a one-class classifier
by possibly cutting off part of the feature subspace
where some presentation attacks (anomalies) have been
observed. In practice, however, the successful one-class
anomaly-based approaches in the literature typically are
unable to make use of any previously known anomalies.
As an instance, the one-class kernel principal component
(KPCA), the Gaussian Process (PG) and the Kernel Fisher
Null-Space Regression approach do not provide a direct
and mathematically sound mechanism to benefit from
any possible negative training observations. As a future
direction of investigation, we are planning to extend the
methodology presented in this study so that it would be
able to make use of any seen presentation attacks to refine
the solution of a one-class classifier.

VI. CONCLUSION

The paper addressed the face presentation attack detection
problem in the challenging conditions of an unseen attack
detection setting. For this purpose, a one-class novelty detec-
tion approach, based on kernel regression was presented.
Benefiting from generic deep CNN representations, additional
mechanisms including a multiple kernel fusion approach,
sparse regularisation of the regression solution, client-specific,
and probabilistic modelling were introduced to improve the
performance of the system. Experimental evaluation of the
proposed approach on four publicly available datasets in an
unseen face PAD setting illustrated that the proposed method
outperforms other methods operating in an unseen scenario
while competing closely with the state-of-the-art multi-class
methods. In the case of availability of PA training samples,
further improvements may be achieved by refining the solution
of a one-class learner through different mechanisms including,
for instance, a feature selection procedure, or multiple kernel
learning using multi-class training samples, etc. which may be
consiered as future directions for investigation.
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