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Abstract
The world is creating ever more data and the applications are required to deal with 
ever-increasing datasets. To process such datasets heterogeneous and manycore 
accelerators are being deployed in various computing systems to improve energy 
efficiency. In this work, we present a runtime management system designed for such 
heterogeneous systems with manycore accelerators. More specifically, we design a 
resource-based runtime management system that considers application characteris-
tics and respective execution properties on the nodes and accelerators. We propose 
scheduling heuristics and run time environment solutions to achieve better through-
put and reduced energy in computing systems with different accelerators. We give 
implementation details about our framework; show different scheduling algorithms, 
and present experimental evaluation of our system. We also compare our approaches 
with an optimal scheme where integer linear programming approach has been 
implemented for mapping applications on the heterogeneous system. While it is pos-
sible to extend the proposed framework to a wide variety of accelerators, our initial 
focus is on Graphics Processing Units (GPUs). Our experimental evaluations show 
that including accelerator support in the management framework improves energy 
consumption and execution time significantly. We believe that this approach has the 
potential to provide an effective solution for next generation accelerator-based com-
puting systems.
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1 Introduction

Computing systems are required to deal with ever-increasing datasets as the num-
ber of applications and users increases. While mankind created data was 150 exa-
bytes (billion gigabytes) in 2005 and 1200 exabytes in 2010, it is expected to 
be beyond 35,000 exabytes in 2020. For example, astronomical image data from 
ALMA (the Atacama Large Millimeter/submillimeter Array) [1] is 1 terabyte per 
day, or Google processed about 24 petabytes of data per day in 2008 [9]. Big Data 
term is used for such systems, where complexity is in three dimensions, namely 
volume, velocity, and variety [20]. Different kinds of data from different sources 
appear mostly in an unstructured form (95% of created information was unstruc-
tured in 2010), and the data sizes are moving from terabytes to zettabytes. Moreo-
ver, streaming data makes it impossible to store all the data produced. Therefore, 
it is necessary to design systems, where software libraries with distributed pro-
cessing capabilities are available and analysis of big data problems across differ-
ent kinds of hardware resources is possible.

To support such systems, it is inevitable to have the hardware infrastructure. 
According to the National Institute of Standards and Technology (NIST), cur-
rent computing systems in the cloud are defined as a model for enabling ubiq-
uitous, convenient, on-demand network access to a shared pool of configurable 
computing resources [41]. Storage devices, networks, servers, applications, and 
services are components of computing systems, where current high-end comput-
ing systems consist of generations of servers with different processing, network, 
and storage capabilities [4]. At the same time, these systems are getting more and 
more complex with improved accelerator technologies. Since manycore accelera-
tors are being deployed in the high-end computing systems [16], heterogeneity in 
these systems rapidly increases. Dealing with heterogeneity in such systems is not 
a trivial task because the infrastructure is shared among multiple applications and 
multiple users [22] in the system.

Traditionally, data-intensive applications are executed in single instruction 
multiple data (SIMD) environments in a massively parallel fashion. However, 
with the advances in chip manufacturing technology, manycore accelerators [18, 
21] have been developed and used in desktops, servers, and clusters since the first 
debut of NVidia’s GeForce [18]. They even made their way into embedded sys-
tems with the widely used NVIDIA Tegra [42]. Manycore accelerators are also 
being deployed in the Cloud computing systems [17] and are expected to be in the 
core of Big Data computing systems in the coming years. While GPGPUs (Gen-
eral Purpose GPUs) such as NVidia’s Fermi [29], AMD’s AMD Radeon HD 6990 
[3] are widely used in the current clusters, other technologies such as Intel Many 
Integrated Core (MIC) Architecture [21] is also being used.

While the number of accelerator technologies used in computing systems 
increases, Big Data applications that process millions of terabytes of data does 
not exploit the available accelerators. This is mainly due to the fact that using 
these accelerators for Big Data applications is not a trivial task as accounting for 
heterogeneity in the system becomes more difficult. This is especially true for 
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utilizing the manycore accelerators as they exhibit different characteristics on dif-
ferent applications.

The main objective of the proposed work is to develop a runtime manage-
ment system for parallel applications that can also be used in the context of Big 
Data applications running on computing systems with different accelerators. More 
specifically, we design a resource-based runtime management system that consid-
ers application characteristics and respective execution properties on the nodes and 
accelerators. We propose scheduling heuristics and run time environment solutions 
to achieve better throughput and reduced energy consumption in computing systems 
with different accelerators. More specifically, we suggest a heterogeneous comput-
ing runtime management system called Resource Based Scheduling System which 
aims to:

– Implement resource-based job scheduling heuristics in order to satisfy user 
resource requests for a job, distinguish CPU and accelerator jobs on the system, 
and decide which node to execute the job for execution time and energy effi-
ciency.

– Create an extensible framework in which adding and removing nodes or accel-
erators are easy.

– Develop a scheduling heuristic that enables the execution of accelerator jobs on 
CPU and vice-versa when both accelerator and CPU executions are possible.

The rest of the paper is organized as follows. In the next section, we give a detailed 
comparison of our approach with the prior related efforts. In Sect. 3, we give the 
details of our resource-based scheduling system. ILP formulation is given in Sect. 4. 
Sect. 5 presents the experimental setup and the results. The paper is concluded in 
Sect. 6 with a summary of our major observations.

2  Related work

Many researchers addressed the problems of heterogeneous systems in the past. 
One research direction that is widely studied is to integrate already existing scalable 
massively parallel computing frameworks to heterogeneous systems. As expected, 
MapReduce is the first framework that comes to mind which is being widely used 
for heterogeneous systems to enable hybrid computing [39, 49].

In [36, 37], the authors proposed and evaluated heterogeneity in separate clus-
ters with different types of processing nodes. While the approaches proposed in [36, 
37] provide some level of heterogeneity, our work focuses on heterogeneity in two 
dimensions: (1) heterogeneity in single node and (2) heterogeneity among multiple 
nodes of the system. Previous work also addresses heterogeneous system schedul-
ing. The most significant examples of heterogeneity are presented in [34, 35].

In a more recent study, authors in [13] propose a task scheduling strategy based 
on a genetic algorithm for CPU-GPU heterogeneous computing platforms. Bao et al. 
[5] propose a dynamic task scheduling stratgy for Heterogeneous System Architec-
tures (HSA) and evaluate their approach on data-parallel applications. Authors in 
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a more recent study propose a feedback-based dynamic and elastic task scheduling 
scheme [45]. They aim to provide a better load balance and device utilization but 
with lower scheduling overhead. Liu et al. [23] propose a hardware-software design 
to minimize the energy cost of datacenters by a deadline-aware energy-efficient task 
scheduling algorithm. In [12], authors propose a task scheduling technique for het-
erogeneous computing platforms. Their main objective is to focus on heterogeneity 
with multicore CPUs and different accelerators like FPGAs.

An open-source software Torque [43] is also used in similar environments, which 
supports CPU-accelerator heterogeneous systems. However, Torque’s mechanisms 
use GPU in a dedicated way which only provides GPU computing on-demand. 
As also stated in [35], Torque cannot exploit the capabilities of a framework like 
OpenCL. Besides heterogeneous systems, scheduling on homogeneous systems is 
also discussed widely [14, 36, 37].

In standard Open MPI [31] there is no direct support for heterogeneous nodes. If 
the nodes are not oversubscribed, then the scheduling takes place in a round robin 
fashion. Otherwise, depending on the mpirun call, MPI uses slots, i.e., the number 
of processors on each host. Schedulers (such as Slurm, PBS/Torque, SGE, etc.) use 
two scheduling policies, one by slot and one by the host. The default scheduling pol-
icy is by slot, where all slots are exhausted before proceeding to the next node. The 
other alternative is to schedule a single job on each node in a round-robin fashion. 
Communication layers such as the Byte Transport Layer (BTL) and the BTL Man-
agement Layer (BML) in MPI are not aware of processor heterogeneity [19]. In an 
effort to provide some level of heterogeneity support, authors in [50] propose a task 
scheduling approach based on MPI and CUDA by taking into account the node-level 
heterogeneous characteristics.

Kapil et al. [10] propose techniques to distribute OpenCL kernel workloads dur-
ing run-time onto different devices according to power limitations and CPU load 
conditions. Their main focus is to achieve power-aware scheduling on CPU-GPU 
environments. On the other hand, Shulga et al. [40] propose a scheduler that selects 
targets to execute according to machine learning-based training with different data 
sizes. In [30], authors propose visual analysis techniques to evaluate the execution 
time of high-performance applications on hybrid architectures. GPUShare [15] is 
a middleware solution for achieving fair sharing among different GPU processes. 
Chen and Lee [8] propose G-Storm, a scheduling algorithm that targets Storm big 
data platforms. Specifically, they implement a scheduler for Storm which takes 
the GPU capacity into consideration. Bellavista et al. [7] propose a priority-based 
resource scheduling for distributed stream processing systems.

Other related efforts [6, 11, 24, 27, 44, 48] implement similar techniques on dif-
ferent platforms or using different parameters. As opposed to these previous contri-
butions, we propose a new scheduling heuristic in our proposal. Firstly, our scheme 
considers submitted jobs to port between accelerators and CPU only after it decides 
that the impact on the application execution time will be the minimum among the 
available jobs in the system. And secondly, our heuristic considers resource decays 
in terms of user-requested resources when a node is idle for some iterations of the 
scheduler and uses this approach to maximize resource utilization while trying to 
increase throughput.
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3  Resource based scheduling system

Our runtime system is designed to run on various distributed computing system set-
tings. In such a framework, it is assumed that any node in the system is not aware of 
the rest of the system; rather, the system-level scheduler named as the Cloud Appli-
cation Manager (CAM), controls the device allocation and utilization. As shown in 
Fig. 1, a hierarchical management system is envisioned. While in our current system 
we only have one level, this can easily be extended to a deeper management scheme 
with many nodes.

The access mechanisms to use the underlying CAM management system is 
abstracted by an access layer as shown in Fig. 2. Any higher level access request will 
be provided through available system calls. While we have implemented the neces-
sary system calls to access the CAM module, some changes may be required to work 
for a specific cloud interface.

CAM communicates with the nodes in the system via Portable Operating System 
Interface (POSIX) sockets and stores all necessary information about the system’s 
state. The state information is kept for: 1)Currently running jobs, 2)Jobs waiting to 
be scheduled, and 3)Node information. For the running jobs, we keep where the job 
is currently executing on, what kind of resource (CPU, GPU, etc.) it is using, the 
memory requirements, how long has it used the resource, expected duration, etc. 
Similar to running jobs, for the jobs to be scheduled, we keep the arrival time of 
the job, the expected execution time, what kind of resource it requires, etc. Execu-
tion times are either declared by the user or are estimated through historical data or 
profiling. For each node, the system keeps track of the number of cores (for CPU) 

Fig. 1  Overview of a heterogeneous cluster management system
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and the number of SMs (for GPU) as resource types. The voltage/frequency levels 
of cores, and CPU/GPU utilization for each available resource in the node is also 
kept. We assume that each node has one multiprocessor unit and multiple hetero-
geneous accelerators. In this environment, we focus on OpenMP [33] and OpenCL 
[32] applications. While there are previous efforts [26, 38] to use these high-level 
languages in cloud settings, they are also widely used in heterogeneous clusters.

It is usually common to assume such an environment since running parallel com-
puting applications on a geographically distributed cloud system using multiple 
nodes will suffer from data transfer delays [51]. In addition to data transfer delays, 
heterogeneity will also create a bottleneck for a computing system. Our main con-
cerns are energy consumption, utilization of the system, and executing applications 
on accelerators in the system. To achieve this, we developed resource-based job 
scheduling heuristics to satisfy user-level resource requests for jobs, while consider-
ing the different CPU/accelerator jobs on the system. Our heuristics mainly decide 
which node to execute the job and on which processing element.

We also implement scheduling heuristics that explore executing some of the 
accelerator jobs on CPU when both accelerator and CPU versions of applications 
are available for better energy consumption and execution time results. In order to 
implement these scheduling and mapping policies, we extended our system to han-
dle OpenCL applications that can be converted into CPU applications easily.

Our framework is composed of two main components: cloud application manager 
(CAM) and Compute Nodes (CN). Our CAM implementation resides in a server 
where it controls different CNs while keeping the current state information about 
the system. According to the resources and requests, CAM decides which job to be 
executed on which node. An overview of the system can be seen in Fig. 3. CAM 
checks all nodes to determine which of the CNs are available for executing a new 
job. More specifically, CAM keeps a list of all jobs to keep the state of the jobs as 

Fig. 2  The access mechanisms to use the underlying CAM management system is abstracted by an 
access layer
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either running or waiting. CAM informs CNs about which particular jobs that will 
be executed next. After a CN finishes the execution of an assigned job, the CN noti-
fies the CAM that CN is available for the next job. Meanwhile, CAM listens for user 
commands such as job submission, addition/deletion of a CN, and setting CAM’s 
properties.

3.1  System overview

3.2  Scheduling

In order to enable an effective scheduling policy for CAM, we have implemented 
five different scheduling heuristics. These are RB-FIFO (resource-based first-in-
first-out), RB-LJF (resource-based longest job first), RB-SJF (resource-based short-
est job first), RB-LJF-BA (resource-based longest job first with bottleneck avoid-
ance), and RB-LJF-OCL (resource-based longest job first which allows execution of 
OpenCL jobs on any potential device including accelerators and CPU).

As has been discussed in the literature [25], the appropriate scheduling in terms 
of energy requires the voltage/frequency adjustment to be the main objective. While 
we do not have the voltage/frequency level as a direct parameter in the scheduling, 
it is included indirectly by the applied heuristics. More specifically, the efficient dis-
tribution of tasks onto multiple nodes and multiple processing elements on these 
nodes enables voltage scaling to be more effective. Depending on the execution 
scenario some of the processing elements can reduce the frequency and conserve 

Fig. 3  System overview. Cloud application manager (CAM) and compute nodes (CN) are the main com-
ponents
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energy. Energy can also be considered as a primary objective but this requires a 
more sophisticated scheduling policy which may add non-tolerable delays.

These scheduling algorithms all have a common structure, where target CN selec-
tion is a two-step process: (1) queue assignment and (2) job selection. These are 
given in the next sections with more detail.

3.2.1  Selection of compute nodes based on resource requirements

In order to decide which nodes are optimal for satisfying a job’s resource require-
ments, we consider the amount and type of each resource in the CN and the required 
resource amount/type. These resource requirements could be related to process-
ing power, memory size, disk size, energy budget, communication bandwidth, etc. 
According to the job type, there could be more specific requirements. For example, 
an accelerator job may require to have a certain number of symmetric multi-pro-
cessing (SMs) units, a certain texture size, a global memory size, and certain disk 
sizes. However, in this work, we currently use only the number of cores and SMs as 
resource requirements. Figure 4 gives the high-level view of the scheduling mecha-
nism used in the proposed approach. As can be seen from this figure, the scheduling 
decision takes multiple parameters as input including the resource model, quality-of-
service (QoS) model, the underlying infrastructure model, and the execution model.

3.2.2  Queuing jobs

We have two common job lists in order to keep track of submitted jobs, namely 
two groups in terms of job type. Although it would be possible to consider other 
types of jobs based on different criteria, our system currently considers two possi-
bilities, CPU and accelerator jobs. In addition to the two common queues, we have 
also added a queue for handling OpenCL jobs. As mentioned before, our job assign-
ment scheme has two steps. However, for RB-FIFO, RB-SJF, and RB-LJF most of 
the work is done in the queuing step. While queuing, our scheme considers profiling 

Fig. 4  High-level view of the scheduling mechanism used in the proposed approach
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based execution time estimates and orders the priority of the submitted jobs in the 
corresponding queue. This way both energy and throughput can be improved since 
cumulative execution time directly affects the total energy consumption.

More specifically,

– For RB-FIFO, we keep a FIFO queue according to the arrival time of the jobs.
– For RB-SJF and RB-LJF, we order the jobs according to expected execution run 

time in ascending and descending order for RB-SJF and RB-LJF, respectively.
– For RB-LJF-BA and RB-LJF-OCL, again, we have an ordered queue but this 

time we also consider the aging of the job. More specifically, the value that we 
use to order the jobs is the sum of waiting time and expected execution time. 
Additionally, in RB-LJF-OCL, an OCL queue is added.

3.2.3  Selection of compute nodes

We developed two new heuristics for scheduling the jobs. The first heuristic is a 
resource-based longest job first with bottleneck avoidance. This heuristic avoids bot-
tleneck cases for a node in the system by relaxing resource requests of some of the 
jobs. It also avoids starvation for a job by considering the aging of that job. The sec-
ond heuristic is an extended version of the first one. This extended version enables 
executing some of the accelerator jobs in CPU for getting better throughput in addi-
tion to the resource-based longest job first scheme. For three basic approaches; RB-
FIFO, RB-SJF, and RB-LJF; most of the work is done at queuing step. While sched-
uling, we start to traverse the corresponding queue from the beginning and find the 
first job that can execute on a free compute node based on resource requests from 
the user. In these basic approaches, we use cpu_jobs and acc_jobs queues, which are 
common for all heuristics. Algorithms 1 and 2 give the first two steps that are com-
mon for all baseline and developed scheduling heuristics. 
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RB-LJF with bottleneck avoidance and RB-LJF-OCL scheduling heuristics use the 
same job selection logic. However, the RB-LJF-OCL heuristic is specialized to han-
dle OpenCL jobs. As the first step, CAM tries to find CPU and/or accelerator jobs 
for the available node, where the highest priority lists are cpu_jobs and acc_jobs lists 
as in three basic heuristics. The algorithm given in Fig. 5 explains the details of our 
approach. As indicated before, this scheduling is only executed in RB-LJF-OCL. More 
specifically, CAM tries to find an accelerator job (OpenCL applications for our system) 
which also has a CPU version of the job to execute on an available CPU node only if 
CAM fails to find a CPU job in the first step. When selecting this job, CAM tries to 
select a job with lower CPU execution time than the first optimal accelerator job by 

Fig. 5  Scheduling—OCL Job Selection to Execute on CPU
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traversing the queue in descending order in terms of execution times (ordering of the 
queue is LJF). This way, we are able to prevent accelerator jobs to be executed on CPU 
which can block a CN’s CPU for a long time.

If CAM fails to find a job for CPU and accelerator in the first three steps, it tries to 
find a job with the smallest execution time from cpu_jobs and acc_jobs lists by apply-
ing a decay function. In order to enable this, CAM searches cpu_jobs and acc_jobs list 
starting from the shortest job and finds a matching job according to the selected decay 
function. For the decay function, we have used the number of cores (for CPU) and the 
number of SMs (for GPU) as resource types. Every time that the scheduler is called 
and there are no jobs for the specific node, we have increased the number of free passes 
for that specific node. Then, during scheduling time, we have relaxed resource requests 
of the jobs by 0.5free_passes while selecting a job for the idle node. Jobs are executed on 
a node for the entire duration of the execution. That is, jobs do not migrate between 
nodes to prevent potential data migration overheads.

4  Integer linear programming (ILP) formulation

Our goal in this section is to present an ILP formulation of the problem of schedul-
ing jobs within the given framework. This ILP-based management scheme opti-
mally decides on job scheduling, thereby providing an upper-bound for our heuristic 
implementations.

ILP is a set of techniques that solve optimization problems where both the objective 
function and the constraints are linear functions. The solution variables generated as 
the result are restricted to be integers. A special case of ILP is Binary Integer Program-
ming (BIP or 0-1 ILP) where variables are required to be 0 or 1 (rather than arbitrary 
integers). It is used in this ILP formulation for determining the application-to-processor 
or application-to-accelerator mappings. While ILP uses the same inputs as the heuristic 
approaches, it generates the best possible mapping based on the given parameters.

In order to test our approach, we use a commercial tool, XPressMP [47] to solve our 
ILP problem. Below, we give the important constant terms and decision variables used 
in our ILP formulation.

4.1  Constants

In the ILP formulation, we assume that there is a fixed number of jobs (J) and a fixed 
number of nodes (N) in the system.

There are also job related constants given as input to the ILP solver. EXECi,j indi-
cates the execution time of job i on processor/accelerator j, whereas SUBMITj indicates 
the submit time of job j.

4.2  Variables

We capture the assignment of a certain job on specific node using the assigni,j vari-
able, where job j is executed on resource i. Note that, resource in this case could be a 
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processor or an accelerator on a node. Another binary variable used is colocatedi,j,k , 
where job j and job k are executed on the same resource i. precedesj,k is used to indi-
cate if job j precedes job k in execution. To capture the start and end time of a job, two 
new 0-1 variables are used, namely startj and finishj , respectively. To capture when the 
execution of all jobs have completed, we use busyi , where i indicates an execution point 
in time.

4.3  Constraints

Our first constraint is about executing the jobs on only one resource. Therefore, we 
need to have the following constraint to capture this.

Following constraint determines whether two different jobs are executed on the same 
resource or not. If both assigni,j and assigni,k is “1” (job j and job k are executed on 
resource i) then colocatedj,k is forced to be “1”.

If both job j and job k are executed on the same resource then one of the jobs must 
precede the other one. Either precedesj,k or precedesk,j must be “1”.

If job k precedes job j then there must be a difference between start times of two jobs 
at least as much as the execution time of job k. Note that, constant M in the follow-
ing expression is assumed to be close to ∞.

Following constraint forces each job’s start time to be greater than its submission 
time.

Similarly, a job’s finish time is the sum of its start time and the total execution time 
on the assigned node. Therefore,

(1)
N
∑

i=1

assigni,j = 1, ∀j.

(2)colocatedj,k ≥ assigni,j + assigni,k − 1, ∀i, j, k.

(3)precedesj,k + precedesk,j = colocatedj,k, ∀i, j, k.

(4)startj − startk ≥

N
∑

i=1

assigni,k × EXECi,k −M × (1 − precedesk,j), ∀j, k.

(5)startj ≥ SUBMITj,∀j.

(6)finishj = startj +

N
∑

i=1

assigni,j × EXECi,j, ∀j.
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4.4  Objective function

In the following constraint, busy corresponds to finish time of the last job which is 
executed in the system. In this constraint, busy is forced to be greater than finish 
times of all jobs. This way we can capture the finish times of all the jobs. This is 
included in the objective function since it is the basis for our objective.

Then, using these busy binary variables we can decide if the jobs are successfully 
finished or not. Therefore, our formal objective function is to minimize the execu-
tion time of a set of applications using this busy variable.

Note that, in our ILP formulation, we employ execution time as the main constraint, 
whereas energy, storage, communication bandwidth, and other possible constraints 
are left out. For example, depending on the switch present in a node, bandwidth 
available to the connected links will be limited. Our ILP formulation, in its current 
form, does not cover these possible constraints.

However, our formulation can easily be modified to include such constraints. In 
addition to additional constraints, our ILP formulation can also be modified to opti-
mize for a different objective function such as energy instead of execution time.

5  Experimental evaluation

In order to compare our approach with the state-of-the-art implementations, we 
developed heuristics; namely, Resource-Based First In First Out (RB-FIFO), 
Resource-Based Longest Job First (RB-LJF), and Resource-Based Shortest Job First 
(RB-SJF). Moreover, we implemented an optimal mapping approach where an inte-
ger linear programming (ILP) optimization is used for comparison.

5.1  Setup

We tried to simulate a heterogeneous cluster by using different nodes with different 
hardware components and properties. Specific properties of nodes we have used are 
given in Tables 1 and 2.

5.2  Benchmarks

To test our system, we have selected 28 different OpenCL jobs from well known 
parallel benchmarks [28]. Details of the benchmarks we used in the experiments are 
given in Table 3. Each benchmark has different characteristics; some have over 50 
kernels and others have only few kernels. We used different problem sizes (i.e. S and 

(7)busyj ≥ finishj,∀j.

(8)minimize

(

N
∑

j=1

busyj

)

.
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W classes of NAS benchmarks) to determine the effect of data size on kernel map-
ping. As evident in Table 3, the tendency of kernels may change with different prob-
lem sizes, which is basically due to the characteristics of that particular kernel. For 
example, it is better to run benchmark SP with W class data set on only CPU, while 
it is not the case for the same benchmark with S class data set.

To test such applications, we used AMD-APP SDK [2] for compiling OpenCL 
applications for X86 ISA. These benchmarks are used to create 2 groups of work-
loads. In the first group (group A), 3 different versions of 28 different jobs are used 
(in total 76 jobs). Different versions of jobs are created by multiple executions of 
each job (1x, 2x, 3x). In order to facilitate the execution of the simulation, we imple-
mented 4 different test batches. Submission times of jobs are determined by a ran-
dom number generator which produces a sequence of integers by using a Gauss-
ian distribution. These randomly generated times are sorted in ascending order. The 
first group of workloads (Workload 1, 2, 3, and 4) is tested with 2 different system 
setups.

In the first group of executions, resource requests for jobs are set to the node with 
the least resources. The first group of workloads is used for showing the efficiency 
of the system in terms of execution time and shows the effect of OCL extension on 
different heterogeneous environments and job submission scenarios. In the second 
group (group B), 28 jobs are selected and used. Similar to the first group, 4 differ-
ent test cases are generated and job submissions are simulated. The second group of 
workloads’ (Workload 5–8) resource requests for jobs are set to the node with the 
highest resources in order to create contention on a specific node. We use this sec-
ond group of workloads to show the effect of the RB-LJF-BA heuristic.

5.3  Experimental results

We experimented with our system with different configurations and job submis-
sion scenarios. To compare different scheduling approaches, we have implemented 
and tested RB-FIFO, RB-SJF, RB-LJF, RB-LJF-BA, and RB-LJF-OCL. In order to 

Table 1  24 Compute nodes used in system setup 1

CPU GPU GPU

Node 1–8 6 cores AMD Phenom II Nvidia GeForce GTX 460 Nvidia Tesla K20
Node 9–16 12 cores Intel Xeon Nvidia Tesla K20 Nvidia Tesla K40
Node 17–24 16 cores Intel Xeon Nvidia Tesla K40 Nvidia GeForce GTX 460

Table 2  16 Compute nodes used in system setup 2

CPU GPU GPU

Node 1–8 6 cores AMD Phenom II Nvidia GeForce GTX 460 Nvidia Tesla K20
Node 9–16 12 cores Intel Xeon Nvidia Tesla K20 Nvidia Tesla K40
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show the effectiveness of these scheduling policies, we have also implemented and 
tested an optimal scheduling policy through ILP. Figure 6a shows the base results 
for different workloads running on system setup 1. Last job submitted indicates a 
minimum bound for completing all the jobs in the system. We can observe from 
this figure that the run-time of the system with RB-LJF-BA heuristic gives an aver-
age execution time between maximum and minimum runtimes of systems with RB-
FIFO, RB-SJF, and RB-LJF heuristics. However, a critical gain for this heuristic is 
seen when user requests create a bottleneck on some of the nodes.

In the next set of experiments, we evaluate the execution time reduction by 
using OCL extension over the best case for different workloads on system setup 
1. As can be seen from Fig. 7a, by using OCL extension which allows us to port 
some accelerator applications to CPU, we have an average 12% execution time 
reduction in the first group of tests. Meanwhile, RB-LJF-OCL execution time is 
close to optimal execution time. In some of the ILP experiments, due to a large 
number of variables and constraints, ILP solver [46] was not able to find the final 

(a)

(b)

Fig. 6  Total execution time comparison with group A workloads
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solution. In such cases, we have used the best bound found by the solver. Since 
this happened occasionally, its impact is negligible. Overall, the maximum gap 
between the best bound and best solution found was 15%. Similarly, the maxi-
mum difference between two runs of the same scheduling heuristic with the same 
load was found to be 7.2%. These are all within acceptable and tolerable ranges 
when the similar implementations are considered. Note that, while ILP is an opti-
mal approach that can be used for the decisions, it incurs considerable execution 
time overheads due to a large number of variables and constraints with even a 
small-sized problem. This is even pronounced when the online nature of the deci-
sions is considered.

In the second group of tests, we evaluate the effect of the RB-LJF-BA heuris-
tic. Specifically, Fig. 6b shows the execution time results for different workloads 

(a)

(b)

Fig. 7  Execution time reduction by using OCL extension
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on system 2. We observe that the execution latencies of RB-LJF-OCL and mini-
mum execution latencies for different workloads are close.

A similar observation can be made in Fig. 7b, where execution time reduction 
when using OCL extension over the best case for different workloads is shown. In 
these experiments, the maximum difference between two runs of the same sched-
uling heuristic with the same workload is found to be 3.4%. For these tests, we 
were able to find the minimum run times for each workload.

Figure 8a, b show the energy reductions with OCL extension over the best case 
for different workloads for System 1 and System 2, respectively. In these experi-
ments, the maximum difference between two runs of the same scheduling heuris-
tic with the same workload is found to be 4.1%.

In the last set of experiments, we measure the effect of the bottleneck avoid-
ance approach. Specific results are shown in Fig. 9a, b. As can be seen from these 
figures, bottleneck avoidance improves system execution time when compared 

(a)

(b)

Fig. 8  Energy reduction by using OCL extension
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with RB-FIFO. More specifically, we can reduce up to 50% execution time by 
relaxing user requests for jobs.

6  Conclusion

Currently, there are management schemes for conventional clusters and cloud sys-
tems ranging from the operating system (OS) level to application level. Our accel-
erator-aware computing system management framework, on the other hand, enables 
the users to utilize the underlying architecture in the most effective way. Specifically, 
we implement a runtime system where users can submit jobs which will then be 
assigned to a corresponding node or accelerator depending on the application fea-
tures such as execution time and data requirements. We implemented the comput-
ing management system in an in-house testbed, where heuristic-based management 
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algorithms are tested. These heuristics consider application characteristics and 
respective execution properties on the nodes and accelerators. In addition, we imple-
mented an ILP-based management scheme which optimally decides on application 
mapping, thereby providing an upper-bound for our heuristic implementations. Our 
experimental evaluations show that including accelerator support in the cluster man-
agement framework improves system execution time significantly. We believe that 
this approach has the potential to provide an effective solution for next-generation 
accelerator-based heterogeneous computing systems.
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