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Abstract
This article provides a simple low-order controller design method (including
PID controllers as special cases) for a class of unstable systems. First, PID
controller design is considered for systems with two unstable poles and pole
placement and delay margin issues are discussed. Then, a chain of integrators is
considered with arbitrary stable dynamics in cascade. For a given desired mini-
mum delay margin for this class of plants, a PID and low-order controller design
method is obtained in terms of an inequality constraint on the sum of k of the
desired closed-loop poles, where k is number of the integrators in the open-loop
transfer function.

K E Y W O R D S

chain of integrators, PID control, time delay, unstable system

1 INTRODUCTION

Low-order and PID controller design for unstable systems and systems with time delay is a challenging problem under
various design specifications; see a relatively recent survey1 and also References 2-4.

In this article we will first consider plants with two unstable poles as in Reference 5, where PID tuning mech-
anisms are compared. For this class of systems explicit bounds for achievable delay margin have been studied
in References 6,7 under PID and low-order controllers. Here we investigate closed-loop pole placement subject to
a minimum for a lower bound of the delay margin. For this purpose we use a computationally attractive lower
bound of the delay margin, determined from a weighted ℋ∞-norm of the complementary sensitivity function, as
in References 8-10.

Next we consider a chain of k integrators in cascade with arbitrary stable transfer function (i.e., in this case the plant
order can be arbitrarily large but all the unstable poles are at the origin). Again, for a minimum of the delay margin lower
bound, PID and low-order controllers are designed to achieve partial pole placement. It will be shown that the controller
is determined from k free parameters (k+ 1 if an integral action is desired in the controller). Also, the relation between
these parameters and the closed-loop pole locations will be discussed. We should indicate that this class of plants is also
studied widely in the literature, see, for example, References 11,12, where the plant is stabilized by multiple delayed
feedback controllers and application examples are given in References 13,14. For pole placement issues for delay systems
see a recent article15 and its references.

The article is organized as follows. In the next section the problems studied are formulated. In Section 3, PID controller
design for plants with two unstable poles is discussed. In Section 4, PID and low-order controllers are designed for a
chain of k integrators subject to a minimum of the lower bound of the delay margin. Examples are given in Section 5 and
concluding remarks are made in Section 6.

9438 © 2021 John Wiley & Sons Ltd. wileyonlinelibrary.com/journal/rnc Int J Robust Nonlinear Control. 2022;32:9438–9451.
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ÖZBAY and GÜNDES 9439

F I G U R E 1 Feedback control system (C, P)

Notation: Let C denote complex numbers. The closed right-half-plane (RHP) is C+ = {s ∈ C | ℜe(s) ≥ 0}, and the
open left-half-plane (LHP) is C− = {s ∈ C | ℜe(s) < 0}. The region of instability is the extended closed RHP, that is, C+e =
C+ ∪ {∞}. Real and positive real numbers are denoted by R and R+, respectively; p and ∞ denote real proper and
strictly proper rational functions of s;  ⊂ p is the stable subset with no poles in C+e. The space ℋ∞ is the set of all
bounded analytic functions in C+. f ∈ℋ∞, the norm || ⋅ || is defined as ||f || ∶= ess sups∈C+

|f (s)|, where ess sup denotes
the essential supremum. The degree of the polynomial d is denoted by deg(d). For simplicity, we drop (s) in transfer
functions such as P(s).

2 PROBLEM FORMULATION

Consider the standard feedback system formed by controller C and plant P, denoted by (C, P), shown in Figure 1.
The feedback system (C, P) is stable if transfer functions from r and v to u and y are in ℋ∞ and this is equivalent

to having S= (1+PC)−1, T = 1− S, CS and PS in ℋ∞. Assuming that there is no unstable pole-zero cancelation in the
product P(s)C(s), the feedback system is stable if and only if the all the poles of T are in C−. In this article low-order and
PID controllers are designed for various type of unstable plants. The delay margin (DM) of a stable feedback system (C, P)
is the largest 𝜏max such that (C, e−𝜏sP) is stable for all 𝜏 ∈ [0, 𝜏max).

The main problem studied in the article can be stated as follows: given an unstable P ∈ p, design a low-order (or
PID type) controller such that

(i) (pole placement): the dominant closed-loop system poles are at the desired locations in C−, and
(ii) the delay margin is larger than a specified value h.

In general, explicit closed-form expression for the delay margin is not available; but it can be computed numerically
from the gain crossover frequency and the phase margin. A lower bound of the delay margin is determined as follows:
consider a stable feedback system (C, P) and examine Sh:= (1+ e−hsPC)−1

Sh =
(
1 + PC + (e−hs − 1) PC

)−1 = S
(
1 + (e−hs − 1) T

)−1
. (1)

Note that

‖
‖
‖
‖

e−hs − 1
h s

‖
‖
‖
‖
= 1. (2)

Therefore, the delayed feedback system (C, e−hsP) is stable if

||s T|| < 1
h
. (3)

Hence, the DM of (C, P) is at least ||s T||−1. This fact will be used in the next sections to take care of the second design
condition (ii).

3 SECOND- ORDER UNSTABLE PLANTS

Consider a second-order unstable plant P ∈ p

P(s) = 1
(s − p1) (s − p2)

, Re(pi) > 0, i = 1, 2. (4)
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9440 ÖZBAY and GÜNDES

In recent works6,7 delay margin optimizing controllers have been investigated for this class of plants. It has been shown
that largest possible delay margin is obtained by using PD controllers, and adding a “small” integral action leads to a
“small” reduction in the DM. On the other hand, it is well known that maximizing the DM typically leads to slow step
response and may have other undesirable closed-loop system characteristics, for example, small gain margin. Neverthe-
less, it is always good to know what the largest achievable DM is. In this section, we design PID controllers for a guaranteed
DM with a closed-loop pole placement objective. Note that (4) includes two real poles and two complex conjugate poles
cases. The discussion below captures both cases.

For the plant (4) we will design a PID controller in the form

CPID(s) = KP +
KI

s
+ KDs = KD

(s − z1)(s − z2)
s

, (5)

where KP, KI , KD are nonnegative and

z1,2 = −
KP

2KD

(

1 ±
√

1 − 4 KIKD

K2
P

)

. (6)

If 0 < KIKD∕K2
P ≤ 1∕4, then the zeros are real and z2 ≤ z1 < 0. In this case, typical root locus is as shown in Figure 2, where

{−𝛽1,−𝛽2,−𝛽3} are the set of closed-loop system poles. For the case KIKD∕K2
P > 1∕4 we have complex conjugate zeros;

typical root locus for this case is as shown in Figure 3.
One of the closed-loop pole placement objectives we consider here is to choose KP, KI and KD such that closed-loop

poles are real, as shown in Figures 2 and 3,

−𝛽3 ≤ −𝛽2 ≤ −𝛽1 < 0. (7)

Before we investigate further constraints in the design, let us discuss the lower bound of the delay margin determined
from (3). The complementary sensitivity function is

T(s) = KD
(s − z1) (s − z2)

(s + 𝛽1) (s + 𝛽2) (s + 𝛽3)
(8)

so,

||sT|| = KD
‖
‖
‖
‖

s
(s + 𝛽1)

(s − z1)
(s + 𝛽2)

(s − z2)
(s + 𝛽3)

‖
‖
‖
‖
. (9)

In the real zeros case, from Figure 2, it is clear that

||sT|| ≤ KD because
‖
‖
‖
‖

s − zi−1

s + 𝛽i

‖
‖
‖
‖
≤ 1, i = 1, 2, 3, (10)

where we used the notation z0 = 0. For the design method proposed below we will see that (10) holds even if the zeros are
complex conjugate because we will have |zi| ≤ 𝛽2, i= 1, 2, (this will be formally proven at the end of the section).

F I G U R E 2 Typical root locus for real zeros
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ÖZBAY and GÜNDES 9441

F I G U R E 3 Typical root locus for complex
conjugate zeros
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D

Hence, it can be concluded that if h (a minimum acceptable delay margin) is given, then KD should be chosen to satisfy

KD <
1
h
. (11)

Now we can further discuss the implications of the bound (11) on the pole placement, that is, the selection of z1, z2
(equivalently KP and KI) and their relations with 𝛽1, 𝛽2, 𝛽3. The characteristic equation of the feedback system (C, P) is

s3 + (KD − (p1 + p2))s2 + (p1p2 + KP)s + KI = 0 (12)

and it is desired to be equal to

(s + 𝛽1)(s + 𝛽2)(s + 𝛽3) = s3 + (𝛽1 + 𝛽2 + 𝛽3)s2 + (𝛽1𝛽2 + 𝛽1𝛽3 + 𝛽2𝛽3)s + 𝛽1𝛽2𝛽3 = 0. (13)

From the above identity we have

KD = (p1 + p2) + (𝛽1 + 𝛽2 + 𝛽3). (14)

Thus, as h increases in (11) the largest allowable value of the sum (𝛽1 + 𝛽2 + 𝛽3) decreases. How should we select con-
troller parameters so that (𝛽1 + 𝛽2 + 𝛽3) is small? From the root locus figures it is clear that choosing 𝛽1 = 𝛽o (a given
acceptable value) and 𝛽2 = 𝛽3 = 𝛽 leads to a good design from the pole placement and DM perspectives. What is the small-
est possible 𝛽 in terms of 𝛽o? What is the resulting DM lower bound? The answers are given by the following result and
its proof.

Proposition 1. Consider the feedback system with plant (4) and controller (5). Let −𝛽3 = −𝛽2 = −𝛽 < −𝛽1 = 𝛽o < 0 denote
the desired closed-loop system pole locations. A lower bound of the largest achievable delay margin is

ho
max =

1
(p1 + p2) +

√
3p1p2

.

Proof. From the coefficients of s1 and s0 terms in the characteristic equation we see that

𝛽 =
√

𝛽
2
o + KP + p1p2 − 𝛽o (15)
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9442 ÖZBAY and GÜNDES

and hence

1
h
= p1 + p2 + 𝛽o + 2𝛽 = p1 + p2 + 2

√

𝛽
2
o + KP + p1p2 − 𝛽o, KP =

(𝛽o − (p1 + p2) + 1∕h)2

4
− (𝛽2

o + p1p2). (16)

Moreover, KI = 𝛽o𝛽
2. Since KP > 0,

h <

(

(p1 + p2) + 2
√

𝛽
2
o + p1p2 − 𝛽o

)−1

=∶ hmax(𝛽o). (17)

For relatively large values of 𝛽o the inequality (17) shows an inverse relation between 𝛽o and hmax, maximum of the lower
bound of the DM considered here. For fast step response and small steady-state error for unit ramp reference input we
need a large value for 𝛽o, on the other hand this will make the admissible values of h small. The relation (17) gives an
optimal value of 𝛽o which maximizes hmax:

ho
max =

1
(p1 + p2) +

√
3p1p2

is obtained for 𝛽
o
o =

√
p1p2

3
. (18)

▪

Figure 4 shows hmax versus 𝛽o for p1 = 0.2 and a few values of p2.
Thus the PID design procedure can now be summarized as follows: given p1 and p2 choose

𝛽o = 𝛽
o
o =

√
p1p2∕3, (19)

and pick an acceptable level of DM, h, subject to

h < ho
max =

1
(p1 + p2) +

√
3p1p2

. (20)

Let

KP = 0.25
(√

p1p2∕3 + h−1 − (p1 + p2)
)2
− 4p1p2∕3 (21)

and define

𝛽 =
√

KP + 4p1p2∕3 −
√

p1p2∕3. (22)

10-2 10-1 100 101 102

o

0
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0.8
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2
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2
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2
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F I G U R E 4 hmax versus 𝛽o
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ÖZBAY and GÜNDES 9443

Then, integral and derivative gains are computed as

KD = 1∕h, KI = 𝛽o𝛽
2
. (23)

Remark 1. For all h < ho
max the resulting KP in (21) is positive, and in this case 𝛽 defined in (22) is greater than 𝛽o as

desired. Now it is left to prove the claim made earlier, that |zi| < 𝛽, i= 1, 2, in this design when z1 and z2 are complex
conjugate. To see this fact, recall that

|zi|
2 = KI∕KD = h𝛽o𝛽

2
. (24)

Therefore, |zi| = 𝛽

√
h𝛽o, with 𝛽o is defined as (19), and h satisfying the inequality (20). Furthermore,

h𝛽o < ho
max𝛽o =

√
p1p2∕3

(p1 + p2) +
√

3p1p2
< 1, (25)

which proves the claim.

4 PLANTS WITH A CHAIN OF INTEGRATORS

In the previous section we considered second-order unstable plants. In this section we consider arbitrary-order plants
with k poles at s= 0, but no other poles in C+. As mentioned in the Introduction, this is an interesting class of plants in
various applications, including high precision position control of multi-link robot arm.

The plant is in the form

P(s) = 1
sk

Gk(s), (26)

where k≥ 1, Gk(0)≠ 0 and Gk has no poles in C+. In other words, the plant has exactly k poles at s= 0 and these are the
only unstable poles. Note that Gk may be improper, but it is possible to make it proper by a cascade connection with a
strictly proper stable minimum phase transfer function. The plant may have any number of C− poles and there are no
restrictions on the plant zeros. Moreover, the plant may be infinite dimensional and in particular it may contain time
delays (input–output delay, as well as state delays internally).

Lemma 1. Let 𝛽i ∈ R+, i= 1, … , k, be nonnegative real constants. Define the polynomial 𝜙k as:

𝜙k(s) ∶=
k∏

i=1
(s + 𝛽i). (27)

Then the following norm equality holds:
|
|
|
|
|

|
|
|
|
|

s
(

1 − sk

𝜙k(s)

)|
|
|
|
|

|
|
|
|
|

=
k∑

i=1
𝛽i. (28)

Proof. This is a special case of lemma 3.1 of Reference 10. ▪
The following result gives various types of low-order controllers (including PID) stabilizing e−hsP(s) for a given lower

bound of the DM, h> 0.

Proposition 2. Let P be given in (26) with Gk(0)≠ 0 and Gk has no poles in C+. Choose any Q ∈ℋ∞ that satisfies
Q(0)=Gk(0)−1, sk−1Q ∈ℋ∞, and GkQ ∈ℋ∞ (note that Q may have to be strictly proper). Define the polynomials 𝜙k, 𝜙(k+1)
as:

𝜙k(s) ∶=
k∏

i=1
(s + 𝛽i), 𝜙(k+1)(s) ∶=

(k+1)∏

i=1
(s + 𝛽i). (29)

Define B ∈ R+ as

B ∶=
‖
‖
‖
‖

GkQ − 1
s

‖
‖
‖
‖
+ h ||GkQ||. (30)
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9444 ÖZBAY and GÜNDES

(a) Strong stabilization (no integral action in the controller): For i= 1, … , k, let 𝛽i ∈ R+ satisfy

k∑

i=1
𝛽i <

1
B
. (31)

Then the controller Cs ∈ℋ∞ given in (32) stabilizes the delayed plant e−hsP:

Cs(s) =
(
𝜙k(s) − sk)Q(s). (32)

(b) Integral-action stabilization: For i= 1, … , (k+ 1), let 𝛽i ∈ R+ satisfy

(k+1)∑

i=1
𝛽i <

1
B
. (33)

Then the integral-action controller Ci given in (34) stabilizes the delayed plant e−hsP:

Ci(s) =
(
𝜙(k+1)(s) − s(k+1)

s

)

Q(s) = Cs(s) +
𝛽(k+1)𝜙k(s)

s
Q(s). (34)

Proof. Write P as

P(s) =
(

sk

𝜙k(s)

)−1 ( sk

𝜙k(s)
P(s)

)

. (35)

(a) Let Mk be defined as

Mk ∶=
sk

𝜙k
+ Cse−hs sk

𝜙k
P = sk

𝜙k
+ (𝜙k − sk)

𝜙k
e−hsGkQ = 1 + s(𝜙k − sk)

𝜙k

(
GkQ − 1

s
+ (e

−hs − 1)
hs

hGkQ
)

. (36)

Since

||
e−hs − 1

h s
|| = 1, (37)

using the norm equality (28) in Lemma 1, if the small gain condition (31) holds, it follows that

|
|
|
|
|

|
|
|
|
|

s(𝜙k − sk)
𝜙k

(
GkQ − 1

s
+ (e

−hs − 1)
hs

hGkQ
)|
|
|
|
|

|
|
|
|
|

≤

|
|
|
|
|

|
|
|
|
|

s(𝜙k − sk)
𝜙k

|
|
|
|
|

|
|
|
|
|

(
|
|
|
|

|
|
|
|

GkQ − 1
s

|
|
|
|

|
|
|
|
+
|
|
|
|

|
|
|
|

e−hs − 1
hs

|
|
|
|

|
|
|
|
||hGkQ||

)

≤

k∑

i=1
𝛽i

(
|
|
|
|

|
|
|
|

GkQ − 1
s

|
|
|
|

|
|
|
|
+ h||GkQ||

)

< 1.

Therefore, Mk is a unit, and hence, Ck is a stabilizing controller for e−hsP.
(b) Write the integral-action controller in (34) as

Ci =
(

s
(s + 𝛽(k+1))

)−1 ( (𝜙(k+1) − s(k+1))
(s + 𝛽(k+1))

Q
)

. (38)

Let Mki be defined as

Mki ∶=
s(k+1)

𝜙(k+1)
+
(𝜙(k+1) − s(k+1))

𝜙(k+1)
e−hsGkQ = 1 +

(𝜙(k+1) − s(k+1))s
𝜙(k+1)

(
GkQ − 1

s
+ (e

−hs − 1)
hs

hGkQ
)

. (39)

If the small gain condition (33) holds, then using the norm equality (28) in Lemma 1, it follows that Mki is a unit. ▪
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ÖZBAY and GÜNDES 9445

Remark 2 (Closed-loop system poles). The above analysis shows that in case (a), the closed-loop system poles are the zeros
of the unit Mk(s). If Q ∈ℋ∞ is selected in such a way that B, defined by (30), is much smaller than 1, then Mk is close
to 1, which means that the dominant closed-loop system poles are near −𝛽1, … ,−𝛽k. Similarly in case (b), dominant
closed-loop system poles are near −𝛽1, … ,−𝛽(k+1), when B≪ 1, which may be possible to achieve only when h is small.

Remark 3 (The relation between 𝛽i’s and h). Recall that for various control objectives we would like to make 𝛽i’s as large
as possible. On the other hand, they are restricted by

∑
𝛽i < 1∕B, where B is defined in (30). It is clear that there is an

inverse relationship between 1/B and h. For a fixed h, to make 1/B large, we need to select Q(s) in such a way that ||GkQ||
and ||RQ|| are small, where

RQ(s) ∶=
Gk(s)Q(s) − 1

s
. (40)

Since Q(0)= 1/Gk(0), it is impossible to have ||GkQ||< 1; but with a judicious choice it may be possible to get ||GkQ||= 1.
Then, among such possibilities we need to pick the one which minimizes ||RQ||, to get the largest possible 1/B. In general,
Q should be chosen to make B= ||RQ||+ h||GkQ|| small for a given fixed h.

Remark 4 (Controller order). The order of the controllers in Proposition 2 depends on the choice of the free parameter
Q ∈ℋ∞. If no integral-action required, then the order of the controller Cs in (32) can be as low as (k− 1) (one less than
the number of plant poles at s= 0). With integral-action, the order of the controller Ci in (34) can be as low as k (same as
the number of plant poles at s= 0).

Corollary 1 below states a special case for strictly proper plants, where the parameter Q can be chosen so that Cs in
(32) becomes a (proper) PD controller, and Ci in (34) becomes a PID controller of the form

CPD = Kp +
Kd s

𝜏ds + 1
, CPID = CPD +

Ki

s
. (41)

The pole at −1∕𝜏d is included for implementation, where 𝜏d > 0 is typically very small so that the second term in CPD acts
like a derivative.

Corollary 1 (PD and PID controllers for k= 1). In addition to the assumptions of Proposition 2, suppose that P is strictly
proper. Let k= 1, that is, Gk(s)= sP(s).

(a) (PD controller): Choose any 𝜏d ∈ R+ and any K ∈ R. In (32), let

Q(s) = Gk(0)−1 + Ks
𝜏ds + 1

. (42)

Define the norm B as

B ∶=
‖
‖
‖
‖

GkGk(0)−1 − 1
s

+ Gk
K

𝜏ds + 1
‖
‖
‖
‖
+ h ||GkQ||. (43)

For 𝛽1 ∈ R+ satisfying 𝛽1 < B−1, the PD controller Cs = CPD ∈  given in (44), derived from (32), stabilizes the delayed plant
e−hsP:

CPD = 𝛽1

[

Gk(0)−1 + Ks
𝜏ds + 1

]

. (44)

For K = 0, the controller in (44) is a proportional controller.
(b) (PID controller): Let Q ∈  be as in (42). With B defined as (43), for 𝛽1, 𝛽2 ∈ R+ satisfying (𝛽1 + 𝛽2) < B−1 the cascade

PI-PD controller CPID given in (45), derived from (34), stabilizes the delayed plant e−hsP:

CPID =
[

(𝛽1 + 𝛽2) +
𝛽1𝛽2

s

] [

Gk(0)−1 + K s
𝜏ds + 1

]

. (45)

For K = 0, the controller in (45) is a proportional + integral controller.

For plants that have two poles at s= 0, the lowest order of stabilizing controllers designed based on Proposition 2 is
one. However, depending on Gk, the free parameter Q ∈ℋ∞ may have to be strictly proper In this case, the controllers in
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9446 ÖZBAY and GÜNDES

(32) and (34) cannot be in PD and PID forms. Corollary 2 below derives a first-order controller for strictly proper plants,
where the parameter Q can be chosen so that Cs in (32) becomes a (proper) PD controller, and Ci in (34) becomes a PID
controller.

Corollary 2 (Low-order controllers for k= 2). In addition to the assumptions of Proposition 2, suppose that P is strictly
proper. Let k= 2, that is, Gk(s)= s2P(s).

(a) Choose any 𝜏d ∈ R+ and any K ∈ R. In (32), for any 𝛼 ∈ R+, let

Q(s) = 1
𝛼s + 1

(

Gk(0)−1 + Ks
𝜏ds + 1

)

. (46)

With Q as in (46), for 𝛽1, 𝛽2 ∈ R+ satisfying the inequality (31), the controller Cs ∈  given in (47), derived from (32),
stabilizes the delayed plant e−hsP:

Cs(s) =
[
(𝛽1 + 𝛽2)s + 𝛽1𝛽2

𝛼s + 1

] [

Gk(0)−1 + Ks
𝜏ds + 1

]

. (47)

For K = 0, the controller in (47) is a first-order controller.
(b) With Q as in (46), for 𝛽1, 𝛽2, 𝛽3 ∈ R+ satisfying the inequality (33), the controller Ci given in (48), derived from (34),

stabilizes the delayed plant e−hsP:

Ci(s) =
[

((𝛽1 + 𝛽2)s + 𝛽1𝛽2)
(

1 + 𝛽3

s

)

+ 𝛽3

]

Q(s). (48)

5 EXAMPLES

5.1 Plants with two unstable poles

Example 1 (Two real poles). Consider the plant (4) with p1 = 0.2 and p2 = 1. Applying the design procedure proposed in
Section 2, we see that 𝛽o

o =
√

p1p2∕3 = 0.2582 and this leads to ho
max = 0.5064 s. Now if we select h= 0.4 s, we should set

KD = 1/h= 2.5. Furthermore, from (21) we have KP = 0.3404 and this leads to 𝛽 = 0.5209, which gives KI = 𝛽
o
o𝛽

2 = 0.0701.
Hence,

CPID(s) = 0.3404 + 0.0701
s

+ 2.5 s. (49)

The feedback system has one pole at −0.2582 and double pole at −0.5209, with the actual resulting delay margin of
0.4439 s. The step responses of the feedback system under different values of the delay are shown in Figure 5.
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PID controller is designed to achieve minimum DM of 0.4 sec,
resulting actual delay margin is 0.4439 sec

F I G U R E 5 Step response of the feedback
system (p1 = 0.2, p2 = 1.0)
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ÖZBAY and GÜNDES 9447

F I G U R E 6 Step response of the
feedback system (p1, 2 = 0.2± j)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
h=0
h=0.15
h=0.25
h=0.35

Time (seconds)

A
m

pl
itu

de

PID controller is designed to achive minimum DM of 0.35 sec
resulting actual DM is 0.4232 sec.
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Example 2 (Two complex conjugate poles). Now let the plant (4) be defined by the complex conjugate poles
p1, 2 = 0.2± j1. The procedure of Section 2, leads to 𝛽

o
o =

√
p1p2∕3 = 0.5888 which gives ho

max = 0.4616 s. Accordingly, if
we select h= 0.35 s as the minimum allowable DM, then KD = 1/h= 2.8571. As before, from (21) we have KP = 0.9328 and
this leads to 𝛽 = 0.9342, which gives KI = 𝛽

o
o𝛽

2 = 0.5138. Therefore,

CPID(s) = 0.9328 + 0.5138
s

+ 2.8571 s. (50)

The feedback system has one pole at −0.5888 and double pole at −0.9342, with the actual resulting delay mar-
gin of 0.4232 s. The step responses of the feedback system under different values of the delay are shown
in Figure 6.

5.2 Plants with a chain of integrators

Example 3 (Fourth-order plant with one pole at s= 0). Consider the plant

P = s − 1
s(s + 6)(s2 + 8s + 17)

, (51)

where Gk = (sP). Let Q=Gk(0)−1 =−102. Then B ∈ R+ in (30) is computed as

‖
‖
‖
‖

GkQ − 1
s

‖
‖
‖
‖
= 1.6373, ||GkQ|| = 1.901, B = 1.6373 + h 1.901. (52)

For h= 1 s, a constant controller Cs is obtained from (32) as Cs = −102𝛽1 for 𝛽1 < B−1 = 0.2826 satisfying (31). For an
integral-action controller, choosing 𝛽1 = 𝛽2 = 0.141 satisfying (33), a PI controller is obtained from (34) as

Ci = −102 (0.282s + 0.0199)
s

. (53)

With the PI controller in (53), the system has a delay margin of DM = 2.8503 s. The step responses for h= 0, 0.5, 0.95, 1.75
are shown in Figure 7. The response is slow as expected since Q(s) is chosen for a low-order C(s) (a PI controller). Other
Q choices may give faster response. Since P has RHP zero and relative degree 3, performance degradation with delay is
not surprising.
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9448 ÖZBAY and GÜNDES

Let us now discuss the design of CPID defined by (45). In this case we have a free parameter, K (the derivative action
gain, when 𝜏d → 0) to choose. We may now ask: what is the optimal choice of K which makes B, as small as possible,
for a fixed h? This is quite relevant for maximizing the allowable sum of 𝛽i’s. Recall that B, (43), consists of two terms,
B=B1 +B2, where

B1 ∶=
‖
‖
‖
‖

Gk(s)Gk(0)−1 − 1
s

+ Gk(s) K
𝜏ds + 1

‖
‖
‖
‖

and B2 ∶= h
‖
‖
‖
‖

Gk(s)Gk(0)−1 + Gk(s)Ks
𝜏ds + 1

‖
‖
‖
‖
. (54)

Define a normalized derivative action gain

K = Gk(0)−1Kdn. (55)

We now investigate the optimal Kdn which minimizes B1 and B2/h in a combined fashion,

B1 =
‖
‖
‖
‖

F(s) − 1
s

+ F(s) Kdn

𝜏ds + 1
‖
‖
‖
‖
,

B2

h
=
‖
‖
‖
‖
‖

F(s)
(

1 + Kdn

𝜏ds + 1

)‖
‖
‖
‖
‖

, where F(s) = Gk(s)Gk(0)−1
, (56)

and 𝜏d → 0. Minimization of an expression in the form B1 has been discussed in Reference 16. However, in this case we
need to consider both B1 and B2 for

F(s) = −102 (s − 1)
(s + 6)(s2 + 8s + 17)

.

Figure 8 shows B1 and B2/h values for different Kdn.
We observe that the minimum of B1 occurs at Kdn = 0; moreover the variance in B1 is very small; on the other hand, B2/h

varies significantly with Kdn. Considering that both B1 and B2 impacts B, a reasonable choice would be Kdn =−0.23, which
leads to B= 1.653+ h 1.034. For h= 1 s we have B−1 = 0.3727, which means that we can now choose (𝛽1 + 𝛽2) ≤ 0.3722.
The special choice 𝛽1 = 𝛽2 = 0.186 leads to the PID controller (45)

CPID(s) = −102
(

0.372 + 0.0346
s

) (

1 − 0.23 s
𝜏ds + 1

)

, 𝜏d → 0. (57)

With this controller, for 𝜏d = 0, the actual DM is 1.4757 s, which means that compared with the PI controller the DM
has been reduced (both designs satisfy minimum DM of h= 1 s) but the step response with the PID controller is faster:
settling time for h= 0 has been reduced to 25 s from 35 s.

Example 4. Let us now consider an infinite dimensional plant with three poles at s= 0,

P = 0.8 e−0.5s (s − 10)
s3(s + 4)(s + e−s)

. (58)

In this case Gk(0)= (s3P)(0)=−2. Accordingly, let 𝜏d = 0 and consider a PD-like controller

Q(s) = −0.5 (1 + Kdns)
(1 + 𝛼s)2

with 𝛼 = 1
20

. (59)

Figure 9 shows B1 and B2/h versus Kdn. In this case B1 and B2/h are simultaneously minimized by Kdn =−0.5646, which
gives B1 = 1.1046 and B2/h= 1.

Now taking a desired minimum DM as h= 0.75 s, we have B−1 = 1/1.8546= 0.5392. If we take 𝛽1 = 𝛽2 = 𝛽3 = 0.15,
then the condition (31) is satisfied with the resulting controller, (32),

C(s) = Cs(s) =
0.15 (3s2 + 0.45s + 0.152)

(1 + 0.05 s)2
(1 − 0.5646 s) . (60)
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F I G U R E 7 Step response of the feedback
system (PI controller for a fourth-order plant
with one pole at s = 0)

-0.5

0

0.5

1

1.5

2
h=0
h=0.5
h=0.95
h=1.75

Step Response

0 10 20 30 40 50 60 70 80
Time (seconds)

A
m

pl
itu

de

PI controller is designed to guarantee a minimum DM of 1.0 sec
the resulting actual DM of the feedback system is 2.85 sec
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The Bode plots of PC shown in Figure 10 illustrate that the system has phase margin of 25◦ with crossover frequency
𝜔c = 0.5575 rad/s, which means that the actual delay margin is 0.7827 s. Hence the objective of having at least 0.75 s DM
is achieved. The closed-loop poles nearest to the Im-axis are at −0.08± j0.9, (computed with QPmR17). The Bode plots
also show that if we modify the controller as C=CsClag with the lag controller

Clag(s) =
1 + 31.25 s

1 + 1.56 × 31.25 s
, 0.032−1 = 31.25 (61)

then the crossover frequency moves to 0.324 rad/s and the phase margin increases to 33◦, that gives an actual DM of 1.78 s,
which is far greater than the minimum required.

6 CONCLUSIONS

In this article second-order unstable plants are considered first; we have proposed a PID controller design method which
takes into account a lower bound of the delay margin and a pole placement condition. Then, arbitrary-order plants (can
be infinite dimensional) with k poles at s= 0, and no other unstable poles, are studied. A low-order controller is designed
to guarantee a desired level of delay margin, that gives a constraint on the pole placement. For systems with k= 1 and
k= 2 it is possible to obtain PID controllers with this design even when the plant is infinite dimensional.
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