Uncovering complementary sets of variants for predicting quantitative phenotypes

Serhan Yılmaz1,*, Mohamad Fakhouri2, Mehmet Koyutürk1,3, A. Ercüment Çiçek2,4,* and Oznur Tastan5,*

1Department of Computer and Data Sciences, Case Western Reserve University, Cleveland, 44106, USA
2Department of Computer Engineering, Bilkent University, Ankara, 06800, Turkey
3Center for Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, 44106, USA
4Department of Computational Biology, Carnegie Mellon University, Pittsburgh, 15213, USA
5Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey

*To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Genome-wide association studies show that variants in individual genomic loci alone are not sufficient to explain the heritability of complex, quantitative phenotypes. Many computational methods have been developed to address this issue by considering subsets of loci that can collectively predict the phenotype. This problem can be considered a challenging instance of feature selection in which the number of dimensions (loci that are screened) is much larger than the number of samples. While currently available methods can achieve decent phenotype prediction performance, they either do not scale to large datasets or have parameters that require extensive tuning.

Results: We propose a fast and simple algorithm, Macarons, to select a small, complementary subset of variants by avoiding redundant pairs that are likely to be in linkage disequilibrium. Our method features two interpretable parameters that control the time/performance trade-off without requiring parameter tuning. In our computational experiments, we show that Macarons consistently achieves similar or better prediction performance than state-of-the-art selection methods while having a simpler premise and being at least 2 orders of magnitude faster. Overall, Macarons can seamlessly scale to the human genome with $\sim10^7$ variants in a matter of minutes while taking the dependencies between the variants into account.

Availability: Macarons is available in Matlab and Python at https://github.com/serhan-yilmaz/macarons.

1 Introduction

Genome-Wide Association Studies (GWAS) attempt to find a relation between the genetic variations and a phenotype. Many single nucleotide polymorphisms (SNPs) have been found to be associated with various diseases or disorders including type II diabetes, obesity and schizophrenia as well as other quantitative traits like height individually (Goldstein et al., 2009; Visscher et al., 2017). However, individual SNPs fail to explain complex phenotypes, in which multiple SNPs contribute collectively (Manolio et al., 2009). Thus, as an alternative and more powerful approach, many studies aim at finding a good subset of SNPs that are associated with the phenotype of interest as a group (Wang et al., 2010; Cordell, 2009; Phillips, 2008; Wei et al., 2014). This study is mainly focused on the problem of finding a subset of SNPs that are collectively predictive of the phenotype of interest. For the sake of brevity, we will simply refer to it as the SNP subset selection problem throughout this paper.

Approaches investigating combinations of SNPs

Finding combinations of SNPs that are predictive of a phenotype is computationally challenging due to the large number of possible combinations that need to be considered. There are methods that focus on high-order interactions using exhaustive search (Nelson et al., 2001; Lou et al., 2007) or greedy algorithms (Evans et al., 2006; Yosef et al., 2007) on a small, limited pool of SNPs that is usually not more than a few hundreds (Ritchie et al., 2001; Fang et al., 2012). While such pools of "promising SNP candidates" are typically obtained using a priori information sources by limiting the analysis to SNPs residing in the coding regions of the genome, it is also possible to conduct a filtering based on automated searches (Van Hulse et al., 2012; Ding et al., 2015).
Indeed, for combinatorial studies investigating the pair-wise interactions (or as more commonly known as epistasis) between the variants in full genome, recent studies show the importance of limiting the search space through prioritization of the tests (Piriyapongsa et al., 2012; Cowman and Koyutürk, 2017), both to alleviate the computational intensity of the task, as well as to improve the overall statistical power. Specifically, Caylak et al. (2020) demonstrates the utility of an initial filtering of SNPs based on an automated SNP selection algorithm (Yilmaz et al., 2019) as a powerful approach that can improve the statistical power considerably.

Approaches for SNP selection problem in quantitative phenotypes

The SNP selection problem in quantitative phenotypes essentially corresponds to a feature subset selection problem for multivariate regression (Miller, 2002). However, due to the high dimensional nature of typical GWAS data (millions of variants), established methods for feature selection such as linear regression with l_1 (lasso) regularization (Tibshirani, 1996; Grave et al., 2011), spectral-relaxation based approaches (Zhao and Liu, 2007; Das et al., 2012), graph-constrained feature selection methods like GraphLasso and GroupLasso (Meier et al., 2008; Jacob et al., 2009), as well as various other methods with sparsity constraints known in the bioinformatics community in the context of other problems (e.g., for selecting gene sets) (Li and Li, 2008; Jia et al., 2011; Liu et al., 2017), are computationally too expensive for this task. Thus, a common strategy is to apply a simple threshold-based filtering (e.g., a p-value cutoff) based on individual phenotype associations (Van Hulse et al., 2012), for example, using a statistical test like sequence kernel association test (SKAT) (Wu et al., 2011). The downside of this approach is that threshold-based filtering considers each variant independently and does not take into account of the dependencies or interactions between them.

To achieve a scalable solution for all known variants in the genome while considering the dependencies between them, alternative SNP selection algorithms have been proposed (Azencott et al., 2013; Yilmaz et al., 2019). Such algorithms simplify the problem by focusing on a linear combination of individual phenotype associations of SNPs while using some a priori information encoded in the form of a biological network to improve the overall predictivity of the selected subset. In particular, SConES (Azencott et al., 2013) uses a minimum-cut solution under sparsity and connectivity constraints on a SNP-SNP network. More recently, SPADIS (Yilmaz et al., 2019) selects a diverse set of SNPs using the SNP-SNP network.

The drawbacks of existing methods

Linkage disequilibrium (LD) which refers to the non-random association of variants, is a common phenomenon for close variants on the same chromosome (Ardlie et al., 2002). While the connectivity constraint of SConES helps to improve the quality of the selected set, it implicitly promotes the selection of SNPs that are in LD impairing the prediction performance. On the other hand, SPADIS seeks to increase the diversity of SNPs by penalizing the selection of close SNPs on the input network. While this diversity helps to avoid redundant SNPs in LD and improves the phenotype predictions, the drawback of SPADIS is that it requires two parameters without any interpretable meanings or default values, that need to be tuned through an external procedure such as cross-validation. The need for such external procedures not only makes the method hard to apply from a user viewpoint, but also considerably exacerbates the run time and reduces the robustness of the selections when there are time and resource constraints.

Macarons: a fast and simple algorithm to select complementary SNPs

To overcome these limitations, we determined three main objectives for a SNP selection algorithm should satisfy: (i) Have good prediction performance for quantitative phenotypes (at least as predictive as available methods), (ii) Fast enough to consider all variants in the genome, and (iii) Easy to use without requiring external parameter tuning procedures like cross-validation. Thus, we propose a new algorithm named Macarons that take into account the correlations between SNPs to avoid the selection of redundant pairs of SNPs in linkage disequilibrium. Overall, Macarons features two simple, interpretable parameters to control the time/performance trade-off: the number of SNPs to be selected (k), and maximum intra-chromosomal distance (D, in base pairs) to reduce the search space for redundant SNPs. Note that, since the parameters have interpretable meanings, they can be determined in advance (without requiring an external procedure for parameter tuning) with the available computational resources and the goals of further studies in mind.

2 Methods

2.1 Background

2.1.1 Problem Definition

We are given as input a ground set of SNPs V of cardinality n, genotype matrix $X \in \{0, 1, 2\}^{m \times n}$ decoding the number of alternate alleles for m samples and n SNPs, and a phenotype vector $Y \in \mathbb{R}^{m \times 1}$ containing quantitative values for m samples. The number of SNPs n is much larger than the number of samples $n \gg m$. Thus, we would like to obtain a small subset of SNPs $S = \{s_1, s_2, \ldots, s_k\} \subseteq V$ of size k that maximizes the prediction performance of the given phenotype vector Y based on a regression model M. In this study, we consider a linear model (i.e., without interaction terms modeling epistasis), where each selected SNP $s_i \in S$ has an additive effect on the phenotype:

$$Y \sim \beta_0 + \beta_1 s_1 + \beta_2 s_2 + \cdots + \beta_k s_k + \epsilon \quad (1)$$

where β_i is the regression coefficients to be learned from data and ϵ_i is an error term that is normally distributed with zero mean. Based on this model, the collective effect of the SNP set S can be characterized by the squared multiple correlation coefficient $R^2(Y, S)$ which has the interpretation of the variance explained in Y by S. Thus, the overall SNP selection problem can be defined as a SNP subset search problem that maximize the following function:

$$\max_S R^2(Y, S) \text{ subject to } |S| = k \quad (2)$$

2.1.2 Forward Step-wise Regression

Generally, solving the regression problem given in Equation 2 is NP-hard (Natarajan, 1995). However, due to near submodularity of R^2, greedy formulations that iteratively grow a set based on a local gain function G (as in Algorithm 1), produce near-optimal results, proving a good approximation for maximizing R^2 under a cardinality constraint (Das and Kempe, 2011; Das et al., 2012). Among such algorithms, a notable one that is commonly used is the forward step-wise regression that maximizes semi-partial squared correlation as its gain function:

$$G(S_t, s_x) = R^2(Y, (s_x|S_t)) \quad (3)$$

where S_t is the subset of selected features at the t iteration of the algorithm, s_x is a candidate feature being considered, and $R^2(Y, (s_x|S_t))$ is the semi-partial correlation coefficient between Y and $s_x|S_t$, when s_x is regressed and residualized with every variable in S_t.

The main issue with using this approach for the SNP selection problem is that it requires estimating and inverting the covariance matrix. This requirement not only makes the algorithm computationally intensive with $O(n^3)$ runtime complexity, but also leads to the selection of SNP sets that is likely to overfit to the given training data (this is due to the high dimensionality nature of the problem when $n \gg m$).

2.2 Macarons

Here, we follow an approach similar to the forward step-wise regression where we iteratively grow the selected SNP set based on their estimated contribution G for phenotype prediction as measured by the semi-partial correlation. However, to scale to all SNPs in a typical GWAS study
as well as to improve the robustness of the algorithm, we apply some simplifying assumptions that reduce the computational complexity and error in estimation. First, we start by expressing the semi-partial correlation
\[R^2(Y, (s_x|S_t)) \] in an alternate form:
\[R^2(Y, (s_x|S_t)) = R^2(s_x, S_t \cup Y) - R^2(s_x, S_t) \] (4)
where \(R^2(s_x, S_t \cup Y) \) and \(R^2(s_x, S_t) \) are multiple correlation terms corresponding to linear models predicting \(s_x \) using the SNP set \(S_t \) with and without the phenotype variable \(Y \) respectively. Here, we can further decompose \(R^2(s_x, S_t \cup Y) \) into two parts:
\[R^2(s_x, S_t \cup Y) = 1 - \left(1 - r^2(s_x, Y)\right) \left(1 - R^2(s_x, S_t)\right) \] (5)
where \(r^2(s_x, Y) \) is the squared Pearson’s correlation coefficient indicating the individual predictivity of \(s_x \) on \(Y \), and \(R^2(s_x, S_t|Y) \) is the partial correlation between \(s_x \) and \(S_t \) given \(Y \). Here, we assume that the portion of variance that overlap between \(s_x \) and \(S_t \) does not depend on their overlap with \(Y \), which can be expressed as follows:
\[R^2(s_x, S_t|Y) \approx R^2(s_x, S_t|\emptyset) = R^2(s_x, S_t). \] (6)

With this assumption, the gain function \(G(Y, (s_x|S_t)) \) can be simplified as follows:
\[G(Y, (s_x|S_t)) \approx 1 - \left(1 - r^2(s_x, Y)\right) \left(1 - R^2(s_x, S_t)\right) - R^2(s_x, S_t) \]
\[= r^2(s_x, Y) \left(1 - R^2(s_x, S_t)\right) \] (7)

Here, since \(r^2(s_x, Y) \) quantifies the individual predictivity of the candidate SNP \(s_x \) on phenotype \(Y \), which can also replace with other phenotype association scores (denoted \(c_x \) for SNP \(s_x \) such as sequence kernel association test (SKAT)). Thus, a more general gain function can be defined as follows:
\[G(s_x, S_t) = c_x \left(1 - R^2(s_x, S_t)\right) \] (8)

Overall, the multiple correlation \(R^2(s_x, S_t) \) measures the collective redundancy between \(s_x \) and \(S_t \), and here used as a penalty function to facilitate the selection of complementary SNPs for the phenotype prediction.

2.2.1 Estimating the penalization function
The main challenge in estimating the multiple correlation is that it requires the computation of high order interaction terms among the selected SNPs. This makes its estimation for a given data sample both computationally intensive (with \(O(m^2 + t^3) \) runtime complexity), and noisy. To help overcome these issues, we first express the multiple correlation as multiplication of several terms involving partial correlations:
\[R^2(S_t, s_x) = 1 - \left(1 - R^2(s_1, s_x|\emptyset)\right) \prod_{i=1}^{t-1} \left(1 - R^2(s_i, s_x|s_1, \ldots, s_{i-1})\right) \]
\[= 1 - \prod_{i=1}^{t} \left(1 - R^2(s_i, s_x|s_1, \ldots, s_{i-1})\right) \]
\[= 1 - \prod_{i=1}^{t} \left(1 - R^2(s_i, s_x|S_{i-1})\right) \] (9)

where \(R^2(s_i, s_j|S') \) denotes the squared partial correlation between SNPs \(s_i \) and \(s_j \) given the SNPs within the set \(S' \). Note that, these partial correlation calculations also require computing high-order interactions; thus, do not simplify the computation of the multiple correlation by themselves. For this purpose, we make the following simplifying assumption:
\[R^2(s_i, s_x|S_{i-1}) \approx R^2(s_i, s_x|\emptyset) = r^2(s_i, s_x) \] (10)

where \(r^2(s_i, s_x) \) is the squared zero-order correlation coefficient (i.e., ordinary Pearson’s correlation) between SNPs \(s_i \) and \(s_x \). Thus, with this assumption, the estimation of the multiple correlation simplifies to:
\[R^2(S_t, s_x) = 1 - \prod_{s_i \in S_t} \left(1 - r^2(s_i, s_x)\right) \] (11)

This assumption helps with the overfitting problem in the estimation of multiple correlation since it reduces the number of parameters needed to be estimated from the data and reduces the required computation time drastically (from \(O(mt^2 + t^3) \) to \(O(mt) \)).

In the remaining sections of this manuscript, we will refer to the estimation of the squared multiple correlation \(R^2(S_t, s_x) \) simply as the penalization function, and we will refer to the zero-order correlation \(r^2(s_i, s_x) \) as the redundancy function.

Similar to the squared multiple correlation \(R^2(S_t, s_x) \), this simplified penalization function has several useful properties such as being bounded in \([0,1]\) region, being monotonic, and applying diminishing returns principle (where the increase in penalization decreases proportionally on subsequent iterations as the selected set grows). We explain these properties in more detail in Supplementary Text 1.

2.2.2 Limiting the search space through intra-chromosomal distance
One particular issue for directly using the penalization function given in Equation 11 together with the gain function and algorithm in Equation 8 and Algorithm 1 is that the overall runtime can still be slow for large \(k \) (number of SNPs selected) with algorithmic complexity of \(O(n^2m\lambda k) \) due to the requirement of computing \(O(nk) \) correlation coefficients. For this reason, we make an additional simplifying assumption to limit the search space to intra-chromosomal SNP pairs within a specified distance. Specifically, we assume the following:
\[r^2(s_i, s_j) = \begin{cases} 0 & \text{if } s_i \text{ and } s_j \text{ are not on the same chromosome} \\ 0 & \text{if } d(s_i, s_j) > D \end{cases} \] (12)
where \(d(s_i, s_j) \) is defined as the intra-chromosomal distance between SNPs \(s_i \) and \(s_j \) (i.e., the distance on the genome) and \(D \) is an adjustable parameter (unit in base pairs) to control the time/performance trade-off of the algorithm by limiting the search space for the redundancy estimations. Note that, we consider the \(d(s_i, s_j) \) to be infinite for SNP pairs that are on different chromosomes.

2.2.3 Formulation of Macarons algorithm
Overall, with the three assumptions given in Equation 6, Equation 10, and Equation 12, the penalty function becomes as follows:
\[\hat{r}^2(s_i, s_j) = \begin{cases} r^2(s_i, s_j) & \text{if } d(s_i, s_j) \leq D \\ 0 & \text{otherwise} \end{cases} \] (13)
\[\hat{R}^2(S_t, s_x) = 1 - \prod_{s_i \in S_t} \left(1 - \hat{r}^2(s_i, s_x)\right) \]

Thus, the gain function becomes:
\[G(S_t, s_x) = c_x \left(1 - \hat{R}^2(S_t, s_x)\right) \]
\[= c_x \prod_{s_i \in S_t} \left(1 - \hat{r}^2(s_i, s_x)\right) \] (14)

The Macarons algorithm that encodes this gain function for step-wise SNP selection is given in Algorithm 2. Overall, it has \(O(nk + \lambda D m k) \) run...
time complexity where the first term is for maximizing the gain function, and the second term is for computing the gain function, which require the measurement of correlations from data. Here, λ_D is a variable between $[1, \alpha]$ dependent on the D parameter. It represents the average number of SNP pairs that require the computation of correlation for a given D threshold. Thus, the overall complexity for small D is $O(nk)$ when the first term dominates and $O(nmk)$ for large D as the computation of Pearson correlations becomes the bottleneck.

2.2.4 Optimizing Macarons algorithm for runtime

The gain function given in Equation 14 is monotonically non-increasing with respect to the growing set of selected SNPs (i.e., at each iteration, the gain of a SNP either stays the same or decreases). Moreover, we know that the selected SNP set will approximately grow according to their phenotype association scores (this is particularly true for low k and D parameters since there would be less deviation from individual scores). Here, we leverage these properties to further optimize the runtime of the algorithm. For this purpose, we first sort all SNPs according to their phenotype association scores c_x (such that $c_i \geq c_j$ if $i < j$). Then, we limit the search space of the algorithm to an active region consisting of N_{active} most promising SNPs with highest individual scores (having an initial size of $N_{active} = \psi$). When the current search space is insufficient (this can be detected by comparing the gain function with the individual scores), we grow the active region by a factor of $\gamma > 1$. Specifically, when the maximum value of gain function is greater than or equal to the minimum individual score in the active region (i.e., $\max c_x \leq N_{active} \max (G(S_i, s_j)) \leq \min c_x \leq N_{active} \min c_x$), we know that active region is sufficient (since we know $\min c_x \leq N_{active} \min c_x$). Otherwise, the action region might be insufficient, thus, we grow the active region to include the most promising γN_{active} SNPs and repeat this process as necessary. The optimized Macarons algorithm that implements this idea is given in Supplementary Algorithm 1. Note that, the output of this algorithm is always equal to the output of Algorithm 2 regardless of the parameter values (i.e., the parameters γ and ψ does not change the output, only affects the runtime). In our experiments, we use $\psi = 1000$ and $\gamma = 2$ unless otherwise specified.

3 Results

3.1 Experimental Setup

3.1.1 Summary of the experiments and the results

First, we investigate the effect of limiting the search of Macarons using intra-chromosomal distance (D parameter) in terms of redundancy and runtime, and whether Macarons can successfully avoid the selection of highly redundant SNPs (Figure 1). Then, we compare Macarons with other SNP selection methods on a small but comprehensive dataset (AT dataset with 17 flowering time phenotypes) in terms of their predictivity, runtime and redundancy characteristics (Figures 2-3, Supplementary Figure 1) and investigate the trade-off between different assumption models in Macarons (Figure 4). Next, we demonstrate that Macarons can seamlessly scale to large datasets with with ~10^7 variants (in human height dataset). Afterwards, we investigate the utility of avoiding redundancy with Macarons over using a fixed threshold based on individual phenotype association scores on two larger datasets (rice700k and human height) based on 2 different association scores (Figure 5) and we inspect the characteristics of Macarons by visualizing the correlation structure of the selected SNPs while marking the ones near coding regions (Figure 6). Finally, we benchmark the utility of using Macarons in conjuction with various regression models (Figure 7).

3.1.2 Datasets

For a considerable portion of our analysis (e.g., for the comparisons with other SNP selection methods), we use the Arabidopsis Thaliana (AT) dataset (Atwell et al., 2010) which provides data for 17 flowering time phenotypes. The availability of multiple phenotype data helps to estimate the variance in phenotype prediction performance more accurately. Also, this is relatively small dataset where the number of samples are between 119 and 180 (depending on the phenotype), and there are 214,051 SNPs before any filtering. Thus, this dataset allows us to test the performance of some methods that would otherwise not scale to larger datasets. In our analysis, we filter out variants with minor allele frequency (MAF) of < 10%, which remains 173,219 SNPs.

As an additional dataset, we use the rice700k data (McCouch et al., 2016) which contains 1145 samples and 700,000 SNPs before filtering. Here, the phenotype is related to the rice grain-length. In our analysis, after applying a MAF < 5% filter, 463,907 SNPs remains. Note that, this is a medium-sized dataset that is roughly 20 times larger than the AT dataset.

As our largest dataset, we consider the human height data collected from openSNP, which is a crowd-sourced genetic test sharing website (Greshake et al., 2014). It was prepared by researchers from EPFL as a part of a machine learning challenge on CrowdAFL. This dataset contains human height data for 784 individuals and 7,252,636 SNPs. Thus, this dataset is about 10 times larger than the rice700k dataset (and about 200 times larger than AT dataset).

3.1.3 Phenotype association scores

For consistency with the previous results (Azencott et al., 2013; Yilmaz et al., 2019), we use Sequence Kernel Association Test (SKAT) (Wu et al., 2011) to score the individual phenotype association of each SNP, unless otherwise specified (as a part of one of the experiments, we also run our method with another phenotype association measure). While computing the SKAT score, we use the top principal component of the genotype matrix to alleviate the effect of the population stratification (Price et al., 2006).

3.2 Effect of limiting the search space through intra-chromosomal distance

The premise behind Macarons is to select a complementary set of SNPs while avoiding redundant (correlated) SNPs that are in LD. As we discuss in the methods, the process of taking into account of all redundant SNPs overall requires $k \times n$ (number of selected SNPs \times number of SNPs) correlation estimations from the data, which is both computationally intensive and superfluous since most highly correlated variants tends to be closely located on the genome. To overcome this issue, we limit the search space for correlated SNPs to close intra-chromosomal pairs with maximum distance of D, where D is an adjustable parameter (unit in base pairs).

Here, we investigate the effect of the parameter D on the SNPs selected by Macarons, particularly to examine its effect on the selection of highly correlated SNPs. For this purpose, we select $k = 1000$ SNPs for each of the 17 flowering time phenotypes of AT using Macarons with various D parameter values. For each tested value of the D parameter, we investigate

1. https://zenodo.org/record/1442755
We compare Macarons with the following methods:

- Baseline: A simple greedy approach that selects the top \(k \) SNPs with the highest individual phenotype association scores. This method becomes equivalent to Macarons when the search space (D) parameter of Macarons is set to 0 (since no redundancy calculations are made and phenotype association scores are not updated in that case). This method considers the association of each SNP independently, thus, serves as a baseline for other SNP selection methods that attempt to take into account of interactions or dependencies between selected SNPs in some manner.

- SConES: A SNP selection algorithm that rewards SNPs according to their individual phenotype association scores of SNPs while employing a connectivity constraint on an SNP-SNP network (Azencott et al., 2013). It features two parameters \(\lambda \) and \(\eta \) that controls the connectivity and sparsity constraints respectively.

- SPADIS, our previous work, rewards SNPs according to their individual phenotype association scores of SNPs while applying a diversity penalty based on the shortest-path distances on an input network (Yilmaz et al., 2019). It features three parameters \(k_0 \) (for number of SNPs selected), \(\beta \) (for the strength of penalization) and \(D \) (for limiting the search range in the network).

- Lasso: A linear regression method with \(l_1 \) (lasso) regularization that forces the regression weights of some features (SNPs) to be zero. SNPs with non-zero weights are considered to be selected. It has one parameter \(\lambda \) that determines the strength of regularization and therefore the sparsity (size) of the selected SNP set.

For methods that utilize a SNP-SNP network (i.e., SPADIS and SConES), we use the best performing network based on the results of previous benchmarkings (Azencott et al., 2013; Yilmaz et al., 2019): Genomic sequence (GS) network (where SNPs that are adjacent on the chromosome are connected) for SPADIS, and Genomic interaction (GI) network (where SNPs that are in the same genomic region as well as the SNPs between interacting genes are connected to form cliques).

Since Macarons has interpretable parameters and does not require a parameter optimization procedure, we tested it for two a priori selected \(D \) values. We choose \(D = 20 \) kbp as suggested by (Atwell et al., 2010), and we also test \(D = \infty \) (which covers the entire chromosome and includes all intra-chromosomal pairs) to see the effect of limiting the search space on phenotype prediction performance.

Note that, to compare phenotype prediction performances of the methods on equal footing, we apply a cardinality constraint \(k \) on the selected SNP set and compare the results of the algorithms for different values of \(k \). To control the number of SNPs selected, the baseline method, SPADIS, and Macarons already has a parameter \(k \) that we can set directly. On the other hand, SConES and lasso features sparsity parameters that indirectly controls the size of the selected SNP subset. For these methods, we apply a binary search and select the sparsity parameters (\(\lambda \) for SConES, \(\lambda \) for lasso) that yield the closest number of selected SNPs to the predefined cardinality constraint \(k \).

3.3.2 Evaluating phenotype prediction performance

Our testing scheme consists of using a nested cross-validation scheme (outer for evaluation, inner for parameter selection). First, we use 10 cross-validation folds to split the data into training and test samples. For each of the 10 cross-validation folds, we compute phenotype association scores and run the SNP selection methods using training portion of the data, and we predict the phenotype on the test portion using ridge regression. Next, we assess the prediction performance using Pearson’s squared correlation coefficient (\(R^2 \)) between the predicted and observed (actual) phenotype vectors. Note that, some methods (e.g., SPADIS and SConES) require further cross-validation to tune their parameters. For this purpose, we use a nested-5-fold cross-validation where the training portion of the data is further split into 5 validation folds. On these validation folds, the model’s generalizability to unseen samples is measured by using ridge regression with \(R^2 \) and the parameters with highest \(R^2 \) are selected. Since Macarons’s parameters are selected a priori, it does not require this nested cross-validation procedure.

3.3.3 Comparison of SNP selection methods

Here, to compare the performances of different SNP selection methods, we use the AT dataset because it has two main advantages: (i) It contains 17 flowering time phenotypes that allows us to more accurately estimate the phenotype prediction performance (by reporting the averages over all flowering time phenotypes), and (ii) it is relatively small dataset (with \(\sim 10^6 \) samples, \(\sim 10^5 \) SNPs) which allows us to report results for relatively slow methods (e.g., lasso) that would otherwise not scale to larger datasets.

For methods that utilize a phenotype association score (i.e., for all tested methods except lasso), we use SKAT score mainly for consistency with previous benchmarkings that use this dataset (Azencott et al., 2013; Yilmaz et al., 2019).
First, we run each method on each of the 17 flowering time phenotypes for \(k = 1000 \) and assess their 10-fold cross-validated phenotype prediction performance (using ridge regression as the prediction model and measuring by \(R^2 \)). In Supplementary Figure 1, we report the prediction performance of the methods relative to the performance of the baseline method (of selecting the top-\(k \) SNPs that are most associated to the phenotype individually). Here, we make the following observations:

- SConES does not seem to perform better than the baseline method for predicting the phenotype. We argue that this may be because the network connectivity constraint in SConES reinforces the selection of highly correlated SNPs that are in linkage disequilibrium (LD), which likely pose difficulties for the regression step.
- SPADIS and Macarons (with \(D = 20 \) kbp) seems to perform quite similarly while both having a higher phenotype performance than the baseline method on most phenotypes.
- Lasso and Macarons (with \(D = \infty \), measuring the redundancy of all intra-chromosomal SNP pairs) seems to perform similarly while lasso performs considerably worse than the baseline method on two of the phenotypes.
- For Macarons, using \(D = \infty \) to expand the search space over using \(D = 20 \) kbp does not seem to provide a considerable benefit in phenotype prediction performance for most phenotypes.

Next, in Figure 2, we consider the averaged phenotype prediction performances (\(R^2 \), denoted predictivity for brevity) across all 17 phenotypes for various number of selected SNPs (\(k = 50, 100, 250, 500 \) and 1000). Here, our first observation is that the overall performances of all methods consistently increase as the number of selected SNPs (\(k \)) is increased. We argue that this is because ridge regression can provide an adequate amount of regularization and improve the predictivity even for relatively large \(k \) (where \(k > m \), the number of samples). Secondly, we observe that, for each computational experiment (for different \(k \)), the prediction performance of Macarons (for either of the \(D \) parameter values) is consistently similar or better than all other methods although there is not sufficient statistical power to conclude that one method has significantly better predictive performance than the others at 95\% confidence level for any \(k \) experiment. Whereas, when we look at the average performance across the five computational experiments for different \(k \) (Supplementary Figure 2), we observe that Macarons have a significantly higher prediction performance than baseline method, SConES and Lasso, while having a similar performance to SPADIS.

Additionally, in Figure 2 (right panel), we compare the methods in terms of the runtime required to run them on the AT dataset (we perform the time measurement on a 40 core machine with Intel(R) Xeon(R) CPU E5-2650 v3 2.30GHz, parallelized on 17 threads for phenotypes). For each method, we report the CPU runtime averaged across 17 phenotypes with respect to \(k \). Note that, the reported times include the method runs, 10-fold cross-validation used for evaluation, the calculation of association scores, and (if any) the cross-validation for parameter tuning.

As it can be seen on Figure 2, Macarons with \(D = 20 \) kbp is at least two orders of magnitude faster than other methods (i.e., SPADIS, SConES, lasso), and compared to the baseline method of using individual association scores for subset selection, improves the predictivity and the redundancy characteristics (Figure 1) of the selected SNP subsets. We also observe that, even though considering all intra-chromosomal pairs (with \(D = \infty \)) in Macarons does not provide an additional benefit in predictivity over using \(D = 20 \) kbp for \(k = 1000 \), the performance of Macarons \(D = \infty \) is typically higher than \(D = 20 \) kbp for lower \(k \) values. This indicates that, for target subsets of small size, increasing the depth of the search space through \(D \) parameter might be a more optimal choice.

In Figure 3, we summarize the differences and potential trade-offs between different SNP selection methods by considering three metrics: (i) Predictivity (measured by \(R^2 \)) for phenotype prediction, (ii) Runtime in seconds, and (iii) Redundancy (measured by top-0.1\% redundancy, in a similar manner to the results in Figure 1) that investigates the presence of highly redundant SNP pairs in the selected SNP subset. Overall, Figure 3 suggests that Macarons (\(D = 20 \) kbp) can offer a good trade-off between different characteristics, with decent predictivity, fast runtime, and a moderate level of redundancy.

In Supplementary Text 2, we also investigate the concordance of the selected SNPs by Macarons based on the candidate genes obtained from (Segura et al., 2012) on the AT dataset.

3.4 The impact of the simplifying assumptions in Macarons

Next, we investigate the effect of the simplifying assumptions in Macarons on important characteristics like model predictivity, runtime and robustness. Overall, we utilize three simplifying assumptions in Macarons:

- Assumption in Equation 6 (assuming that the overlap between a candidate SNP and the selected SNP set does not depend on their overlap with the phenotype, \(Y \)). This assumption results in a gain function (Equation 7) that is monotonically non-decreasing with respect to the increased set size. This monotonicity allows the optimized algorithm...
(given in Supp. Algo. 1) to be used rather than the straightforward implementation described in Algorithm 1:

- Assumption in Equation 10 (assuming that the partial correlation between two SNPs in the set does not depend on other SNPs in the set, thus, are equal to their zero-order correlation). This assumption eliminates the need for making high-order correlation estimations from data, thus allowing the optimization of SNP sets with cardinality larger than k=m (where m is the number of samples).

- Assumption in Equation 12 (assuming that SNPs that are more than D base pairs apart are not correlated).

Thus, we run Macarons with different versions of these assumptions, where the main difference between these versions is the definition of the gain function that determines which SNP is to be added to the set next. Overall, we consider the following 5 models (from the most complex to the least complex):

- Macarons (without assumptions): This is a straightforward model implementing Algorithm 1 without any of the assumptions in Equation 6 and 10.
- Macarons (only assumption 6): Here, since we make assumption 6, the gain function becomes monotonic, which allows us to utilize the optimized algorithm to speed-up the computation drastically.
- Macarons (assumptions 6 & 10): Here, the inclusion of assumption 10 allows us to eliminate the high-order estimations from data, thus, allowing SNP sets larger than k > m to be considered. Note that this model does not limit the search according to D and corresponds to Macarons with D = ∞.
- Macarons (D = 20 kbps): Again, with the assumptions 6 and 10, but also assuming that only SNPs that are less than 20 kbps apart are correlated. This is the proposed Macarons version that we run.
- Macarons (D = 0): This is the simplest model we consider that assumes no SNPs are associated with each other. This is equivalent to the baseline method of using univariate associations (i.e., selecting top k SNPs with highest individual associations with the phenotype).

We investigate the performance of the selected SNP sets by these methods for different k values on the AT dataset (across the 17 phenotypes). For this purpose, we consider three metrics: the predictivity (R^2), the time performance, and robustness (the consistency of the selected SNP sets across different cross-validation folds, measured by jaccard index).

As it can be seen in Figure 4, more complex models take more time to run and the formulated assumptions considerably improve the runtime performance as expected. Notably, we also observe that decreasing the complexity has another important benefit of improving the model’s robustness to noise. Namely, we observe that models without the simplified assumptions are noticeably less robust compared to simpler models (e.g., Macarons with $D = 0$, or $D = 20$ kbps).

In phenotype prediction, we observe that Macarons (assumption 6) and Macarons (assumption 6 & 10) follow similar performance curves (Figure 4, panel a), which suggests that assumption 10 does not have a strong effect on the predictive performance of the models and is likely to hold. Here, we also observe that predictive performance typically increases with the selected SNP set size k, and simpler models with larger sets can offer more predictive performance compared to complex models that are limited to smaller sets.

In Figure 4 panel d, we also present a snapshot of the characteristics of these models for a fixed k value ($k = 100$ for all models except the most complex model, which we selected $k = 30$ due to time issues). The models are ordered by their complexity (models with more simplifying assumptions are on the right). Here, we clearly observe the trade-off between predictivity, runtime, robustness, and model complexity: More complex models are slower and less robust, but (presumably) better fits/explains the given data. Whereas, the model with the best cross-validated predictivity is in the middle, representing a good tradeoff point between the model fit and the model’s robustness to noise.

3.5 Contribution of using Macarons to take dependencies between variants into account

Here, we investigate the effect of Macarons (and avoiding redundancy between the variants) on the characteristics of the selected subsets. First, we compare Macarons with the baseline method (which does not take dependencies into account) in terms of phenotype prediction performance. For this purpose, we benchmark the methods on three datasets (AT, and two larger datasets: rice700k, and human height) and two phenotype association scores: (i) SKAT as done in previous sections, and as an alternative measure
than ridge regression used in the previous analyses) on the human height dataset. For this purpose, we consider five well-established regression models which are: (i) rrBLUP (Endelman, 2011), (ii) Bayesian Lasso (Park and Casella, 2008), (iii) BGLR (BayesA model) (Pérez and de Los Campos, 2014), (iv) Elastic-Net regression, and (v) Random Forest. Here, the first three methods (rrBLUP, BL, and BGLR) are iterative methods that are designed to handle a large number of features. Thus, these can be run on the entire genome (even for a large dataset with high dimensionality like the human height data), while the Random Forest and Elastic Net models are not optimized enough to run on the entire dataset due to runtime and/or memory issues.

First, we benchmark the predictive performance (R^2) of these methods on the human height dataset and compared them with Macarons (followed by ridge regression) for $k = 1000$ and $D = 20$ kbps. The results of this analysis are provided in Figure 7a. Here, we observe that Macarons followed by ridge regression can outperform rrBLUP, Bayesian Lasso and BGLR methods while being two magnitudes faster (Macarons framework takes 25 minutes to run, while the others take 50-60 hours to run, Supplementary Figure 3).

Next, we investigate the performance of Macarons-enhanced regression models (rrBLUP, BL, BGLR, Random Forest, Elastic-Net) that are run using k SNPs selected by Macarons (for $D = 20$ kbps) on the human height dataset. As it can be seen in Figure 7b (for R^2) and Supplementary Figure 4 (for mean squared error), using Macarons in conjunction with rrBLUP, BL and BGLR improves their prediction performance compared to running them alone using all SNPs, while dramatically reducing the runtime as much as 100x (Figure 7c). Particularly, in the case of Bayesian Lasso (BL), we observe that, even though using BL alone has a considerably lower performance, using Macarons together with BL results in a comparable performance to other regression methods. Overall, the results of these experiments suggest that using Macarons to reduce the feature space can benefit various regression methods both from a perspective of prediction-performance as well as runtime.

In addition, using Macarons to filter the feature space allows us to run regression methods that would otherwise not be possible to do so, such as Elastic-Net and Random Forest. Most notably, we observe that Macarons + Random Forest has the highest prediction score across all k values compared to all other methods tested, while still being an order of magnitude faster than running rrBLUP, BGLR, and BL on the whole dataset. This suggests that running a more sophisticated, non-linear method using a carefully selected subset of features could be a good strategy to improve the predictive performance further.

Finally, we investigated the performance of using the baseline method of univariate selection (i.e., selecting the top k SNPs with highest associations) instead of Macarons to filter the feature space of the regression methods. As shown in Supplementary Figure 5, we observe that selecting using Macarons consistently increases the prediction performance across all regression methods without compromising the runtime (Supplementary Figure 3).

3.7 Suggested settings for using Macarons

For the maximal chromosomal distance (D) parameter, we recommend an analysis similar to the one in Figure 1 and suggest the use of a default D value of 20 kbps based on our results. Whereas, for selecting the number of SNPs parameter (k), our recommendation is to select the highest possible k based on the available computational and experimental resources in mind (as a general guideline, we suggest $k = 1000$ for use with ridge regression, and $k = 10000$ for use with rrBLUP regression as good initial values to consider) and fine-tune it with the help of a cross-validation analysis as in Figure 7b and Supplementary Figure 6. In Supplementary Text 3, we detail our reasoning and suggestions on the selection of k.

4 Discussion

In order to select a complementary set of SNPs for the prediction of quantitative phenotypes, we develop Macarons, a fast and interpretable
model with a simple idea: the joint selection of highly dependent SNPs would be redundant and would not provide complementary information for the prediction of a phenotype.

Overall, this task is known as feature selection in the machine learning literature, and the idea to take redundancy into account is applied extensively. However, most of the established feature selection methods do not scale (from a runtime standpoint) to the SNP selection problem due to the high dimensionality of the GWAS data (e.g., typically up to 10^6 base pairs). The red colored SNPs are within coding region, and light red colored SNPs are within ±20kbp around coding region. Similarly, we use red (light red) color for genes with at least one selected SNP in a coding region (around 35 base pairs). The circles indicate selected SNPs and the rectangles indicate genes (colored red or light yellow) or chromosomes (colored yellow). Weighted edges between SNPs indicate their redundancy (measured by squared correlation R^2). We include pairs with $R^2 \geq 0.35$ and we highlight highly redundant pairs with $R^2 \geq 0.7$ with thick lines and black color. The red colored SNPs are within coding region, and light red colored SNPs are within ±20kbp around coding region. Similarly, we use red (light red) color for genes with at least one selected SNP in a coding region (around ±20kbp of coding region). The sizes of the circles (SNPs) indicate the strength of their individual association with the phenotype (measured by R^2).

![Fig. 6.](image1) Visualization of the selected SNPs on human height dataset for k=100. Each panel corresponds to a different SNP selection method (Baseline method of selecting top-k SNPs with highest association, Macarons with $D = 20$ kbp, and Macarons with $D = 10^6$ base pairs). The circles indicate selected SNPs and the rectangles indicate genes (colored red or light red) or chromosomes (colored yellow). Weighted edges between SNPs indicate their redundancy (measured by squared correlation R^2). We include pairs with $R^2 \geq 0.35$ and we highlight highly redundant pairs with $R^2 \geq 0.7$ with thick lines and black color. The red colored SNPs are within coding region, and light red colored SNPs are within ±20kbp around coding region. Similarly, we use red (light red) color for genes with at least one selected SNP in a coding region (around ±20kbp of coding region). The sizes of the circles (SNPs) indicate the strength of their individual association with the phenotype (measured by R^2).

![Fig. 7.](image2) The prediction performances and runtimes of various regression methods and their Macarons-enhanced versions on the human height dataset. (a) The prediction performances (R^2) of three regression methods (BL, BGLR, and rBLUP) that can run using all SNPs, as well as the performance of Macarons (for $k = 1000$ and $D = 20$ kbps, using ridge regression for predictions). (b) The prediction performances (R^2) of the Macarons-enhanced regression methods (labeled Macarons $+$ methods) with respect to the number of SNPs (k) parameter of Macarons. The dashed or dotted black lines indicate the standalone R^2 of the corresponding regression method (using all SNPs). Note that, it is not possible to run the random forest and elastic net regression using all SNPs due to time and memory constraints.

Equation 10) and limit the search space to intra-chromosomal pairs in close proximity (controlled by a parameter D in base pairs, Equation 12).

Our results demonstrate that, with the assumptions and the optimizations in its algorithm, Macarons can seamlessly scale to variant sets as large as $\sim 10^7$ in a matter of minutes. We expect that Macarons (with $D = 20$ kbps, or up to $D = 10^6$ base pairs) can be of practical use in large GWAS studies since it can take into account of the dependencies between the variants without compromising runtime. Overall, it can offer a reasonable trade-off between phenotype predictivity, runtime, and redundancy of the selected subsets.

The intra-chromosomal distance idea and D parameter in Macarons can be efficiently generalized to input dependency networks (where the presence of an edge indicates the decision to measure redundancy for that SNP pair, for example, the D parameter can be represented as connecting close SNPs as cliques in the network) to limit the search space of the algorithm. We provide a version of Macarons with input dependency network in our implementation though we leave experimentation with it as future work. We expect that this would be useful to take into account of the dependency between variants through more sophisticated models, for example, by considering the 3D structure of the chromosome through Hi-C data.

Macarons can be used in combination with any metric for individual phenotype association (including for dichotomous phenotypes). We expect that Macarons can be especially useful as a part of a multi-stage analysis for performing the initial filtering to reduce the search space, followed by epistasis tests or other subsequent analyses. Overall, the framework we present can be generalized to various other feature selection problems involving high dimensionality within and beyond biomedical applications.

Competing Interests

The authors declare that they have no competing interests.

References

