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Abstract
Non-Orthogonal Multiple Access (NOMA) has been proposed as a new radio access technique for cellular networks as an
alternative to OMA (Orthogonal Multiple Access) in which the users of a group (pairs or triples of users in a group are
considered in this paper) are allowed to use the wireless channel simultaneously. In this paper, for downlink single-input
single-output SISO-NOMA, a heuristic power allocation algorithm within a group is first proposed which attempts to ensure
that the users of a group benefit from simultaneous transmission equally in terms of achievable throughput. Moreover, a user
group scheduling algorithm is proposed for downlink NOMA systems by which a user group is to be dynamically selected
for transmission while satisfying long term temporal fairness among the individual contending users. The effectiveness of
the proposed power allocation method along with the temporal fair scheduling algorithm for downlink NOMA is validated
with simulations and the performance impact of the transmit power and the coverage radius of the base station as well as the
number of users are thoroughly studied.

Keywords NOMA · Power allocation · User grouping · User group scheduling · Temporal fairness

1 Introduction

The advent of new technologies and applications such as vir-
tual reality, augmented reality, and ultra high definition video
streaming has led to a substantial increase in the demand for
high throughput in cellular networks (see [1,6,7,9,22,28]).
One of the fundamental approaches to increase the data
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rates in cellular networks is increasing spectral efficiency,
i.e., the number of bits that can be transmitted per second
in each unit of spectrum [6]. One of the proposed tech-
niques to increase the spectral efficiency in cellular networks
is non-orthogonal multiple access (NOMA) by which a BS
can activate a user group (consisting of multiple users) at
the same time-frequency resource block (RB) of the sys-
tem either in the uplink (UL) or the downlink (DL) direction
(for example see [11,12,18,25]). There are two main types
of NOMA, namely power-domain NOMA and code-domain
NOMA, that are described in detail in Islam et al. [11,14].
In this paper, we focus only on power-domain SISO-NOMA
and refer to it as NOMA hereafter. While NOMA provides
more transmission opportunities for users, it can potentially
increase interference in the system due to multi-user activity.
Consequently, proper resource allocation schemes including
power allocation and user grouping and user group schedul-
ing are key in coping with the additional interference and
also in increasing the throughput. The survey paper by Islam
et al. [14] presents advances regarding resource allocation
focusing both on user pairing and power allocation in both
SISO and multiple-input multiple-output (MIMO) settings.
Another recent survey paper by Aldababsa et al. [3] provides
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a unified system model for NOMA including MIMO and
cooperative communication scenarios.

We consider NOMA for downlink (DL) transmissions
where a combination of superposition encoding and suc-
cessive interference cancellation (SIC) decoding are used at
the BS and the users, respectively (see [33]). To elaborate,
each active user receives a superimposed signal including the
signal of all active users. Successful SIC requires that each
active user decodes the signals of the other active users with
lower channel gains first, and then decodes its own signal by
treating the remaining interfering signals as noise (see [39]).
While the decoding procedure is in favor of users with higher
channel gains as they can cancel more interfering signals,
the power allocation is typically in favor of users with lower
channel gains to compensate, i.e., the BS usually allocates
more power to the signal of the users with weaker channel
gains. The number of active users per RB is often limited
by practical considerations such as SIC decoding complex-
ity and latency which tend to increase with the number of
multiplexed users (see [11]). Consequently, most of the prior
works in the NOMA literature consider a small number of
active users perRBsuch as twoor three users (e.g., [2,23,27]).
The performance of MIMO-NOMA is investigated in Zeng
et al. [40] when multiple users are grouped into a cluster
and the superiority of MIMO-NOMA over MIMO-OMA in
terms of both sum channel capacity and ergodic sum capacity
is proved analytically.

Furthermore, it is shown that in order to have higher
throughput multiplexing gains with NOMA, it is essential
to activate a set of users with sufficiently different channel
gains (see [4]). As a result, given the propagation channel
gains, several user grouping (a.k.a. user clustering or user
pairing) approaches have been proposed in the literature to
achieve this goal (e.g., [4,26]). Additionally, various user
scheduling and power allocation algorithms have been pro-
posed for NOMA systems with diverse objectives such as
minimizing the probability of outage (see [38]), maximiz-
ing the system utility (e.g., [24]), or minimizing the power
consumption (see [17]). Ideally, user group scheduling and
power allocation should be optimized jointly, for example see
[13]. However, such a joint optimization may be computa-
tionally prohibitive given the fact that computational power
at the BS is limited. Consequently, it is more appealing to
consider these two problems separately from a practical per-
spective, which is the approach we take in this paper.

Given a group of active users, power allocation with vari-
ous objectives has been studied in the literature.
For instance, the reference [23] proposes a power allocation
for a DL NOMA system that secures higher data rates for the
users of that group compared to an OMA systemwith round-
robin scheduling. A related method is proposed by Cui et al.
in [10] who study the problem of transmit power minimiza-
tion with outage constraints for a given set of active users.

In this paper, for the DL of a single-cell, single-carrier, time-
slotted NOMA system, as our first contribution, we propose
a heuristic low-complexity NOMA power allocation scheme
on the basis of the results of Oviedo and Sadjadpour [23]
for a given user group of pairs or triples while aiming for
a balanced NOMA gain distribution across the users of the
particular group.

The scheduler is in charge of choosing a group of users
from a set of user groups for simultaneous transmission. Con-
structing the set of user groups is referred to as user grouping.
Ali et al. [4] present an exhaustive list of user grouping
schemes for NOMA. If all possible user groups are to be
considered, then the complexity of the user group scheduler
would be prohibitively high. Therefore, it is crucial to form
user group sets with reduced cardinality so as to reduce the
complexity of the scheduler. The second contribution of this
paper is to evaluate (using simulations) the performance of
several user grouping schemes with different complexities
when a user group scheduler is in action.

In a practical DL NOMA system, given a user group-
ing and a power allocation algorithm, the allocated transmit
power to each user of the candidate user groups are first
calculated. Next, a scheduling algorithm selects one user
group for each RB. Moreover, to achieve fairness, similar to
OMA, the scheduling algorithms are often devised to max-
imize the system utility while satisfying a certain notion of
fairness among users. Such schedulers are called opportunis-
tically fair schedulers and have been studied extensively for
OMA systems (e.g., see [21,29]). Indeed, several types of
fair scheduling have been proposed in the literature includ-
ing temporal fair (TF) [20], proportional fair (PF) [16], and
utilitarian fair (UF) scheduling. While UF scheduling pro-
vides a guarantee for the users’ utilities (e.g., throughput) (see
[21,28]), TF scheduling ensures a fair temporal share (a.k.a.
airtime share) allocation among the users (see [20,31,32]).
Additionally, in PF scheduling, the objective is to maximize
the sum of the logarithm of users’ throughputs. The concav-
ity of the log function provides a fair throughput allocation
among the users (see [8,19]). The focus of this paper is on
TF scheduling which can be more appealing for delay sensi-
tive applications where the latency is of high importance (see
[33,34]). While there is a vast literature on opportunistic TF
scheduling in OMA systems (e.g., [20,21,29,30,37]), there
are a limited number of prior works on TF scheduling for
NOMA systems potentially due to the problem complexity.
Given a power allocation scheme, the reference [33] proposes
an optimal TF scheduler for NOMA systems in terms of sys-
tem throughput under long-term minimum and maximum
temporal share guarantees for each user while focusing on
user pairs only. Also, optimal NOMA scheduling with short-
term temporal fairness constraints is studied in Shahsavari et
al. [34]. As our third contribution, we propose an opportunis-
tic TF user group scheduler which attempts to maximize the
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system throughput while guaranteeing the same long-term
temporal share for each user in the cell. We note that the
structure of the proposed scheduler is inspired by its OMA
counterpart presented in Shahsavari and Akar [29] and is
also similar to the opportunistic TF NOMA scheduler sug-
gested in Shahsavari et al. [33]. However, unlike [33] where
minimum and maximum temporal share guarantees are con-
sidered for each user, our fairness constraint is to provide
the same long-term temporal share for each user in the cell.
Additionally, it can be shown that given our user grouping
algorithm, our specific type of temporal fairness eliminates
the chance of infeasibility of fairness constraints that may
occur in the general scheme proposed by Shahsavari et al.
[33]. Furthermore, Shahsavari et al. [33] focuses on optimal
TF multi-user scheduling and considers a max-min power
allocation in its numerical evaluations. However, we con-
sider TF NOMA scheduling with a novel power allocation
scheme and validate its effectiveness in terms of user and
system throughput in our numerical evaluations. Also, our
numerical results reveal that our proposed user scheduling
and power allocation algorithm consistently outperforms an
OMA system using an opportunistic scheduler in terms of
both user and system throughput.

The rest of the paper is organized as follows. In Sect. 2,
we describe the system model. The focus of Sect. 3 is on the
proposed NOMA power allocation scheme elaborating on
our proposed power allocation method for pairs and triples.
In Sect. 4, we first describe the various user grouping mech-
anisms we study in this paper. Subsequently, we describe our
proposed TF NOMA scheduler. In Sect. 5, we provide exten-
sive numerical experimentation to evaluate the performance
of the system and investigate the impact of user grouping and
several system parameters on the performance. We conclude
in Sect. 6.

2 Systemmodel

We consider the DL of a time-slotted single-cell single-
frequency (or single-carrier) system consisting of a single-
antenna BS as well as M single-antenna users. The time
slots are indexed by τ ∈ Z+, and the duration of each
slot, T , is chosen to be less than the coherence time of the
channel. Most of the well-established OMA schedulers for
wireless cellular systems, such as the proportional-fair sched-
uler [16], temporal-fair scheduler [20], or the MaxWeight
scheduler [35] are first proposed in the context of a single
carrier system and these single-carrier schedulers are then
appropriately extended to operate in multi-carrier settings. A
straightforward extensionmethodwould be to schedule carri-
ers one by one by using the single-carrier algorithm but more
sophisticated methods targeting joint scheduling of carriers
are also available; see for example several variations of the

MaxWeight scheduling algorithm proposed by Andrews and
Zhang [5] for a multi-carrier cellular network.While we con-
sider single-carrier scheduling in this paper, we believe that
our algorithms can be extended to the general multi-carrier
scenarios such as Orthogonal Frequency DivisionMultiplex-
ing (OFDM) systems. However, this line of research is left
outside the scope of this paper.

We now describe the transmission model in the single-
carrier OMA and NOMA systems with the following unify-
ing treatment. Let a k-tuple of users with 1 ≤ k ≤ M are
designated to be served in a given time slot τ . In the fair
OMA system described in Oviedo and Sadjadpour [23], k
users can be served in slot τ but one user at a time using
Time Division Multiple Access (TDMA). In fair OMA, a
single user is served for a duration of T

k ensuring that each
user in the designated k-tuple gets the same airtime within a
time slot. On the other hand, in power-domain NOMA, the
BS can transmit to these k users simultaneously. Let the users
in the designated k-tuple be indexed as i , i = 1, 2, . . . , k and
the complex channel coefficient for each user i at slot τ is
denoted by hi (τ ), i = 1, 2, . . . , k, with the corresponding
channel gain |hi (τ )|2, the latter being general continuous
random variables with no a-priori assumptions imposed. We
assume that the BS has a transmit power P . In the downlink
of a NOMA system, the total transmit power P should be
divided among the k users in the same k-tuple (see [14]). Let
the power allocation coefficients for each user i be denoted by
pi , i = 1, 2, . . . , k, satisfying

∑k
i=1 pi = 1. Consequently,

the transmit power allocated to user i is pi P . Without loss
of generality, we assume that the users are ordered such that
|h1(τ )|2 < . . . < |hk(τ )|2 which means each user i can
perform SIC (Successive Interference Cancellation) at the
receiver and remove the interference from the weaker users,
but stronger users signals remain as interference; see [33,36].
The received signal at user i is written as (see [3])

yi = hi

k∑

j=1

√
p j P x j + ni , (1)

where xi is the information of user i with unit energy and
ni is zero mean complex Gaussian noise with variance σ 2.
We also let ξ = P/σ 2 to represent the transmit SNR (Signal
to Noise Ratio). Based on these definitions, the achievable
NOMA rate for each user i at time slot τ in units of bits/s/Hz,
denoted by r (k)

i (τ ), can be written as follows: (see [3,23])

r (k)
i (τ ) = log2

(

1
pi ξ |hi (τ )|2

(
∑k

j=i+1 p j )ξ |hi (τ )|2 + 1

)

, (2)

for i = 1, 2, . . . , k−1.Since user k is the strongest user in the
designated k-tuple, it can cancel the interference completely
and its rate denoted by r (k)

k (τ ) is given as
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r (k)
k (τ ) = log2

(
1 + pkξ |hk(τ )|2).

(3)

In a fair OMA system, the rate in units of bits/s/Hz for each
user i in the designated k-tuple at slot τ , denoted by r̄ (k)

i (τ )

is given as: (see [36])

r̄ (k)
i (τ ) = 1

k
log2

(
1 + ξ |hi (τ )|2), (4)

where the term 1
k emerges since the BS devotes all its trans-

mission power to serve each user i for a duration of T
k ; see

[23]. Our proposed FAirNOMAScheduler (FANS)works on
a per-slot basis. At the beginning of each slot τ , we assume
that the BS will find the power allocation coefficients for

(1) each pair of users from a pair set denoted by P(τ ), and
(2) each triple of users from a triple set denoted by T (τ ).

This problem is called the power allocation problem and the
related algorithms we study in this paper are described in
Sect. 3. On the other hand, the construction of the pair and
triple sets P(τ ) and T (τ ) out of which a pair or a triple is
selected, is called theuser groupingproblemand is key for the
performance-complexity trade-off for the overall system. If
these sets are chosen to be empty sets, then the system reduces
to anOMAsystemwith known performance setbacks. On the
other hand, if these sets are chosen to be too wide, then the
complexity of the scheduler will be high, prohibiting effec-
tive real-time operation. The user grouping algorithms that
we study in this paper are described in Sect. 4. Subsequently,
the BS will schedule a single user, or a user pair, or a user
triple while satisfying long-term fairness constraints. This
problem is known as the user group scheduling problem and
the algorithm FANS that we propose for this purpose is pre-
sented in Sect. 4. To this end, we need several definitions
for the temporal fairness attribute of the proposed scheduler
FANS. For FANS, the long-term time utilization of all the
users need to be the same to ensure temporal fairness among
the users. To describe this requirement rigorously, we define
ρi (K ), 0 ≤ ρi (K ) ≤ 1, i = 1, 2, . . . , M which is defined
as the utilization factor of user i over a time span of K slots.
Mathematically,

ρi (K ) =
∑K

τ=1 I {user i is served at slot τ }
∑K

τ=1
∑3

m=1 m I {m users are simultaneously served at slot τ } , (5)

where I (·) is the indicator function and is either 0 or 1
depending on whether the argument event is false or true,
respectively. Mathematically, temporal fairness reduces to

ρi = lim
K→∞ ρi (K ) = 1

M
, 1 ≤ i ≤ M, (6)

which ensures that the number of slots a single user is served
in the long-termwhether individually, or as part of a pair (or a
triple), is the same across all users in the system. Since exact
fulfillment of the condition in (6) is hard to achieve for finite
K , in the numerical experiments, we will investigate a scalar
fairness index known as the Jain’s Fairness Index (JFI) [15]:

J F I (K ) =
(∑M

i=1 ρi (K )
)2

M
∑N

i=1 ρi (K )2
,
1

M
≤ J F I (K ) ≤ 1. (7)

When J F I (K ) is close to unity, then we say the system is
temporal fair over a span of K time slots. On the other hand,
when J F I (K ) moves away from unity, then some users are
said to be penalized in terms of temporal utilization of system
resources.

We also define the average throughput of the user i in units
of bits/s/Hz, denoted by ri (K ), over a span of K slots as:

ri (K ) = 1

K

K∑

τ=1

r (m)
i (τ )I {user i served, m users scheduled, at slot τ },

(8)

for m = 1, 2, 3. The average system-wide throughput r(K )

over a span of K slots is then given by

r(K ) =
M∑

i=1

ri (K ). (9)

Finally, we define the steady-state throughput per user i ,
denoted by ri , and also the overall system-wide throughput
r as follows:

ri = lim
K→∞ ri (K ), 1 ≤ i ≤ M, r = lim

K→∞ r(K ). (10)

In addition to providing temporal fairness among users, when
a pair or triple is selected by the scheduler, the fair power
allocation to be described in the next section will be used
to ensure fairness among users that make up the selected
pair/triple. We note that unfair power allocations can give
rise to unfair rate allocations despite the fulfillment of the
temporal fairness condition given in (6).

3 Power allocation in NOMA

In Oviedo and Sadjadpour [23], the power allocation coef-
ficients for NOMA are to be chosen to guarantee that for
each user i in the k-tuple, the per-user rate achieved by
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NOMA will be at least equal to the per-user rate achieved
by OMA:

g(k)
i (τ ) = r (k)

i (τ )

r̄ (k)
i (τ )

≥ 1, 1 ≤ i ≤ k, (11)

where g(k)
i (τ ) is theNOMAgain at slot τ achievedbyuser i in

the k-tuple with respect to OMA. The condition (11) ensures
that NOMA is advantageous to OMA not only for the sum
rate of users but also for each user within the k-tuple. Oviedo
and Sadjadpour [23] provide ameans for obtaining the power
allocation coefficients for a NOMA system satisfying (11)
while naming the proposed methodology “fair NOMA”. In
this paper, we describe three power allocation methods on
the basis of the work of Oviedo and Sadjadpour [23] for the
two particular choices of k = 2, 3 with all the three methods
satisfying the inequality (11) for all the users of the k-tuple.
The case for k > 3 is left for future research.

3.1 Power allocation for pairs

In this section, the NOMA power allocation method pro-
posed by Oviedo and Sadjadpour [23] for the case k = 2
is presented for the sake of completeness. In this case, we
have two users 1 and 2 at slot τ with channel gains satisfying
|h2(τ )|2 > |h1(τ )|2. The per-user rates r (2)

1 (τ ) and r (2)
1 (τ )

(in units of bits/s/Hz) are given in terms of the power allo-
cation coefficients in (2) and (3). The sum rate, denoted by
r(1,2)(τ ), for the ordered user pair (1, 2) is obtained by

r(1,2)(τ ) = r (2)
1 (τ ) + r (2)

2 (τ ). (12)

What now remains to be shown is how to find the power
allocation coefficients p1 and p2 so that the identity (11)
is satisfied. In order for r (2)

1 (τ ) ≥ r̄ (2)
1 (τ ) to hold true, the

following inequality should be satisfied (see [23]):

p2 ≤ p2,max = (1 + ξ |h1(τ )|2) 1
2 − 1

ξ |h1(τ )|2 . (13)

On the other hand, the condition r (2)
2 (τ ) ≥ r̄ (2)

2 (τ ) yields a
lower bound for p2 (see [23]):

p2 ≥ p2,min = (1 + ξ |h2(τ )|2) 1
2 − 1

ξ |h2(τ )|2 . (14)

It can be shown as in Oviedo and Sadjadpour [23] that
p2,max ≥ p2,min and a choice of p2 ∈ [p2,min, p2,max ] and
p1 = 1 − p2 is sufficient to ensure a NOMA allocation
(11) which is superior to OMA for both users. Moreover,
the policy of choosing p2 = p2,max is shown in Oviedo and

Sadjadpour [23] to maximize the sum rate r(1,2)(τ ) and is
hence referred to as MSRPA (Maximum Sum Rate Power
Allocation). However, with MSRPA, only the user 2 bene-
fits from NOMA and user 1 does not benefit from NOMA
at all. To address the NOMA gain asymmetry between the
two users, we propose Fair Power Allocation (FPA) policy
which ensures that both users benefit from the deployment
of NOMA equally by the choice of p2, i.e., the identity
g(2)
1 (τ ) = g(2)

2 (τ ) is forced to hold. FPA involves the solu-
tion of a nonlinear equation subject to the constraint p2 ∈
[p2,min, p2,max ] to obtain p2. For the purpose of achieve-
ment of balanced NOMA gains but with a lower complexity
than FPA, we propose a heuristic power allocation method
forwhichwe choose p2 to be the arithmetic average of p2,min

and p2,max , named HPA (Heuristic Power Allocation). The
underlying motivation for HPA is to facilitate computation
since the power allocation coefficients are to be dynami-
cally computed for many user pairs at every time slot τ

while choosing the best user pair among all the candidate
pairs. Therefore, the computation needed for power alloca-
tion for each candidate pair needs to be kept at a minimum
which is the main reason for proposing HPA as opposed to
FPA.

In order to comparatively evaluate the three power alloca-
tionmethods described above, we fix ξ = 30 dB, |h2(τ )|2 =
1. Subsequently, the sum rate r(1,2)(τ ) and the NOMA

gains g(2)
j (τ ), j = 1, 2 are plotted in Fig. 1 as a func-

tion of the varying channel gain |h1(τ )|2 of user 1. We
note that the power allocation coefficients for the partic-
ular case of FPA are obtained by exhaustive search. We
observe that the performance of the proposed HPA policy
is similar to that of FPA and thus provides a more balanced
NOMA gain across the two users of the pair in compar-
ison with MSRPA for which user 1 will always have a
unit NOMA gain. Moreover, HPA slightly outperforms FPA
in terms of the sum rate and the deviation of the perfor-
mance of HPA from FPA increases with decreased channel
gain |h1(τ )|2 of user 1. We thus conclude that HPA is
a low-computation alternative to FPA in the case of user
pairs.

3.2 Power allocation for triples

In this subsection, k = 3 for which we have three users i, i =
1, 2, 3 at slot τ with channel gains satisfying |h3(τ )|2 >

|h2(τ )|2 > |h1(τ )|2. The per-user rates r (3)
i (τ ), i = 1, 2, 3

in units of bits/s/Hz are given in terms of the power allocation
coefficients pi , i = 1, 2, 3, 0 ≤ pi ≤ 1, p1 + p2 + p3 = 1,
as in (2) and (3). On the other hand, the sum rate, denoted by
r(1,2,3)(τ ), for the ordered user triple (1, 2, 3) is simply the
sum of the three per-user rates:
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Fig. 1 a Sum rate r(1,2)(τ ), b NOMA gain g(2)
1 (τ ), c NOMA gain g(2)

2 (τ ) as a function of the channel gain |h1(τ )|2 of user 1

r(1,2,3)(τ ) = r (3)
1 (τ ) + r (3)

2 (τ ) + r (3)
3 (τ ). (15)

For fair NOMA power allocation, the identity (11) should
hold for k = 3. It is easy to show that the condition r (3)

3 (τ ) ≥
r̄ (3)
3 (τ ) yields the following lower bound for p3:

p3 ≥ p3,min = (1 + ξ |h3(τ )|2) 1
3 − 1

ξ |h3(τ )|2 . (16)

On the other hand, the condition r (3)
2 (τ ) ≥ r̄ (3)

2 (τ ) results in
an upper bound for p3 depending on p2:

p3 ≤ p3,max (p2)

=
(

p2ξ |h2(τ )|2
(1 + ξ |h2(τ )|2)1/3 − 1

− 1

)
1

ξ |h2(τ )|2 , (17)

and a lower bound for p2 depending on p3:

p2 ≥ p2,min(p3)

=
(
(1 + ξ |h2(τ )|2)1/3 − 1

)(
p3ξ |h2(τ )|2 + 1

)

ξ |h2(τ )|2 . (18)

Finally, the inequality r (3)
1 (τ ) ≥ r̄ (3)

1 (τ ) results in the fol-
lowing upper bound p2 depending on p3:

p2 ≤ p2,max (p3)

=
(

ξ |h1(τ )|2 − (
(1 + ξ |h1(τ )|2)1/3 − 1

)

ξ |h1(τ )|2(1 + ξ |h1(τ )|2)1/3) − p3

)

. (19)

Similar to the case of pairs of users, we define the policy
MSRPA that maximizes the sum rate subject to the condition
(11) and the policy FPA by which users of the triple benefit
from the use ofNOMAequally in comparisonwithOMA.As
a low-computation alternative, we propose HPA for triples
of users by setting

pi = 1

2
(pi,min + pi,max ), i = 2, 3, (20)

which results in a linear equation with two unknowns that
are to be solved to obtain the power allocation coefficients
p2 and p3, which is straightforward to write from the iden-
tities (16)–(19). Subsequently, p1 is set to 1 − p2 − p3. In
order to comparatively evaluate the three power allocation
methods described above, we fix ξ = 30 dB, |h3(τ )|2 =
1, |h1(τ )|2 = 10−2. Subsequently, the sum rate r(1,2,3)(τ )

and the NOMA gains g(3)
j (τ ), j = 1, 2, 3, using these three

policies are plotted in Fig. 2 as a function of the channel gain
|h2(τ )|2 of user 2. The power allocation coefficients for the
particular case of FPA are obtained by exhaustive search as
in the case of pairs. We observe that in MSRPA, the NOMA
gains of users 1 and 2 are one and the power allocation coef-
ficients can be obtained by the simultaneous solution of the
following two linear equations

p2 = p2,max (p3), p3 = p3,max (p2) (21)

and is simple to implement. However, MSRPA suffers from
unbalanced NOMA gains across the three users and all the
NOMA benefit is enjoyed by user 3 alone, while users 1
and 2 do not benefit from NOMA at all, in comparison with
OMA. On the other hand, HPA provides a more balanced
NOMA gain distribution while slightly lagging the MSRPA
policy in terms of the sum rate. We also observe that part
of the NOMA gain enjoyed by user 3 in MSRPA appears to
be shared almost equally by users 1 and 2 in HPA for vary-
ing values of |h2(τ )|2. Stemming from lower computational
complexity than FPA and a more balanced NOMA gain dis-
tribution than MSRPA, we will employ HPA for pairs and
triples, in the numerical examples of this paper.
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Fig. 2 a Sum rate r(1,2,3)(τ ), b
NOMA gain g(3)
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4 User grouping and user group scheduling

4.1 User grouping

At the beginning of each slot τ , we assume that the BS will
schedule the transmission to either a single user, a user pair,
or a user triple, out of the set of given user groups, and
then the HPA policy described in the previous section will
be used during transmission for the selected pair or triple.
For the description of the user grouping schemes of inter-
est, we need the following definitions. Let I denote the set
of individual users i , 1 ≤ i ≤ M , and let P(1)(τ ) denote
the set of all candidate ordered user pairs (i, j) such that
1 ≤ i, j ≤ M, |h j (τ )|2 > |hi (τ )|2. Similarly, let T (1)(τ )

denote the set of all candidate ordered user triples (i, j, k)
such that 1 ≤ i, j, k ≤ M, |hk(τ )|2 > |h j (τ )|2 > |hi (τ )|2.
Above, candidacy is with respect to NOMA transmission.
Note that the cardinalities of the sets P(1)(τ ) and T (1)(τ )

are M(M − 1)/2 for M ≥ 2 and M(M − 1)(M − 2)/6 for
M ≥ 3, respectively, making it computationally very expen-
sive to dynamically select pairs and triples of users. In order
to reduce the computational load of the user group scheduling
algorithm, we propose to use certain user grouping schemes
with lesser cardinalities thanP(1)(τ ) and T (1)(τ ); see [4] for
an exhaustive list of user grouping schemes for NOMA.

For the purpose of user grouping for pairs, we first rank
the users according to their channel gains |hi (τ )| so that rank
of user i is denoted by vi (τ ). In this case, the user with the
strongest channel has rankM , the userwith the next strongest

channel has rank M − 1, and so on. When M is even, we
propose to use the following subset of pairs P(2)(τ ) for user
grouping:

P(2)(τ )=
{

(i, j) : vi (τ )+v j (τ )=M + 1, vi (τ ) ≤ v j (τ )

}

⋃ {

(i, j) : v j (τ ) − vi (τ )= M

2
, vi (τ ) ≤ v j (τ )

}

. (22)

With this construction, |P(2)(τ )| = M and all the individual
users appear the same number of times, i.e., twice, in this
proposed set. While trying to be fair among users during the
set construction in terms of the number of occurrences, we
also try to pair users with as much different channel gains as
possible. When M is odd, we propose to add a dummy user
with random channel gain and apply the procedure above but
omit the pairs that contain the dummy source at the end.

For the purpose of user grouping for triples, when M is
divisible by 6, we propose to use the following subset of
triples T (2)(τ ):

T (2)(τ ) =
{

(i, j, k) : vi (τ ) ≤ M

3
, vi (τ ) + vk(τ ) = M + 1,

v j (τ ) − vi (τ ) or vk(τ ) − v j (τ ) = M

3

}

. (23)

With this construction, |T (2)(τ )| = 2M
3 and all the individual

users appear twice in this subset. We also propose to use an
alternative triple set T (3)(τ ) with cardinality M as follows:
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T (3)(τ ) = T (2)(τ )
⋃

{
(i, j, k) : v j (τ ) − vi (τ ) = vk(τ ) − v j (τ )

= M

3
, vi (τ ) ≤ v j (τ ) ≤ vk(τ )

}

. (24)

Moreover, similar to the pair set construction proposed
above, we try to group users with as much different chan-
nel gains as possible while maintaining simplicity. When M
is not divisible by 6, we propose to add up to 5 dummy users
again with random channel gains to fulfill the divisibility-by-
6 condition and apply the same procedure above. In the end,
triples that contain one of these dummy sources are omitted
if the remaining pair is already in the proposed set of pairs.
Similarly, triples that contain two or more of these dummy
sources are to be omitted as well.

4.2 User group scheduling

We are now ready to describe the proposed scheduler FANS
that operates on a per slot basis. FANS maintains a per-user
bucket variable, denoted by bi (τ ) ∈ R, for each user i at slot
τ . Let b(τ ) be the the row vector of per-user bucket values
which is of size M . Also let ei be a row vector of zeros of
size M except for the i th position (which is set to one) and
let e be a row vector of ones of size M .

The FANS scheduler operation at slot τ is described in
detail in Algorithm 1. The bucket values are initially set to
zero. In this algorithm, based on the channel gains of each
user at slot τ , the subsets of pairs and triples that contain
candidate pairs or triples to be served, are first constructed.
In the most crucial step of the algorithm, one of the following
will be scheduled for transmission:

• A user with the largest sum of rate and bucket values,
• Apairwith the largest sumof sum rates and sumof bucket
values,

• A triple with the largest sum of sum rates and sum of
bucket values,

After the scheduling decision is made in favor of a user
either individually or as part of a pair or a triple, this par-
ticular user’s bucket value is incremented by α so that it will
have a lesser chance at the forthcoming slots to be scheduled.
Subsequently, all the bucket values are simultaneously decre-
mented by a value in such a way that the sum of the bucket
values remains as zero. The computational complexity of the
algorithm isO(M) which involves finding the power alloca-
tion coefficients for each user group in the indicated group
sets along with the sum rates of each group in line with the
HPA algorithm proposed in Section 3. The storage require-
ment of the proposed algorithm isO(M) since only a bucket
is maintained for each user holding a scalar real value.

Data: time slot τ , vector of channel gains {hi (τ )}, i = 1, . . . , M ,
bucket vector b(τ ), algorithm variable α

Result: select a user, pair, or triple, for NOMA transmission and
update the bucket vector

for each user i do
obtain r (1)

i (τ ) using r (1)
i (τ ) = log2(1 + ξ |hi (τ )|2).

end
construct the set of pairs P(τ ) (∅ or P(1)(τ ) or P(2)(τ )) ;
for each user pair (m, n) ∈ P(τ ) do

obtain r (2)
(m,n)(τ ) using (12).

end
construct the set of triples T (τ ) (∅ or T (1)(τ ) or T (2)(τ ) or
T (3)(τ ) ) ;
for each user triple (x, y, z) ∈ T (τ ) do

obtain r (3)
(x,y,z)(τ ) using (15).

end
for i ∈ I, (m, n) ∈ P(τ ), (x, y, z) ∈ T (τ ), schedule the user i∗
or the user pair (m∗, n∗), or the user triple (x∗, y∗, z∗) that
maximize
r (1)
i (τ ) + bi , r

(2)
(m,n)(τ ) + bm + bn, r

(3)
(x,y,z)(τ ) + bx + by + bz ;

if user i∗ is scheduled then
b(τ + 1) = b(τ ) + α( 1

M e − ei∗ );
else if user pair (m∗, n∗) is scheduled then

b(τ + 1) = b(τ ) + α
( 2
M e − em∗ − en∗

)
;

else
user triple (x∗, y∗, z∗) is scheduled;
b(τ + 1) = b(τ ) + α

( 3
M e − ex∗ − ey∗ − ez∗

)
;

end
Algorithm 1: The pseudo-code for the proposed scheduler
FANS at time slot τ .

Table 1 System parameters used in the numerical examples

Parameter Value

Cell radius R (m) 100, 500, 1000

System bandwidth 10 MHz

System frequency 2.5 GHz

Path loss model 128.1 + 37.6 log10(·) (in km)

Noise spectral density −174 dBm/Hz

Shadowing standard deviation 8 dB

Number of users M 12, 18, 36, 72

BS transmit power budget P 30 dBm, 40 dBm

We have the following observations: The structure of the
scheduler FANS for OMA systems, i.e., P(τ ) = T (τ ) = ∅,
is known to be optimal in terms of the overall throughput sat-
isfying temporal fairness: see Liu et al. [20] and Shahsavari
and Akar [29]. In this paper, we extend the same structure to
NOMA systems with dynamic k-tuple selection for k ≤ 3.
For each choice of α > 0, the proposed algorithm satisfies
the fairness constraint (6) since the way the scheduler works,
the individual bucket values can not diverge to minus or plus
infinity. As long as the bucket values remain bounded for all
K , one can easily show that (6) holds. However, the speed at
which ρi (K ) approaches to 1/M in (6) depends on the partic-
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(a) r(K) vs K for FANS(0,0)
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(c) r(K) vs K for FANS(1,1)
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(d) JFI(K) vs K for FANS(1,1)
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(e) r(K) vs K for FANS(2,2)
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(f) JFI(K) vs K for FANS(2,2)
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Fig. 3 System-wide throughput r(K ) and Jain’s fairness index J F I (K ) plotted as a function of K for five different values of the algorithm
parameter α and for the three algorithm versions FANS(0,0), FANS(1,1), FANS(2,2)

ular choice of the parameterα.Whenα is relatively small, this
convergence rate is lower but the overall system throughput
is higher. On the other extreme, when α is large, the overall
system throughput ismuch lower but the systembecomes fair
even for small values of K . We refer the reader to Shahsavari
et al. [30] for more exhaustive analysis of the impact of the
algorithm parameter α on convergence but in the context of
multicell OMA systems. The proposed scheduler FANS has
several variations depending on the choices of the sets P(τ )

and T (τ ). FANS(i, j) for i = 0, 1, 2 and j = 0, 1, 2, 3 uses
P(i)(τ ) for the set of pairs and T ( j)(τ ) for the set of triples
where by convention P(0)(τ ) = T (0)(τ ) = ∅. In the numer-
ical examples, we will compare and contrast the six user
group scheduling algorithms FANS(0, 0) (also referred to as
OMA), FANS(1, 0), FANS(2, 0), FANS(1, 1), FANS(2, 2),
and FANS(2, 3).
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5 Numerical results

In this section, we provide various numerical examples to
evaluate the performance of the proposed scheduler. Table 1
presents the parameters of the cellular system of interest used
for obtaining the numerical results. The assume Rayleigh
fading for all the users and the path loss and shadowing affects
are also considered.

5.1 Impact of the scheduling parameter˛

In the first numerical example, we study the impact of the
scheduling parameter α in Algorithm 1 on the system-wide
throughput r(K ) and the fairness index J F I (K ) over a span
of K time slots. For this purpose, we fix M = 12, R =
500 m, transmit power P = 40 dBm and assume that all the
user buckets are initially set to zero. Additionally, we assume
that the twelve users are randomly placed in the cell and
the three algorithms FANS(0,0), FANS(1,1), and FANS(2,2)
are run for 106 time slots. The performance figures r(K )

and J F I (K ) are plotted as function of K in Fig. 3 from
which we observe the following. For all the cases we had
tried, Jain’s fairness index J F I (K ) approaches to one as
K grows, demonstrating long-term temporal fairness among
users. However, the associated convergence rate is higher
when α is large, and is lower when α is small. On the other
hand, the overall system throughput is slightly lower in the
steady-state for larger values of α for all the three versions of
FANS.Also,we observe that for a fixed value ofα, the system
throughput figures attained by the NOMA-based FANS(1,1)
and FANS(2,2) are significantly higher than that attained by
OMA-based FANS(0,0). Furthermore, it can be seen that the
Jain’s fairness index converges faster when using FANS(1,1)
and FANS(2,2) compared to FANS(0,0), favoring NOMA-
based scheduling over the OMA-based scheme in terms of
temporal fairness.

5.2 Impact of the proposed NOMA scheduler on
system-wide and per-user throughputs

In this example, we investigate the impact of the proposed
temporal fair NOMA scheduler on the system-wide and per-
user throughputs. To this end, we consider 1000 system
realizations and fix M = 12 users and algorithm parameter
α = 0.01. In each realization, we randomly place the twelve
users in a cell of radius R = 500 m and run the six pro-
posed scheduling algorithms for a duration of K = 250000
time-slots. The empirical cumulative distribution function
(CDF) of the system-wide throughput and of the per-user
throughput is plotted in Fig. 4. For the system-wide through-
put results, we observe that the performance of FANS(2,0)
that uses the reduced cardinality pair set is very close to that of
FANS(1,0) that uses the entire pair set. Similarly, the system-
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Fig. 4 Empirical CDF for: a system-wide throughput; b per-user
throughput, over 1000 simulation instances each run for 250000 slots
for the case M = 12, PT = 40 dBm, R = 500 m

wide performances of FANS(2,2) and FANS(2,3) that use the
reduced cardinality pair and triple sets are very close to that
of FANS(1,1) that uses the entire pair and triple sets. Addi-
tionally, we observe that FANS(2,3) slightly outperforms
FANS(2,2) for instances with low system-wide throughputs.

For the user-wide throughput results, we first examine the
schemes which do not use triples of users, i.e. FANS(1,0)
and FANS(2,0). In this case, weak (strong) users attain bet-
ter (worse) throughput with FANS(1,0) in comparison with
FANS(2,0) favoring FANS(1,0) over FANS(2,0) in terms
of throughput fairness in addition to system-wide through-
put. When triples of users are allowed, weak (strong) users
attain better (worse) throughput with FANS(2,3) in compar-
ison with FANS(2,2) favoring FANS(2,3) over FANS(2,2)
in terms of throughput fairness. FANS(1,1) outperforms
FANS(2,2) and FANS(2,3) in terms of throughput fairness
but we note its relatively high computational complexity of
O(M3) compared toO(M) of the latter two scheduling algo-
rithms. As a general observation, FANS(2,3) appears to be
an appropriate choice trading off computational complexity,
system-wide throughput, and throughput fairness.

Stemming from these observations, in the rest of the
numerical examples,wewill studyonlyFANS(2,0), FANS(2,2),
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Table 2 The steady-state
system throughput r obtained
with the four schedulers
FANS(0,0), FANS(2,0),
FANS(2,2), and FANS(2,3), for
various values of the system
parameters M , P , and R

Transmit power P (dBm)
30 40
Cell radius R (meters) Cell radius R (meters)

M Scheduler 100 500 1000 100 500 1000

18 FANS(0,0) 12.06 4.67 1.90 15.40 7.90 4.49

FANS(2,0) 12.48 5.27 2.30 15.85 8.88 5.15

(3.5%) (12.8%) (21.1%) (2.9%) (12.4%) (14.7%)

FANS(2,2) 12.59 5.63 2.63 16.00 9.29 5.59

(4.4%) (20.6%) (38.4%) (3.9%) (17.6%) (24.5%)

FANS(2,3) 12.63 5.65 2.67 15.98 9.38 5.66

(4.7%) (21.0%) (40.5%) (3.8%) (18.7%) (26.1%)

36 FANS(0,0) 12.21 4.84 2.00 15.52 8.06 4.62

FANS(2,0) 12.66 5.47 2.42 16.01 9.09 5.30

(3.7%) (13.0%) (21.0%) (3.2%) (12.8%) (14.7%)

FANS(2,2) 12.80 5.83 2.77 16.19 9.51 5.73

(4.8%) (20.5%) (38.5%) (4.3%) (18.0%) (24.0%)

FANS(2,3) 12.81 5.84 2.77 16.20 9.58 5.79

(4.9%) (20.6%) (38.5%) (4.4%) (18.9%) (25.3%)

72 FANS(0,0) 12.30 4.98 2.10 15.62 8.22 4.81

FANS(2,0) 12.78 5.61 2.51 16.14 9.28 5.50

(4.0%) (12.7%) (19.5%) (3.3%) (12.9%) (14.3%)

FANS(2,2) 12.92 5.96 2.87 16.33 9.70 5.95

(5.0%) (19.7%) (36.7%) (4.6%) (18.0%) (23.7%)

FANS(2,3) 12.96 5.98 2.90 16.37 9.80 6.01

(5.4%) (20.0%) (38.1%) (4.8%) (19.2%) (25.0%)

The numbers inside the parentheses denote the percentage gain attained by the associated scheduler with
respect to the OMA-based FANS(0,0) in terms of the system-wide throughput

and FANS(2,3) for NOMA-based user group scheduling in
addition to the OMA-based FANS(0,0) due to their relative
computational efficiency.

5.3 Impact of the number of users, transmit power,
and cell radius

In this section, we examine the performance of the four
schedulers, namely theOMA-basedFANS(0,0), andNOMA-
based FANS(2,0), FANS(2,2), and FANS(2,3), for three
different values of M ∈ {18, 36, 72}, two different values
of the transmit power P ∈ {30, 40} dBm, and three different
values of the cell radius R ∈ {100, 500, 1000} m. As in the
previous example, the results are obtained by averaging over
1000 system realizations each with a span of K = 250000
time slots. In each realization, M users are randomly placed
in the cell and their bucket values are initialized to zero at the
beginning. The estimate of the expected steady-state system
throughput denoted by r is defined as

r = 1

L

L∑

i=1

r (i)(K ),

where r (i)(K ) is the system-wide throughput achieved at
realization i . Table 2 lists the value of r for various com-
bination of the number of users, cell radius, and BS transmit
power. We have the following observations:

• The NOMA-based FANS(2,2) and FANS(2,3), which
are making use of both pairs and triples, outperform the
NOMA-based FANS(2,0) which is only making use of
pairs. Additionally, all three NOMA-based schedulers
outperform the OMA-based scheduler FANS(0,0). It is
also observed that the relative performance improvement,
i.e., with respect to FANS(0,0), of the NOMA-based
schedulers increases with reduced BS transmit power
and increased cell radius. The reason is when the trans-
mit power is larger and/or the cell radius is smaller, the
majority of the users will be strong and NOMA-based
approaches would not be as effective.

• Out of the schedulers that can choose triples of users,
FANS(2,3) outperforms FANS(2,2) slightly. In partic-
ular, we obtain up to 38.5% and 40.5% improve-
ment, respectively, using FANS(2,2) and FANS(2,3), in
system-wide throughput with respect to the OMA-based
FANS(0,0) whereas with FANS(2,0), we obtain up to

123



764 E. Erturk et al.
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(c)R = 1000 m
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Fig. 5 Empirical CDF of the system-wide throughput obtained over
1000 simulation instances whenM = 72, P = 30 dBm, and a R = 100
m, b R = 500 m, c R = 1000 m

21.1% improvement. These maximum gains are attained
in NOMA-friendly regimes, i.e., relatively lower trans-
mit power and larger cell radius, so that there is a rich
mixture of strong and weak users that NOMA benefits
from.

• When the number of users M increases, the system-wide
throughout also increases slightly for all the schedulers
due to higher multi-user diversity gains. However, the
relative gains attained by using the NOMA-based sched-
ulers with respect to the OMA-based FANS(0,0) do not
noticeably change by M .

We also provide the empirical CDF of the system-wide
throughput (over 1000 instances) in Fig. 5 when M = 72,
P = 30 dBm, and for three different values of the cell radius
R. While Table 2 confirms system throughput improve-
ment on average (over various realizations) when using
NOMA-based schedulers with respect to the OMA-based
one, Fig. 5 reveals a consistent performance improvement
for each realization. Furthermore, the performance gains of
the NOMA-based schedulers with respect to the OMA-based
scheduler tend to increase with increased radius as expected.

6 Conclusions

In this paper, we propose a number of opportunistic user
group scheduling algorithms that dynamically select indi-
vidual users, user pairs, or user triples, in a given cell,
with the goal of maximizing the overall system through-
put while ensuring temporal fairness among the contending
users. Additionally, for computational efficiency purposes,
we propose to dynamically construct reduced cardinality user
pair and user triple sets as opposed to using the entire pair
and triple sets, out of which a pair or a triple is to be selected.
With the resulting NOMA-based scheduler FANS(2,3) that
dynamically schedules pairs and triples out of reduced cardi-
nality pair and triple sets, we have been able to obtain up to
40.5% improvement in system-wide throughput with respect
to the OMA-based scheduler FANS(0,0). FANS(2,3) pro-
vides consistent performance improvement over FANS(0,0)
but it is most effective in cases with larger cell radii and rela-
tively smaller transmit powers. Our future work will consist
of extension of our proposed algorithms to multi-carrier and
MIMO-based NOMA systems and also taking into consider-
ation per-source queue utilizations for scheduling purposes.
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