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Matrix-Regularized One-Class Multiple Kernel
Learning for Unseen Face Presentation
Attack Detection
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Abstract—The functionality of face biometric systems is
severely challenged by presentation attacks (PA’s), and especially
those attacks that have not been available during the training
phase of a PA detection (PAD) subsystem. Among other alterna-
tives, the one-class classification (OCC) paradigm is an applicable
strategy that has been observed to provide good generalisation
against unseen attacks. Following an OCC approach for the
unseen face PAD from RGB images, this work advocates a
matrix-regularised multiple kernel learning algorithm to make
use of several sources of information each constituting a different
view of the face PAD problem. In particular, drawing on the
one-class null Fisher -classification principle, we characterise
different deep CNN representations as kernels and propose
a multiple kernel learning (MKL) algorithm subject to an
(r, p)-norm (1 < r, p) matrix regularisation constraint. The pro-
pose MKL algorithm is formulated as a saddle point Lagrangian
optimisation task for which we present an effective optimisation
algorithm with guaranteed convergence. An evaluation of the
proposed one-class MKL algorithm on both general object images
in an OCC setting as well as on different face PAD datasets in an
unseen zero-shot attack detection setting illustrates the merits of
the proposed method compared to other one-class multiple kernel
and deep end-to-end CNN-based methods.

Index Terms—Unseen face presentation attack detection,
one-class Fisher null projection, multiple kernel learning, matrix
regularisation, zero-shot learning.

I. INTRODUCTION

TTACKS made at the sensor level (presentation attacks)

present a challenge to the operability of face biometric
systems. Typical instances of presentation attacks include print
attacks, video replay attacks, etc. The common approach to the
problem is to collect both genuine and presentation attack sam-
ples to train a two-class classifier. Such an approach, however,
implicitly assumes the problem a close-set recognition task
and lies on the premise that all presentation attacks that might
be encountered by a biometric system in a real-world setting
can be anticipated and covered in the training set. Typically,
such closed-set binary classifiers would be inclined towards
flagging those observations which are similar to the negative
samples as PA’s and others as genuine samples. Nevertheless,
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for an unseen attack, it could not be ensured that the feature
space representation of the observation would resemble those
previously seen by the system during the training stage.
As such, there would be a high chance that the novel unseen
attack may fall onto the wrong side of the decision bound-
ary of the learned closed-set two-class classifier, putting the
functionality of the biometric system at high risk in real-world
applications. Accordingly, the face PAD problem may be better
characterised as an open-set recognition task in a real-world
setting, necessitating a different approach to be dealt with. The
importance of unseen attacks has not only been identified in
the context of face PAD [1]-[6] but also in other biometric
modalities [7]-[11], motivating lots of intensive research on
the problem. Among others options, one potential approach
to the problem is that of one-class classification (OCC) [12],
[13]. A fundamental difference between the OCC and the
conventional two-/multi-class classification formalism is that
in an OCC setting the classifier mainly uses observations
from a single, typically target (i.e. normal/positive) class
for training. In this case, genuine biometric samples may
be considered as normal/target observations while PA’s are
regarded as anomalies (a.k.a. novelties, outliers, etc.). Since
in an OCC approach the training set is primarily formed from
genuine observations, the trained system is less biased towards
any particular attack type, and thus, may possess a higher
capacity to detect unseen attacks.

An effective strategy to boost the classification perfor-
mance is to combine multiple information sources which
might exist for the problem at hand. A well studied fusion
approach among others is that of multiple kernel fusion
where observations are projected onto a reproducing kernel
Hilbert space (RKHS) to construct multiple kernels followed
by a combination of multiple base kernels. In this context,
different kernels may represent different views of similarity
captured via different kernel functions or correspond to differ-
ent representations obtained from different modalities/sources.
A successful application of this strategy for the unseen face
PAD problem is presented in [14] where a one-class multiple
kernel fusion approach is developed. Although the kernel
fusion method in [14] is shown to be effective in detecting
unseen attacks, a shortcoming of this approach is that all
the individual base kernels are considered to be equally
important, and thus, are weighted equally in the composite
kernel. Such a strategy, ignores any potential differences
that might exist in the discriminatory information content
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between different views of the problem characterised via
kernels.

In the context of kernel methods when multiple base kernels
are available, an optimum combination of all kernels, obtained
via the so-called a multiple kernel learning (MKL) algorithm
[15], [16] is desired. Although other alternatives exist [17],
[18], the common approach for MKL is to assume the com-
posite kernel a linear fusion of multiple base kernels [19]-[23]
and translate the MKL task into one of finding optimal
linear combination weights. In this context, different prior
assumptions and regularisations on kernel weights have been
considered among which a vector £,-norm (p > 1) is one
widely used regularisation scheme. An immediate implica-
tion of an £,-norm regularisation is providing a controlling
mechanism over the sparsity of the kernel weight vector.
While there has been lots of intensive work on ¢,-norm
MKL in a multi-class setting [19], [24]-[26], and the vector
{p-norm regularisation has been a popular choice to impose
sparsity on kernel weights [24], [25], yet, other alternatives
exist. In particular, a matrix-norm regularisation for multi-class
classification scenarios has been considered in different studies
[27]-[29]. It is known that since the {,-norm regulariser
operates on individual kernels separately, it does not explicitly
take into account any possible interaction between kernels.
A matrix-norm regulariser, on the other hand, is better suited
to capture inter-kernel pairwise couplings, leading to improved
performance as observed in different multi-class classification
problems.

Inspired by the observations above, in this study, a one-class
matrix (r, p)-norm constrained multiple kernel learning tech-
nique is proposed for the unseen face PAD problem. In partic-
ular, drawing on the one-class Fisher null projection [30]-[32],
the one-class mixed-norm MKL problem is formulated as
a convex min-max optimisation task for which an effective
optimisation approach is presented. In the context of unseen
face PAD, an important characteristic of the proposed MKL
approach is that it only uses target (i.e. genuine/positive)
training samples. Utilisation of only genuine samples for train-
ing is advantageous as it removes any potential bias towards
any particular attack type, and consequently, improves the
generalisation capability for the detection of unseen attacks.
On the other hand, by virtue of a matrix-norm regularisation
constraint, the proposed one-class multiple kernel learning
algorithm allows to combine multiple representations in an
effective fashion to derive a kernel-based OCC classifier with
better unseen PAD capabilities.

The existing work on matrix-regularised MKL only con-
siders the multi-/binary-class classification problem [27]-[29]
and require training data from multiple classes to operate.
This is a fundamental limitation with regards to the unseen
zero-shot face PAD problem since, for this problem, training
data from only a single class is utilised. In this context, and in
contrast to [27]-[29], the proposed matrix-regularised multiple
kernel learning algorithm operates in a pure one-class learning
setting. A further algorithmic and mathematical difference
between the proposed approach and those in [27]-[29] is
that the formulation of the multiple kernel learning problem
in the current study is based on the one-class Fisher null
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classification principle as opposed to other work in [27]-[29]
which operate based on an SVM formulation. As validated
through the experiments, a one-class Fisher null formulation
offers a superior classification performance as compared with
an SVM-based one-class classifier.

The main contributions of the current study are as follows:

« We propose a one-class (r, p)-norm multiple kernel learn-
ing algorithm based on the one-class Fisher null method
for the unseen face PAD problem and pose the corre-
sponding problem as a saddle point optimisation task.
A matrix-norm regularisation scheme not only provides a
mechanism to tune into the inherent sparseness of a par-
ticular problem but also facilitates modelling interactions
between kernels, improving the detection performance of
the final one-class classifier.

o« We derive an effective method to optimise the saddle
point optimisation problem associated with the proposed
one-class MKL algorithm.

o« We carry out an evaluation of the proposed MKL algo-
rithm on both general object image and face presentation
attack datasets in an unseen attack scenario and compare
its performance against the baseline and other methods
from the literature including multiple kernel and deep
one-class end-to-end learning approaches. By virtue of
an optimal combination of multiple representations of the
problem posed as a one-class MKL task, the proposed
approach provides superior performance compared with
the existing methods.

The article is structured as follows. An overview of related
work on face PAD with an emphasis on the methods focusing
on the detection of unseen attacks is presented in Section II.
In Section III, a background on the one-class Fisher null
projection is presented. In Section IV, once a short sum-
mary of the existing one-class MKL algorithms is provided,
we present our new one-class matrix-regularised (r, p)-norm
MKL algorithm. The results of an assessment of the pro-
posed one-class MKL algorithm on different databases are
provided in Section V. Finally, in Section VI, we provide
conclusions.

II. PRIOR ART

The face PAD problem has been addressed using hardware-,
challenge-response- or software-based mechanisms [33]-[36]
among which the software-based approaches have received
more popularity. Distinct from presentation attacks, there exist
other attack types that might be directed towards a classifica-
tion system such as those considered in [37], [38]. The face
PAD methods classify an image/video using different inherent
representations obtained from the signal content. The current
study follows a software-based formalism for face PAD based
on visible spectrum RGB images. In terms of software-based
methods, texture is regarded as the most commonly used cue
for PAD [39], [40] while other approaches based on motion
[41]-[43] also exist. Frequency-based methods try to detect
PA’s based on their frequency content in the Fourier domain
[43]-[46] while other work [47], [48] use colour and shape
information for face PAD. There exist other studies [49] where
a statistical approach is used to model noise for face PAD.
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A well known group of methods focuses on deep convolutional
neural networks [50]-[52] to detect presentation attacks.

From a classification perspective, the conventional approach
to the face PAD problem is that of two-class classification.
The widely used two-class formulations include the linear
discriminant analysis [47], [53], Support Vector Machines
[54], [55], neural networks [42] or convolutional neural net-
works [50], [51] as well as Bayesian networks [56] and
Adaboost-based [57] approaches. In contrary to the two-class
classification-based methods, there exist regression-based tech-
niques that try to project input representations to the corre-
sponding labels [58].

A strong alternative to the common two-class approach
for face PAD, is that of one-class classification which has
been found to be especially useful with regards to unseen
attacks [1]. One instance of the approaches in this group is that
of [2] which uses a GMM to learn the distribution of genuine
observations based on image quality metrics. Other study [3]
considers the One-Class SVM and Auto-Encoder one-class
classifiers for the detection of unseen attacks. The authors in
[4], [59] advocate a client-specific modelling approach to train
one-class learners separately for each subject in the dataset.
Other study [60] addresses the unknown PAD problem in
a zero-shot classification framework using a tree network.
A triplet focal loss in the context of a metric learning approach
is considered in [6]. The work in [61] considers a sum fusion
rule for one-class classifier combination. While a fused system
illustrates some improvement compared to the single best
classifier deployed, the improvements were very limited. For
this purpose, in the same study, the authors also applied a
weighted sum fusion rule over classifier scores to further boost
the performance where the fusion weights were learned using
both positive and negative samples. Such a weight tuning
mechanism, however, raises concerns regarding the generalisa-
tion of such weights to unseen attacks. Moreover, as the fusion
mechanism operates solely on similarity/dissimilarity scores
produced by individual learners, any other potentially useful
information inherent to each individual learner is ignored.
Other work [14] proposed a multiple kernel fusion method
over one-class kernel learners where it is demonstrated that
a kernel fusion approach could significantly improve the
detection performance compared to each individual kernel.
One advantage of a kernel fusion approach is that the dis-
criminatory information of each individual representation is
not summarised solely as a single score as is the case when
a classifier fusion is practised over classifier scores. Never-
theless, in [14], the relative importance of each individual
kernel is ignored and all kernels are weighted equally in the
composite kernel which may compromise the performance.

In contrast to the existing multiple classifier fusion systems
such as [61] which are based on scores generated by different
one-class learners, the proposed multiple kernel learning algo-
rithm operates on features in a RKHS. As such, the combined
system have access to a more informative and richer data
representation compared to multiple classifier systems which
may only access classifier (dis)similarity scores. As verified
through experiments, this improves the capability of the pro-
posed MKL system to detect unseen attacks. On the other
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hand, some other studies employ both positive and negative
samples to weigh different classifiers. The use of negative
training PA samples for weight learning, however, may pose
difficulties in detecting novel attacks as such weights have
been optimised for certain attack types. In comparison, our
proposed MKL algorithm, consistent with the presumed eval-
uation setting of unseen attacks, solely uses positive samples
for training and operates in a pure one-class framework which
enhances its generalisation towards novel attacks. Finally,
as noted previously, compared to other multiple kernel fusion
approaches for face PAD [14] which ignore potential discrep-
ancies in the discriminatory information content of different
representations, our multiple kernel learning algorithm learns
the intrinsic sparsity of the problem and encodes relative
importance of different kernel representations for improved
detection performance.

III. BACKGROUND

The Fisher classification principle tries to maximise the
following ratio [62]:

BIZp

BTEwB

where X, and X, respectively stand for the between- and
within-class scatter matrices, and 8 denotes the discriminant.
The Fisher null approach [63] corresponds to the theoretically
optimal Fisher discriminant B, = arg maxg F(B) that provides
the best separability between classes (in a Fisher sense) and
yields a between-class scatter that is positive and a within-class
scatter of zero value, i.e.

BB, > 0
BlT,B, =0 (1)

The one-class Fisher null-space approach [30], [31] oper-
ates by adapting the Fisher null classification principle to a
one-class setting. This is realised by representing the negative
class by an artificial sample at the origin and utilising only
positive training observations.

The standard approach to find the optimal one-class Fisher
null discriminant involves solving a generalised eigenvalue
problem [30], [31]. The work in [32], however, reformulates
the one-class Fisher null method as a regression problem in the
RKHS (reproducing kernel Hilbert space). A regression-based
reformulation is not only favourable for bypassing the compu-
tationally demanding eigen-decomposition of dense matrices
but also makes it possible to regularise the discriminant for
improved performance. The one-class regression-based Fisher
null algorithm [32] operates as follows. Suppose there are n
positive training samples x;’s, i = 1,...,n and v(x;) denotes
the RKHS feature vector for x;. If @ is the optimal solution to

F(B) =

l n
Lo 1—07 V)2 2
Ignngg v (%)) @
then for a suitably chosen v(.) which yields a kernel matrix
which is strictly positive-definite, the projection 8 " v(.) cor-
responds to a one-class kernel Fisher null projection. cf. [14]
for a proof. The Gaussian (RBF) kernel on a dataset with no
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duplicate samples provides a strictly positive-definite kernel
matrix.

Eq. 2 corresponds to an ’unregularised’ one-class kernel
Fisher null-space classifier. While there exists other alterna-
tives, in [32], it has been observed that imposing a Tikhonov
regularisation on the Fisher null projection leads to better
generalisation performance. A Tikhonov regularisation on 6
is enforced as

. J <
min 013+ — > (1 =6 v(x))? 3)
i=1
where ¢ is the regularisation variable. In kernel methods,
a dual space representation is commonly preferred due to its
convenience. The dual form of the optimisation task in Eq. 3
may be readily shown to be

max —o0®'w+20'1 - o' Ko 4)
(0]

where K is the kernel matrix, ¢ = n/d, and 1 represents an n-
dimensional unity vector. The optimal solution to the problem
in Eq. 4 is a one-class Tikhonov-regularised Fisher null
projection in the RKHS and has been observed to outperform
many one-class learning approaches in different settings [32].

IV. ONE-CLASS MULTIPLE KERNEL LEARNING

In this section, first, we provide a brief summary of
the existing work on one-class MKL and then present our
new matrix-regularised one-class multiple kernel learning
algorithm.

A. Related Work on One-Class MKL

There is a large body of study concentrating on multiple
kernel learning in a multi-class setting. The work in [19], [21],
[24] provide a good background and taxonomy of different
techniques for multi-class multiple kernel learning. Despite its
importance, the one-class multiple kernel learning problem has
been rarely addressed in the literature, except for a few excep-
tions. As an example, the authors in [64] propose an {1-norm
multiple kernel learning approach based on the support vector
data description method. Drawing on the fact that in an SVM
classifier tighter class boundaries are derived by using a larger
number of support vectors, the authors also propose slim
counterparts of their approach through modifications of the
cost function so that tighter class boundaries are preferred
over loose boundaries. Other study [65], addresses the multiple
kernel learning task via an ¢1-norm regularised formulation to
encourage sparsity. The work in [25] studied multiple kernel
learning in multi-class classification settings and proposed two
optimisation techniques for SVM-based classification where
OCC is flagged as a especial scenario. However, the authors do
not provide any experimental evaluation for OCC. Other work
[16] formulates an ¢{-norm SVM-based multi-class MKL as
a semi-infinite linear programme. The authors then discuss
extensions of their formulations to OCC without carrying
out any experimental analysis in a one-class setting. Other
study [66], proposes a localised MKL algorithm where as an
alternative to fixed kernel weights over the whole space of
samples, a parametric function is deployed to assign locally
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optimal weights to the kernels. The regularisation which is
implicitly assumed is that of an ¢;-norm regularisation which
is imposed thorough specific gating functions associated with
kernel weights.

In summary, the existing one-class MKL methods either
focus on fixed-norm regularisation schemes or use a vec-
tor £,-norm constraint for learning kernel weights. In con-
trast, in the current study, we propose a matrix-based mixed
(r, p)-norm regularisation for learning kernel weights in an
OCC setting. The proposed (r, p)-norm regularisation is
shown to possess the potential to lead to substantial improve-
ments over the existing one-class MKL methods while pro-
viding a superior performance compared to other methods
including end-to-end one-class deep networks.

B. The Proposed One-Class MKL Approach

Following the majority of the existing work on MKL, in this
study, the composite kernel is assumed as a linear combination
of multiple base kernels. In this work, kernel weights are
constrained via an (r, p)-norm in a one-class setting. The
mixed (r, p)-norm (1 < r, p) is a generalisation of the ordinary
vector-norm to matrices. The (r, p)-norm for a matrix @ is
defined as

@

pr\"P
= (Z(Z@i,-r) ) )
i J
where the j and i indices run over the rows and columns of
matrix @ and ®;; represents the element in the i h row and
j™ column. That is, one first applies ||.||, to each column of ®
and then applies |||, to the result to obtain || @], ,. Given an
input vector 7, in order to apply a mixed (r, p)-norm on 7, one
may consider ® as ® = mx . As observed in a multi-class
multiple kernel learning paradigm [27]-[29], a mixed-norm
regularisation enables interactions between different kernels by
introducing inter-kernel cross coupling terms which are absent
in the ordinary vector-norm regularisation scheme. As such,
a mixed-norm regularisation offers a better modelling capabil-
ity to benefit from such interactions for improved performance.
From a different perspective, a mixed-norm regularisation
introduces additional flexibility into the model by providing
further potential solution loci in the kernel weight space.
In order to visualise this effect, in Fig. 1, we have plotted 2D
unit £,-norm balls in the first quadrant for p € {1, 2,4, 8}.
The green solid curves in this figure represent these balls.
In the same figure, we have also plotted the unit (r, p)-norm
balls for the same possible choices of r and p € {1,2,4, 8}.
As the (7, p)-norm encapsulates the £,-norm as a special case
when r = p, the unit (r, p)-norm balls include the solution
loci provided by an ¢,-norm. However, a mixed (r, p)-norm
provides additional potential solutions in the kernel weight
space when r % p. The balls corresponding to the case when
r # p are depicted as blue dotted curves in Fig. 1. As it is
evident from the figure, a mixed (r, p)-norm regularisation
provides further potential loci in the kernel weight space
compared to an £ -norm regularisation, and thus, leads to
an increased modelling capability which if suitably deployed
may improve the performance. In the proposed multiple kernel
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0 1

Fig. 1. The green solid curves correspond to the unit £p-norm balls (in 2D)
for p € {1,2,4,8}. The unit (r, p)-norm balls for r, p € {1,2, 4,8}, not
only include the green solid curves, but also yield the blue dotted curves as
additional and potential solution loci.

learning algorithm given J base kernels, K in Eq. 4 (the
kernel matrix) would be substituted by Zjl-zl 7 ;K; where 7;’s
represent kernel weights. Throughout the sequel, we assume
that the kernels to be combined have positive contribution
to the combined system. That is, the corresponding kernel
weights are strictly positive: 7; > 7,V j where 7 is an arbitrary
but otherwise fixed small positive real number. However,
for mathematical tractability, we relax the strict positivity
constraint to a non-negativity constraint in the subsequent
formulations. Representing K as z]]'=1 7 ;K; and optimising
over m (the kernel weights), under mixed matrix-norm regu-
larisation and non-negativity constraints, the optimisation task
for the proposed method shall be

7
minmax —c® ' @ +2@'1 — wT( Z 7iKj)o
T [0}

—1

T

st. Tt >0, Hnn <1 (6)
r,p

where the non-negativity constraint ensures that a valid com-

bined kernel is obtained while the (r, p)-norm constraint

introduces sparsity as well as interactions between kernels.

C. Optimisation

We assume u to be a J-element vector where the ;"
element is defined as u; = 0 K j@. The optimisation problem
in Eq. 6 then reads

minmax —cw' @ +20' 1 —7'u
T w
st >0, HnnT <1 %)

rp

For fixed w, the objective function above is linear w.r.t. &
and the set of constraints induced by p > 1 and » > 1 can be
represented as a supremum of linear functions of wx ", and
hence, forms a convex set [29], [67]. As a result, for fixed w,
the optimisation problem is convex in & . On the other hand, for
fixed &, the objective function is concave in ®. Consequently,
the generalised minimax theorem [68], [69] may be deployed
to switch the order of optimisation without affecting the
result:

max { — 6w @+ 2w 1+ min —JITU} (8)
® neC

where C = {n‘n > 0, 7UTT||,p < 1}. Eq. 8 suggests that
the optimisation may be first performed in & and then with
respect to .
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For optimisation in m, the Lagrangian of the minimisation
subproblem may be formed as

—~D-@+p'n )

np

L=y (HnnT

where the Lagrange multipliers are non-negative, i.e. y > 0
and p > 0. The KKT optimality criteria in this case may be
written as

Vol =0 (102)

p'r=0 (10b)

x>0 (10¢)

y(”nnTH S ~h=0 (10d)

r:
From (10a) one obtains
i
u—p+ [%
(kA1)
Il llzll,
— Lz
ll72 II5

I|”~! © sign(r)

1o sign(n)] =0 (11
where O represents element-wise (Hadamard) multiplication.
Using (10c) we have

Izl Izl

(B8

p—1

[llnllp Il

I 11

]:0 (12)

Due to the form of the minimisation problem it is clear that
at the optimum the elements of = must be as large as possible.

Since ||71,'7tTHr,p is convex, maximising the elements of
leads to the maximisation of ||Jl’7tT H rp whose optimum lies on
the boundary of the feasible set C specified by HnnT Hr’p =1
Since Hnn—r“r, = |z, lzll, [29], at the optimum we have
lzll, Iz, = 1. Eq. 12 may now be rewritten as

n,pfl n,rfl r—2

xP=2
utp= (—+—)= n@(—+—) (13)
P i) =7 O i ™ e

Let’s define the new variables @ and g as

P2 T2 -1
i=uo (o + ) (14)
LIFRNE1E
and
np72 nr72 1
p=p0 () (15)
LIFRREAR
Eq. 13 may then be expressed as
and thus:
m=@+pn)/y a7
According to (10b) it should hold that
1 2
MTHZ;Zﬂj(ﬁj +i;)=0 (18)

j=1
Sincer >0,u >0, pu >0, we have i > 0 and p >
0. Next, we show that for Eq. 18 to hold, one must have
it = 0. For the proof, we use contradiction and assume not
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Algorithm 1 Matrix-Regularised One-Class Multiple Kernel
Method

D w= (z]]-=1 J%Kj +O‘I)711

2: repeat

3 u=[w'Kw,.. o Ko
) - n,p—Z Ir—2 1
4 u_uG(—unH,’? + )

50w =u//lul, [lul,

-1
6: (x)Z(ij-ZlﬂjKj—}-O'I) 1
7: until convergence
8: Output: ® and &

all elements of u are zero and u; = € > 0 for an arbitrary
index j. This assumption leads to

T € ”fiz ”;72 -
S ) )
y Nl il
which contradicts the requirement of [LTJZ = 0. As a result,

[ cannot have any non-zero elements and hence g = 0 which
leads to g = 0. Using Eq. 17, & is then derived as

19)

T =1u/y (20)

where according to the relation ||]1’||p Iz, =1, we have

y =/ lall, luf,

Once m is determined, in order to maximise the cost
function in e, its partial derivative may be set to zero to yield:

J
-1
® = (zn'jKj-i-O'I) 1

J=1

21

(22)

Note that w in the equation above is given in terms of =&
which itself depends on ®. In other words, @ in Eq. 22 is
expressed in terms of itself. In ordelzr to find the optimal e,
let us define ij:l ;K; + aI) 1 = f(w). The optimal
® must then satisfy @ = f(@). A fixed-point iteration [70]
may then be applied to determine w. The approach described
above is provided in Algorithm 1 where ® is initially set to
a weight vector (i.e. m) which has equal elements and a unit
matrix mixed-norm.

In the proposed approach, thanks to the convexity of the
problem, m is determined exactly. For optimisation w.r.t.
®, a fixed-point iteration is applied. It can be shown that
for a sufficiently large regularisation parameter o, f(w) =
(ZJJ-ZI ;K; + aI) 1 is Lipschitz continuous with a Lip-
schitz constant smaller than 1, and hence, the proposed
approach summarised as Algorithm 1 converges to a unique
fixed point regardless of any initial guess for w. cf. Appen-
dix for a proof.

V. EXPERIMENTAL ASSESSMENT

The proposed one-class MKL algorithm (denoted as
“(r, p)-norm MK-FN”) is evaluated on different datasets and
compared against other approaches in this section. The com-
parison includes both one-class kernel-based and end-to-end
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deep learning-based approaches. The multiple-kernel-based
approaches in the comparison are constructed using the
“product” and “average” rules for kernel fusion (corresponding
respectively to the geometric and arithmetic mean of kernel
matrices) applied to the Gaussian process method (GP) [71],
the Fisher null approach (FN) [30], [31], and to the kernel
principal component analysis for OCC (KPCA) [72]. In addi-
tion, the SVDD-based multiple kernel learning approach
(MK-SVDD) [64], the multiple kernel learning one-class
SVM algorithm (MK-OCSVM) [65] and their ’slim’ variants
[64] denoted as Slim-MK-SVDD and Slim-MK-OCSVM are
included in the comparisons. Moreover, we include state-of-
the-art one-class deep learning approaches in the comparisons.
The rest of this section is arranged as follows.

o In Section V-A, we provide the implementation details.

o The convergence behaviour of the proposed approach is
analysed in Section V-B.

o In Section V-C, the proposed method is examined for
abnormality detection on the Abnormality-1001 dataset
[73] and for novelty detection on the Caltech256
dataset [74].

o The experimental results of an assessment of the pro-
posed matrix (r, p)-norm one-class MKL method for
“unseen” face presentation attack detection on the
Replay-Mobile [75], Oulu-NPU [76], MSU-MFSD [77]
and Replay-Attack [78] databases are presented and dis-
cussed in Section V-D.

A. Implementation Details

In the following experiments, the regularisation para-
meter ¢ in the proposed method is selected from
{1076,107,1074,1073,1072,101, 1, 10, 10%} x n where
n denotes the number of positive training observations.
We use a Gaussian kernel function to form the kernel matri-
ces. The width of the Gaussian kernel is selected from
{%M, %M, M} where M corresponds to the average over
all pairwise Euclidean distances among all positive train-
ing observations. Parameters r and p are selected from
{32/31,16/15,8/7,4/3,2,4,8,10}. The parameters of the
proposed method are set on a separate validation set. For
the SVM-based MKL approaches, the parameters are set on
the validation set as suggested in [64].

B. Convergence Characteristics

The convergence characteristics of the proposed MKL
approach is analysed in this section. To this end, we ran-
domly select a single class from the Caltech256 object
dataset [74] and identify it as the target class. We then use
Algorithm 1 to learn kernel weights corresponding to seven
deep CNN features derived using the pre-trained Resnet50
[79], Googlenet [80], Alexnet [81], Vggl6 [82], Densenet201
[83], Mobilenetv2 [84] and Nasnetlarge [85]. We repeat the
experiment 100 times for a number of different combinations
of (r, p), namely for (r, p) € {(32/31,32/31), (4/3,4/3),
(8, 8), (32/31, 8)}, each time initialising 7 to a random vector
with an (r, p)-norm equal to one. We define the error as the
l-norm of the change in @ in the course of optimisation.
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Fig. 2. Convergence curves of the proposed approach for a sample one-class
MKL problem for different (r, p)-norm regularisations.

A zero change represents convergence. The results of this
experiment are depicted in Fig. 2. From Fig. 2, it may be
seen that the proposed approach typically convergences in 5
iterations regardless of the regularisation imposed. It is worth
noting that similar behaviour has been observed for other (r, p)
combinations.

C. General Object Image One-Class Classification

An assessment of the proposed MKL approach for abnor-
mality and novelty detection on different databases is pre-
sented in this section.

1) Abnormality Detection: One of the frequently used data-
bases for abnormality detection is that of 1001 Abnormal
Objects dataset [73] comprised of 1001 images of 6 different
object categories from the PASCAL dataset [86]. On this
dataset, the task is to label each image as abnormal or normal.
However, since the pattern of the abnormality is not known
ahead of time, training is conducted on observations from the
target/normal class only. We build seven kernel matrices based
on the representations obtained from the pre-trained Resnet50
[79], Googlenet [80], Alexnet [81], Vggl6 [82], Densenet201
[83], Mobilenetv2 [84] and Nasnetlarge [85]. In order to
enable a fair comparison with other approaches, the protocol
proposed in [73] is followed for evaluation. In this experiment,
we not only include other kernel fusion methods but also
consider the state-of-the-art approaches from the literature
inclusive of deep one-class methods. A comparison of different
approaches in terms of AUC (Area Under the ROC Curve)
on this database is provided in Table I. From this table it
may be verified that the proposed matrix-norm MKL method
improves over the previous best reported result by a large
margin. The previous best reported performance on this dataset
corresponds to the work in [87] with an average AUC of 95.6%
which is much inferior compared to the proposed method
with an AUC of 99.2%. Compared to fixed kernel fusion
rules, the proposed MKL learning algorithm also provides
substantial improvements. The SVM-based MKL approaches
also perform worst than the proposed method. In particular,
the best SVM-based MKL approach on this dataset is the
MK-SVDD-Slim with an average AUC of 94.1% whose
performance is more than 5% worst than the performance
of the proposed MKL algorithm. In summary, the proposed
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TABLE I

COMPARISON OF DIFFERENT OCC APPROACHES FOR ABNORMALITY
DETECTION ON THE ABNORMALITY-1001 DATASET

Method AUC (MEAN=STD%)
Product-FN 90.1 £0.3
Average-FN 94.7 4+ 0.2
Product-GP 84.4+0.3
Average-GP 93.5+0.2
Product-KPCA 87.3+0.3
Average-KPCA 91.6 £0.2
MK-SVDD 92.3£0.2
MK-OCSVM 91.44+0.3
MK-SVDD-Slim 94.1 £0.1
MK-OCSVM-Slim 93.9+0.1
Graphical Model [74] 87.0 + n.a.
Adj. Graphical Model [74] 91.1 + n.a.
OCNN [89] 88.5+1.4
Autoencoder [90] 674+ 1.2
OC-CNN [91] 84.3 £ n.a.
DOC [88] 95.6 £ 3.1
This work 99.2 4+ 0.2

(r, p)-norm one-class MKL method not only performs better
than fixed-rule and SVM-based multiple kernel systems but
also outperforms the state-of-the-art end-to-end deep learning
methods.

2) Novelty Detection: In novelty detection, one is interested
in quantifying the novelty of a test sample based on the
observations previously enrolled to the system. Since the
typical characteristics of a novel observation are not available
a priori, the training is very often based on only positive
samples using one-class classification techniques. The Cal-
tech 256 dataset [74] is one of the commonly employed
databases for novelty detection that encapsulates images of
objects from 256 categories for a total of 30607 samples.
Similar to the previous experiment on abnormality detection,
using the aforementioned seven pre-trained deep convolutional
networks, we construct seven kernels matrices. In order to
perform a fair comparison against the existing techniques,
the protocol introduced in [91] is followed where each class
is considered as the target/normal category and the rest as
novel observations. For the first 40 classes of the database the
experiment is repeated and the performance is measured in
terms of the area under the ROC curve (AUC). The results
corresponding to this experiment are tabulated in Table II
where we have included both multiple kernel and deep learning
methods. The following observations from Table II may be
made. First, thanks to a multiple kernel representation, all the
multiple kernel methods outperform end-to-end deep learning
methods by a large margin. Second, compared to fixed-rule
multiple kernel approaches, the proposed (r, p)-norm MKL
method performs better. Third, the proposed MKL algorithm
performs better than other MKL alternatives based on an
SVM formulation. An last but not the least, the classification
performance of the proposed method is better than the state-
of-the-art one-class deep learning methods in the literature.
In this context, the best performing deep OCC method is
that of DOC-VGG16 [87] with an average AUC of 98.1%
compared to the proposed approach with an AUC of 99.6%.
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TABLE II

COMPARISON OF DIFFERENT OCC APPROACHES FOR NOVELTY
DETECTION ON THE CALTECH256 DATASET

Method AUC (MEAN+STD%)
Product-FN 99.3+0.6
Average-FN 99.3 £0.6
Product-GP 99.3 £ 0.6
Average-GP 99.3£0.6
Product-KPCA 99.3+0.8
Average-KPCA 99.2 +£0.8
MK-SVDD 99.1 £ 0.7
MK-OCSVM 99.1 +0.8
MK-SVDD-Slim 99.2 + 0.6
MK-OCSVM-Slim 99.1 £0.8
OCNN-AlexNet [89] 82.6 + 15.3
OCNN-VGG16 [89] 88.5t14.4
Autoencoder [90] 62.3 +7.2
OCSVM-VGGI6 [88] 90.2 +£5.0
DOC-VGGI16 [88] 98.1 +2.2
DOC-AlexNet [88] 95.9+ 2.1
This work 99.6 £ 0.5

D. Unseen Face Presentation Attack Detection

An assessment of the proposed method for face PAD in an
unseen PA setting is conducted in this section. The databases
utilised for this purpose are as follows.

1) The OULU-NPU Database [76]: incorporates 4950 gen-
uine and attack video samples from 55 individuals captured
with 6 different devices in three sessions under different
illuminations and background settings. The data incorpo-
rates previously unseen acquisition conditions, attack types as
well as input sensors. The video sequences are divided into
3 subject-disjoint sets for training, development and testing.
For evaluation, four different protocols are introduced where
the forth protocol is known to be the most challenging one
which is used in the current work.

2) The Replay-Mobile Dataset [75]: contains 1190 video
sequences of both attack and bona fide (genuine) data corre-
sponding to 40 subjects which are recorded using two different
devices in different illumination settings. Three disjoint sub-
divisions for training, development and testing in addition to
an enrolment set exist in this database.

3) The Replay-Attack Dataset [78]: provides 1300 video
sequences of attack and genuine data from 50 subjects.
Attacks are generated using a high definition iPad screen,
a mobile phone or a printed image. Three randomly divided
subject-disjoint subsets for training, development and testing
are available in this database.

4) The MSU-MFSD Dataset [77]: includes 440 video
sequences captured from either photo or video attack attempts
from 55 subjects that are recorded by two different recording
devices. The publicly available subset of this dataset, provides
data from 35 individuals. The database is divided into two
partitions for training and testing which are subject-disjoint.

The standard ISO metrics for measuring the performance
of a PAD system are [92]: 1) attack presentation classifi-
cation error rate (APCER) that corresponds to the ratio of
misclassified attack presentations using the same presentation
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attack instrument species; and 2) bona fide presentation clas-
sification error rate (BPCER) that represents the misclassified
percentage of bona fide presentations. For performance report-
ing, the highest APCER over all PAIS’s (presentation attack
instrument species) is used:

APCER = max APCERpujs (23)
PAIS
The all-inclusive performance of a PAD system can be
expressed as ACER (the Average Classification Error Rate):

ACER = (BPCER + g}\a[;éAPCERPA,S)/z (24)

In order to enable a comparison to the existing methods
in the literature, the performance of the proposed approach is
also gauged in terms of Half Total Error Rate (HTER), and
the AUC (the Area Under the ROC Curve).

In this work, we use the features suggested in [14] to con-
struct multiple kernel matrices as they have been found to be
useful for face PAD. Moreover, using a similar set of features
enables a fair comparison to other similar multiple kernel
methods. These features correspond to deep representations
obtained using the pre-trained VGG16 [82], ResNet50 [79]
and GoogleNet [80] extracted from four facial regions giving
rise to a total of 12 kernels. The regions correspond to the
whole face, eyes and the nose region, nose and surroundings
and the regions around the nose and the mouth. In all the
following experiments, we follow a client-specific modelling
approach as advocated in [59] and evaluate the proposed
approach in an unseen attack setting using “only” genuine
(bona fide) data for training. As a client-specific modelling
approach is pursued, for each test subject, the data from all
the other individuals serves as the validation data to tune the
parameters. The results corresponding to this experiment are
tabulated in Table III, IV, V and VI for the Oulu-NPU, Replay-
Attack, MSU-MSFD and Replay-Attack datasets, respectively.
In addition to the OCC unseen face PAD approaches from
the literature, 10 different multiple kernel systems introduced
earlier are evaluated as baseline methods. For a fair compari-
son, all multiple kernel methods are fed with similar features
as that of the proposed MKL method. Deep one-class face
PAD methods from the literature are also included in the
comparison.

a) Summary of detection performances: Based on the
performances reported in tables III, IV, V and VI, a number
of observations may be made. First, on the Oulu-NPU and
Replay-Mobile datasets which are relatively more challenging
datasets, the proposed matrix-norm MKL Fisher null method
clearly demonstrates its advantage. In this respect, on the
Oulu-NPU dataset, while fix kernel fusion rules (i.e. geo-
metric and arithmetic mean) do provide reasonable results,
yet, the proposed matrix-norm MK-FN approach provides an
outstanding ACER of 2.5 4+ 2.2 compared to the best fix
fusion rule (Product-KPCA and Product-FN) with an ACER
of 4.5 4+ 5.3. It is worth noting that neither one of the
MKL methods based on the one-class SVM, does not provide
any advantage compared to the examined fixed-rule kernel
fusion methods in Table III. In comparison with the best
reported result in the literature which is due to the OCA-FAS
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TABLE III

COMPARISON OF DIFFERENT APPROACHES FOR THE UNSEEN FACE
PRESENTATION ATTACK DETECTION ON PROTOCOL IV OF
THE OULU-NPU DATASET (MEANZ£STD %)

Method BPCER APCER ACER

Product-FN 25+4.1 6.6 £6.8 4.5+5.3
Average-FN 0.84+2.0 9.24+7.3 5.0+ 3.9
Product-GP 2.5+4.2 9.2+9.7 5.8+ 6.4
Average-GP 1.7+4.1 10.8 £ 8.0 6.2+4.4
Product-KPCA 2.54+4.2 6.6 + 6.8 45+5.3
Average-KPCA 0.0£0.0 10.8+£7.3 54+3.6
MK-SVDD 25+4.2 11.7+10.8 7.1+6.2
MK-OCSVM 25+42 133+11.7 7.9+64
Slim-MK-SVDD 1.7+4.1 10.8 +£ 8.0 6.2+44
Slim-MK-OCSVM 1.7+ 4.1 10.8 £ 8.0 6.2+4.4
SAPLC [94] 6.6 £5.5 11.9+6.9 9.3+44
OCA-FAS [95] 5.9+4.5 2.3+25 4.14+2.7
The work in [96] 1.7+26 5.8+4.9 3.7+2.1
The work in [97] 9.7+4.8 11.34+3.9 9.8+4.2
The work in [14] 0.8+20 11.6+£13.6 6.2+6.8
This work 0+0 5.0+4.5 2.5+22

TABLE IV

COMPARISON OF DIFFERENT APPROACHES FOR THE UNSEEN FACE
PRESENTATION ATTACK DETECTION ON THE REPLAY-MOBILE
DATASET (HALF TOTAL ERROR RATE (HTER) %)

Method HTER
Product-FN 8.8
Average-FN 7.3
Product-GP 8.8
Average-GP 7.6
Product-KPCA 9.8
Average-KPCA 9.1
MK-SVDD 11.1
MK-OCSVM 10.8
Slim-MK-SVDD 7.6
Slim-MK-OCSVM 8.1
The work in [59] 8.5

Weighted-Fusion [61] 9.9

GoogleNet+MD [4] 13.7
The work in [14] 11.8
This work 6.7

method [94] with an ACER of 4.1 £2.7, the proposed method
also yields a better detection performance.

On the Replay-Mobile database, while the proposed
matrix-norm MKL algorithm achieves a HTER of 6.7%,
the best fixed-rule kernel fusion system of Average-FN
achieves a HTER of 7.3% which underlines the effectiveness
of the proposed matrix-norm MK-FN method. Similar to
the Oulu-NPU dataset, on the Replay-Mobile dataset neither
one of the MKL methods based on SVM does not provide
any performance gain compared to the fixed-rule multiple
kernel learning methods examined. In comparison with the
best reported performance in the literature which is due to
the method in [59] with a HTER of 8.5%, the proposed
matrix-regularised multiple kernel Fisher null method also
performs better.

On the MSU-MFSD and Replay-Attack datasets, almost all
the multiple kernel systems including the fixed-rule kernel
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TABLE V

COMPARISON OF DIFFERENT APPROACHES FOR THE UNSEEN FACE
PRESENTATION ATTACK DETECTION ON THE MSU-MFSD DATASET
(AREA UNDER THE ROC CURVE (AUC) %)

Method AUC
Product-FN 100
Average-FN 100
Product-GP 100
Average-GP 100
Product-KPCA 100
Average-KPCA 100
MK-SVDD 100
MK-OCSVM 100
Slim-MK-SVDD 100
Slim-MK-OCSVM 100
IMQ+OCSVM [1] 67.7
BSIF+OCSVM [1]  75.6
LBP+NN [3] 81.6
LBP+GMM [3] 81.3
LBP+OCSVM [3] 84.5
LBP+AE [3] 87.6
DTL [5] 93.0
The work in [14] 100
This work 100
TABLE VI

COMPARISON OF DIFFERENT APPROACHES FOR THE UNSEEN FACE
PRESENTATION ATTACK DETECTION ON THE REPLAY-ATTACK
DATASET (AREA UNDER THE ROC CURVE (AUC) %)

Method AUC
Product-FN 100
Average-FN 100
Product-GP 100
Average-GP 100
Product-KPCA 99.9
Average-KPCA 100
MK-SVDD 100
MK-OCSVM 100
Slim-MK-SVDD 100
Slim-MK-OCSVM 100
IMQ+OCSVM [1] 80.7
BSIF+OCSVM [1]  81.9
LBP+NN [3] 91.2
LBP+GMM [3] 90.1
LBP+OCSVM [3] 87.9
LBP+AE [3] 86.1
DTL [5] 99.8
MD [4] 99.7
The work in [14] 100
This work 100

fusion systems and the proposed (r, p)-norm MK-FN approach
achieve a perfect performance which emphasises the utility if
a multiple kernel system.

b) Discussion: Compared with the existing multiple ker-
nel or deep end-to-end approaches, the proposed method
obtains a better performance. The superior performance of the
proposed approach for the unseen zero-shot face PAD problem
may be justified as follows.

In comparison to the existing one-class multiple kernel
learning algorithms, the proposed one-class MKL algorithm
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operates based on the Fisher classification principle whereas
the existing one-class MKL algorithms are based on an SVM
formulation. The superiority of a Fisher-based one-class clas-
sification framework as compared with an SVM formulation
may be verified by comparing the classification performance
of the fixed fusion rules applied to the Fisher null method with
those of the SVM-based MKL algorithms. More importantly,
the proposed multiple kernel learning algorithm infers optimal
kernel weights for a kernel fusion subject to a matrix-norm
constraint which, as discussed previously, offers higher flex-
ibility to the MKL procedure and also enables inter-kernel
interactions. This is in contrast to the existing one-class MKL
algorithms which are limited to vector-norm regularisation
constraints.

When compared to the existing end-to-end one-class deep
networks, the proposed one-class MKL algorithm performs
better since a multiple kernel learning method benefits from
an optimal combination of multiple representations whereas
the existing OCC approaches typically train a single network
to yield a ‘single representation’ for classification. An optimal
combination of multiple representations possesses a higher
capacity to lead to a better classification performance, as con-
firmed via experiments on multiple datasets.

E. Computational Complexity

The computationally dominant component of the proposed
matrix-norm one-class MKL algorithm is step 3 in Algorithm 1
performing a matrix-vector multiplication that incurs a time
complexity of O(Jn?). In addition, a naive calculation of
the inverse matrix for step 6 of Algorithm 1 leads to a time
complexity of O(n®). However, a matrix inversion operation
can be performed in O(n?) time benefiting from the incre-
mental Cholesky decomposition and the Sherman’s march
algorithm [97], [98].

One particularly appealing attribute of the proposed
MKL approach is that of parallelizability. In this respect,
the matrix-vector multiplications may be computed by ben-
efiting from parallel processing units to yield large speed-
ups. In a similar fashion, a parallel implementation of matrix
inversion is applicable to obtain significant improvements
in the running time [99], [100]. In order to illustrate this,
we have measured the CPU and GPU timings for the vector-
matrix-vector multiplication (step 3 of Algorithm 1) and for
the matrix inversion operation (step 6 of Algorithm 1) for
different numbers of training samples on Matlab R2021a. The
results are tabulated in Table VII and Table VIII for a machine
with 64-bit 4GHz CPU, 32 GB memory and with a GeForce
GTX 1080Ti GPU operating on Windows 10.

As may be observed from Table VII, for the vector-
matrix-vector multiplication (step 3 of the proposed algorithm)
more than 24 times speed-up again may be achieved by porting
the operations onto a GPU. The speed-up gain may be more
than 100 times when the number of training observations
is 5000 or more. Regarding the matrix inversion operation
(Table VIII), the relative speed-up gain achieved is more than
8 times when the number of training samples 1000. The
speed-up gain would be around 3 times when increasing the
number of training samples towards 5000, 10000 or to 15000.
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TABLE VII

COMPARISON OF CPU AND GPU TIMINGS (IN SECONDS) FOR
VECTOR-MATRIX-VECTOR MULTIPLICATION (STEP 3 OF
THE PROPOSED ALGORITHM)

no. of training samples  n=1000 n=5000 n=10000 n=15000

Elapsed time on CPU 0.0037 0.0845 0.3367 0.7420

Elapsed time on GPU 1.56e-04  7.67e-04 0.0025 0.0054

Speed-up gain 24.20 110.17 134.68 137.41
TABLE VIII

COMPARISON OF CPU AND GPU TIMINGS (IN SECONDS) FOR MATRIX
INVERSION OPERATION (STEP 6 OF THE PROPOSED ALGORITHM)

no. of training samples n=1000 n=5000 n=10000 n=15000
Elapsed time on CPU 0.0289 0.2553 0.9830 2.2178
Elapsed time on GPU 0.0035 0.0851 0.3131 0.7036
Speed-up gain 8.12 2.99 3.13 3.15

F. Remarks

o In the current study, as the main objective was to
demonstrate the efficacy of the proposed one-class MKL
algorithm to improve the performance of a multiple kernel
system for face PAD, we fed the proposed approach with
similar representations as those of previous studies [14]
to accurately gauge any performance benefits brought
by the proposed MKL algorithm. Nevertheless, one may
consider a richer pool of representations for improved
detection performance as future research directions.

o While we presented a zero-shot face PAD algorithm,
the proposed approach can be generalised to benefit from
any seen attacks by constructing a separate one-class
learner for each different attack type. In this case, a test
sample may be either classified as bona fide, or as one
of the previously seen types of attack or as an unseen
attack.

o The matrix-regularised MKL approaches presented in
[27]-[29] require training data from all the classes, and
thus, cannot be applied to the zero-shot one-class face
PAD problem considered in the current study. In this
context, the proposed method in this work is innovatively
and deliberately designed to fill this gap by being oper-
able in a one-class classification setting, i.e. be trainable
using only samples from a single class to be applicable to
the zero-shot unseen face PAD setting. Please note that,
although one may consider a “multi-class” extension of
the proposed matrix-regularised MKL algorithm, never-
theless, such a formulation is not desired as a multi-class
approach neither fits the evaluation settings of the prob-
lem addressed in the current study nor is it the preferred
approach for the unseen face PAD problem as observed
in other studies [1], [3], [5], [14], [61], [93]-[96].

VI. CONCLUSION

The face presentation attack detection problem in an
unseen zero-shot attack setting was addressed. To this end
and motivated by the success of multiple kernel methods,
a matrix-regularised one-class MKL algorithm was presented.
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We formulated the corresponding MKL problem as an optimi-
sation task and presented an effective method to find the opti-
mal solution. Through comprehensive evaluations on different
datasets, including general object image and four different face
PAD datasets, it was illustrated that the proposed approach not
only outperforms fixed-rule and SVM-based MKL methods
but also performs better than the existing one-class end-
to-end deep learning approaches, supporting the efficacy of
a mixed-norm multiple kernel learning method for the unseen
face PAD problem.

APPENDIX
CONVERGENCE OF THE PROPOSED ONE-CLASS
MATRIX-NORM MKL ALGORITHM

A fixed-point iteration is convergent if the function is Lip-
schitz continuous with a Lipschitz constant which is smaller
than one [70]. Hence, for convergence, it is sufficient to
demonstrate that for a sufficiently large regularisation para-
meter o, we have

[ sien], <ot <], e

where f = (Z;:l 7 ;K; + 01) 11 and ®@" and @"*!
represent two consecutive discriminants generated at iterations
m and m+ 1, respectively. Let us assume meH — o™ H2 =K.
If ¥ = 0, then the sequence @™ is converged. As a result, let
us analyse the case x > 0. Considering the LHS in Eq. 25,
we have
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where the first inequality is based on the triangle inequality
and the second is due to the fact that the norm of a product
of a matrix and a vector is smaller than/equal to the product
of their norms [97]. Furthermore, the [;-norm of an inverted
matrix is 1/z where z is the smallest eigenvalue of the original
matrix [97]. As a result

[£@"t) = r@m)|, = vat/z +1/2)

where z; and zp denote the minimum eigenvalues of
(Z,J'=1 n]’."HKj —i—aI) and (Z,J'=1 nmjKj—i—aI), respectively.
It is known that adding a constant to the main diagonal

shifts the eigenvalues of a matrix by the same value. As a
result, if the minimum eigenvalues of ij-zlir;"HKj and

27)

ij':l n'K; are z) and zj, respectively, it holds that z; =
7y 40 and z2 = 75 +o. In the worst case, z; =0 and z}, =0,
and hence, z; = ¢ and z» = ¢ and consequently

| 1@ = 1@ =2vi/e (8)
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By using the upper bound in Eq. 28 in Eq. 25, the sufficient
condition for convergence is obtained as

2
o 2"

K

(29)

By choosing o sufficiently large, the above inequality is
satisfied, and hence, f(w) would be Lipschitz continuous
with a Lipschitz constant smaller than one and as a result
the proposed one-class MKL algorithm would be convergent.
In the discussion above, we analysed the worst case scenario
where the combined kernel matrices were not strictly positive-
definite. However, by choosing a Gaussian kernel function for
a duplicate-free training set, the combined kernel matrix will
be strictly positive definite (i.e. z; > 0 and z, > 0). In this
case, the lower bound for ¢ that would lead to convergence
would be smaller than that of Eq. 29. B
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