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Collision Resolution for Random Access
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Abstract— As a building block toward a simple and scalable
solution for massive random access, we introduce collision-
resolution algorithms using successive interference cancella-
tion (SIC) based on the received signals, with no need for
any coordination or codebook differentiation. We first consider
two-user multiple access with the ZigZag algorithm. We prove
that the original ZigZag and a modified version of it, called
double-zipper ZigZag, attain the same performance as the optimal
coordinated time-sharing in the high signal to noise ratio (SNR)
regime, even in the presence of channel state information (CSI)
errors. We then extend the results to the case of arbitrary
number of users employing delay-domain processing. Specifically,
we introduce delay-domain zero forcing and its regularized
version, which are able to cancel and suppress the interference
among users, respectively. By obtaining a post-processing system
model and characterizing the accumulated noise during the
decoupling process, we also derive bounds on the achievable
sum-rates of the proposed algorithm for both cases of perfect
and imperfect CSI. Simulation results show that the newly pro-
posed approach have comparable performance with coordinated
time-sharing at high SNRs.

Index Terms— ZigZag algorithm, collision resolution,
interference cancellation, delay domain processing, massive
random access.

I. INTRODUCTION

W ITH the exponentially increasing number of internet-
of-things (IoT) devices and the rise of machine-

to-machine (M2M) communications, simple and scalable
solutions for the problem of massive random access are of
paramount importance. In this setting, a very large number of
users, of which only a small subset are active at any given time,
wish to communicate their messages to a common receiver in
an uncoordinated fashion. Two parallel approaches have been
developed in the previous literature to address the problem of
multiple access communications. The first approach follows
the footsteps of Ahlswede [2] and Liao [3], and considers
multiple access channels (MACs) for which codebooks of
individual users are distinct and the channels are perfectly syn-
chronized. The receiver, having access to the users’ codebooks,
can decode the individual messages using different techniques.
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The rate region achievable via this approach is named as
the Cover-Wyner rate region [4]. Considering Gaussian noise
channels, at high signal to noise ratios (SNRs), the rate
region becomes nearly triangular and approaches the time-
sharing region; while at low SNRs, it becomes a rectangular
one [5], [6]. While it is possible to achieve the MAC capacity
via this approach, it does not scale easily beyond a few
users. Recently, compressed sensing techniques have been
employed to alleviate this problem. The readers are referred
to [7] and the references therein for related algorithms to
estimate the number of users, channel coefficients, and users’
packets in a random access setup. Even though it is not
impossible to assign distinct codebooks to a massive number
of users and keep track of the transmitting ones at the receiver,
synchronization issues makes it very hard to implement this
approach in practice. Some works also employ the spatial
dimension alongside the compressed sensing techniques in
order to increase the detection accuracy [8].

The second approach which has originated from the
University of Hawaii in early 1970s is the simple ALOHA
protocol [9] and its slotted variant [10], which are based
on collision avoidance ignoring the channel coding problem.
As the approach is based on collision avoidance, the colliding
packets are discarded at the receiver. While this approach is
scalable in terms of the number of users, its overall throughput
performance is highly inferior. More recent literature con-
siders some extensions of ALOHA along with successive
interference cancellation (SIC) to improve its throughput. For
instance, in [11], a combination of packet erasure correcting
codes and SIC, called coded slotted ALOHA, is developed.
The scheme exploits a bipartite graph representation of the
SIC process, resembling iterative decoding of generalized low-
density parity-check (LDPC) codes over the erasure channel
to optimize the selection probabilities of the component era-
sure correcting codes through a density evolution analysis.
In diversity ALOHA [12], the authors utilize time and fre-
quency diversities to transmit multiple copies of the users’
packets, which results in better delay performance compared
to the simple slotted ALOHA under light traffic. Employing
this repetition strategy, contention resolution diversity slotted
ALOHA (CRDSA) [13] considers grouping a number of slots
as frames in which each user sends two copies of its packet at
the physical layer. On the collision channel, SIC among slots
is then adopted to resolve the collisions given the received
signals in the entire frame. Liva [14] proposes to vary the
number of copies being transmitted according to a probability
distribution resulting in irregular repetition slotted ALOHA
(IRSA). He introduces an iterative process to analyze the
asymptotic performance of the system for a fixed repetition
distribution similar to the density evolution based analysis of
LDPC codes. In [15], the authors design aggregate preamble
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Zadoff-Chu sequences in order to reduce the probability of
preamble collision.

A recent information theoretic formulation for the massive
random access problem is developed by Polyanskiy [16].
Assuming that the users utilize the same codebook, he defines
a Ka-user MAC code as a collection of norm-constrained
vectors, where the noisy sum of any Ka of them can be
decoded with a certain probability of error. Reference [16] also
presents some bounds on the capacity of the massive random
access systems. However, in this formulation too, the users’
transmissions are assumed to be fully synchronized, and it
appears difficult to achieve these information theoretic limits
in practice [17]–[19]. In [17], a low complexity coding scheme
is proposed for massive random access setup, which is based
on a combination of compute-and-forward scheme and coding
for a binary-adder channel. The code is a concatenation of
two codes: an inner binary linear code, used to decode the
modulo-2 sum of all the codewords transmitted, and an outer
code whose role is to identify the individual codewords that
make up the sum. In [18], the message is split into two parts
where one part is encoded using spreading sequences that are
designed to be decodable using a compressed sensing type
decoder, and the other one is encoded using LDPC codes.
Also the users repeat their messages among different slots via
a deterministic function of the message content (independent
of the user), which is then exploited via successive interfer-
ence cancellation to improve the system performance. The
results are found to be significantly improved compared to the
approach of [17], at the cost of high computational complexity.
Binary chirps (codewords of the second order Reed Muller
code) are utilized as compressed sensing codes in [19], with
the main advantage of reducing complexity.

There are several results which build upon asynchronism of
data transmission in MAC scenarios and introduce decoding
algorithms based on the delayed received signals. In [20],
the artificial packet delays are assigned to each user by
the receiver (base station) in a coordinated manner. Then,
exploiting the introduced delays, the receiver decouples the
packets using SIC. In [21], each user packet is repeated a
certain number of times, interleaved and multiplied with a
signature sequence known to the receiver. The receiver decodes
the sum of delayed packets using a window-based iterative
SIC. These works need some level of coordination either in
the form of delay assignment or the knowledge of signature
sequences at the receiver.

With the aim of facilitating massive random access in a
practical manner, we consider the use of interference can-
cellation techniques based on the received signal itself in a
similar manner as in the ZigZag algorithm [22]. ZigZag is an
interference cancellation algorithm proposed by Gollakota and
Katabi [22], which has already been implemented in practice.
The basic idea is to transmit the packets multiple times in
such a way that different replicas experience different delays
at the receiver. This could be due to the differences in channel
delays or may be introduced artificially by proper random-
ization at the transmitters. The receiver performs interference
cancellation based on the received signals only, i.e., without
the need for decoding the messages. Once the interference
is canceled, each user’s message is decoded separately. With

this methodology, the users can adopt the same codebooks
(designed for single user communications), i.e., this scheme
can be used as a building block for massive random access.

Some aspects of the ZigZag algorithm have been stud-
ied in the previous literature. In [23], the authors compare
the throughput performances of ALOHA and carrier-sense
multiple access (CSMA) schemes with ZigZag. An algebraic
representation of collisions which views each collision as
a linear combination of the original packets is presented
in [24]. This scheme outperforms not only the ALOHA-type
schemes from a delay perspective, but also the centralized
scheduling solutions. In [25], two ACK policies are proposed
that stabilize the random access system with ZigZag. In [26],
the authors show that ZigZag can be seen as an instance
of belief propagation in the high SNR regime. Building on
this observation, they present a simple soft-decoding version,
called SigSag. In [27], ZigZag decodable (ZD) codes are
proposed for distributed storage systems. A fountain coding
system based on ZD codes is proposed in [28]. In [29],
unlike the original ZigZag, the received packets are decou-
pled from both sides, resulting in fewer decoupling steps.
We refer to this scheme as double-zipper ZigZag in this paper.
To deal with the error floor problem in a frameless structure,
the authors also devise a scheme with two-bit feedback called
enhanced ZigZag decodable frameless ALOHA (E-ZDFA).
The asymptotic throughput and packet loss rate of the E-ZDFA
scheme are derived in [30] in a noise-free system model
with unit channel gains. Unlike [29] and [30], we consider
the effects of both noise and non-unit channel gains in this
paper and determine information theoretic bounds on the
achievable sum-rates, depicting that our proposed algorithms
are asymptotically optimal. In addition, while [29] and [30]
are able to resolve the collision of two users, we also propose
a scheme to resolve the collision of more than two users.

In this paper, we present simple and scalable collision res-
olution algorithms based on interference cancellation with the
received signals that can be utilized as building blocks toward
simple and effective solutions to the problem of massive
random access. The contributions of the paper are fourfold:

• For a two-user MAC, we characterize noise coefficient
matrices of both original and double-zipper ZigZag algo-
rithms, which are then used to obtain bounds on their
performance.

• For arbitrary number of users, we propose delay-domain
processing algorithms, namely, delay-domain zero forc-
ing (DD-ZF) and regularized DD-ZF, which perform
interference cancellation and interference suppression,
respectively, based on the received (noisy) signals.

• We derive upper and lower bounds on the performance
of the proposed algorithms in the presence of imperfect
channel state information (CSI).

• We show that the gap between the lower bound on the
achievable sum-rate of the proposed scheme and the
upper bound on the time-sharing sum-rate becomes a
constant at high SNRs. In other words, the performance
of the proposed scheme asymptotically approaches that
of optimal coordinated time-sharing based solutions for
arbitrary user delays. We also show that a similar result
holds for the ZigZag algorithms.
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The rest of the paper is organized as follows. The system
model is introduced in Section II. In Section III, we present
several capacity expressions for the benchmark schemes.
In Section IV, a short explanation of ZigZag decoupling
process is given along with a characterization of the resulting
noise. By providing bounds on the achievable sum-rate of
the ZigZag algorithms, we prove their asymptotic optimality
even with imperfect CSI. Delay-domain processing algorithms,
DD-ZF and regularized DD-ZF, are introduced in Section V.
We also provide bounds on the performance of these algo-
rithms in the presence of imperfect CSI. Numerical examples
are provided in Section VI, and finally, the paper is concluded
in Section VII.

II. SYSTEM MODEL

We have K users, each interested in transmitting a packet
of length N to a common receiver. Since there is no coor-
dination among the users or the receiver, collisions occur.
To resolve the collisions, we rely on delay differences in the
users’ signals. To be more precise, there are T time-intervals.
In each time-interval, the users simultaneously send their
packets without synchronization, hence the packets experience
different delays. Note that while the delays may be naturally
occurring, they may also be introduced by randomizing the
packet transmission times. The receiver employs interfer-
ence cancellation techniques to decouple the users’ packets.
To simplify the exposition, we also assume that the received
packets are synchronous at the symbol level; i.e., although
time of arrivals (delays) of the packets are different, they
are integer multiples of the symbol period. We assume that
the receiver has a perfect knowledge of the number of users
and their packet delays in each time-interval and an imperfect
knowledge of their channel gains, which are constant over the
T time-intervals. To motivate this channel model, consider, for
example, a mobile user moving at the speed of 100 km/h and
transmitting at 5 GHz with a data rate of 50 Mbps and packet
length of 5000 bits; the coherence time is about 1 ms. Hence,
the channel is constant for a length of 10 packets (10 time-
intervals). In other words, the assumption of channel gains
being constant for a few packet lengths is practical.

The number of active users and the channel gains can be
jointly estimated, employing techniques such as the minimum
description length (MDL) criterion [31] and the compressed
sensing [7] based algorithms. The receiver can estimate the
user delays by first employing energy detection techniques to
estimate the delays and then trying the possible combinations
to associate the delays to the users. A more scalable approach
would be for the users to utilize random sequences in their
preambles (and/or postambles) in an uncoordinated fashion.
They can employ different sequences in different transmis-
sions; they just need to use the same sequence for the T
time-intervals. There are other approaches in the literature
for multiple delay estimation as well. For instance, [31]
presents a maximum likelihood based algorithm as well as
a low-complexity variational inference based algorithm for
estimation of the delays in a random access setup.

Let L be the T × K delay matrix with the (t, k)-th entry,
Lt,k, being the time delay of the t-th packet of the k-th user
from the start of t-th time-interval. The time delays are with

Fig. 1. Received delayed packets in the t-th time-interval.

Fig. 2. Received delayed packets in a two-user system with N = 5 and
L =

�
0 1
0 3

�
.

respect to data symbols, i.e., they are non-negative integers
between 0 and Lmax with Lmax being the maximum possible
delay. An illustration of the received nonaligned packets in
the t-th time-interval is given in Fig. 1, where si,j is the j-th
symbol of the i-th user. Assuming that the channel gain of
each user is constant over the T time-intervals, the received
signals in the delay domain can be expressed as

y(D) = L(D)Hs(D) + n(D), (1)

where D is the delay operator, L(D) is the T × K delay
matrix with the (t, k)-th entry being Lt,k(D) = DLt,k , H is
the K × K diagonal channel matrix with the k-th diagonal
entry being the k-th user’s channel coefficient hk, y(D) =

[y1(D), . . . , yT (D)]T with yt(D) =
N+Lmax∑

j=1

yt,jD
j−1, where

yt,j is the j-th received signal in the t-th time-interval, s(D) =

[s1(D), . . . , sK(D)]T with sk(D) =
N∑

j=1

sk,jD
j−1, where sk,j

is the j-th symbol of the k-th user. Since we consider bandpass
signals, the transmitted symbols as well as the channel gains
are complex. In (1), n(D) = [n1(D), . . . , nT (D)]T with

nt(D) =
N+Lmax∑

j=1

nt,jD
j−1, where nt,j is the j-th additive

white Gaussian noise (AWGN) term in the t-th time-interval
at the receiver, independent of the other noise terms and the
transmitted symbols, with zero mean and variance σ2

n.
As an example, consider a two-user system with N = 5

and L = [ 0 1
0 3 ], depicted in Fig. 2. In this case, the matrices

in (1) can be written as:

s(D) =
[
s1,1+ s1,2D+ s1,3D

2+ s1,4D
3+ s1,5D

4

s2,1+ s2,2D+ s2,3D
2+ s2,4D

3+ s2,5D
4

]
,

n(D)

=

⎡
⎣n1,1+ n1,2D+ n1,3D

2+ s1,4D
3+ n1,5D

4+ n1,6D
5

n2,1+ n2,2D+ n2,3D
2+ s2,4D

3+ n2,5D
4+ n2,6D

5+
n2,7D

6+ n2,8D
7

⎤
⎦,

L(D) =
[
1 D
1 D3

]
, H=

[
h1 0
0 h2

]
.
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The received signal after post-processing at the receiver (such
as ZigZag) and conversion from the delay domain, ŷ, can be
written as:

ŷ = Heqs + An, (2)

where Heq is a KN×KN matrix whose entries are functions
of user channel coefficients and A is the KN × T (N +
Lmax) noise coefficient matrix denoting the accumulated
noise in the decoupling process. Note that both Heq and
A are determined by the employed post-processing (decou-
pling) scheme at the receiver Also, s =

[
sT
1 , . . . , sT

K

]T
with

sk = [sk,1, . . . , sk,N ]T, and n =
[
nT

1 , . . . ,nT
T

]T
with nt =

[nt,1, . . . , nt,N+Lmax ]T, i.e., s and n contain all the coeffi-
cients of polynomial matrices s(D) and n(D), respectively.
We will explain the matrices in (2) through an example when
we discuss some decoupling strategies in Section IV. Note that
(2) serves as the post-processing system model.

III. BENCHMARK SCHEMES

We now present several capacity expressions, which are
used for comparisons throughout the paper, assuming that
the users utilize independent and identically distributed (i.i.d.)
Gaussian codebooks with elements of equal power P .

A. Perfect CSI Case

For single-user decoding, (2) can be divided into sub-models
for each user as follows

ŷk = Heq,ksk + Hc
eq,ks

c
k + Akn, (3)

where sc
k =

[
sT
1 , . . . , sT

k−1, s
T
k+1, . . . , s

T
K

]T
, ŷk and Ak are

obtained from the rows (k − 1)N + 1 to kN of ŷ and A,
respectively, Heq,k contains entries of Heq between rows (k−
1)N + 1 to kN and columns (k − 1)N + 1 to kN , Hc

eq,k is
obtained from the rows (k − 1)N + 1 to kN of Heq with
Heq,k removed. As an example, consider a two-user system

with Heq =
[

4 2 5 4
9 2 2 5
2 8 8 4
3 6 6 1

]
(hence N = 2). Then, we have Heq,1 =

[ 4 2
9 2 ], Heq,2 = [ 8 4

6 1 ], Hc
eq,1 = [ 5 4

2 5 ] and Hc
eq,2 = [ 2 8

3 6 ].
Therefore, treating interference as noise, the achievable

sum-rate (per channel use) of single-user decoding becomes

RSU =
1

TN

K∑
k=1

log

⎛
⎝
∣∣∣Rn,k + Rc

s,k + Rs,k

∣∣∣∣∣∣Rn,k + Rc
s,k

∣∣∣
⎞
⎠

=
1

TN

K∑
k=1

log

⎛
⎝
∣∣∣AkAT

k +ρ
(
Hc

eq,kH
c
eq,k

H+Heq,kHH
eq,k

)∣∣∣∣∣∣AkAT
k +ρHc

eq,kH
c
eq,k

H
∣∣∣

⎞
⎠,

(4)

where Rs,k, Rc
s,k and Rn,k are the covariance matrices of the

signal, the interference and the noise terms of k-th user in (3),
respectively, ρ := P

σ2
n

is the transmit SNR, and |X| denotes
the determinant of the matrix X.

The sum-rate capacity (per channel use) is given by

CSC = log

(
1 + ρ

K∑
k=1

|hk|2
)

, (5)

while the time-sharing sum-rate capacity (per channel use) is

CTS =
1
K

K∑
k=1

log
(
1 + Kρ|hk|2

)
. (6)

For the 2-user case, we will also use as reference the
Avestimehr-Diggavi-Tse expression derived in [32] using a
deterministic approach, which is within 0.5 bits per user of
the capacity. It is given by

CADT =
⌈
log

(
ρ max

{
|h1|2, |h2|2

})⌉+

, (7)

where �a�+ denotes the smallest non-negative integer greater
than or equal to a.

B. Imperfect CSI Case

We now assume that only the estimates of channel gains are
available to the receiver, hk = h̄k + h̃k, where h̄k and h̃k are
the estimated channel gain and the channel estimation error
of the k-th user, respectively. The channel estimation errors
are modeled as independent zero-mean random variables with
a known variance σ2

h, which is inversely proportional to the
SNR, i.e., σ2

h = c
ρ for some constant c ≥ 0 [33], [34].

For imperfect CSI, (2) can be written as

ŷ = H̄eqs + H̃eqs + An, (8)

where the equivalent channel matrix is divided into known and
unknown parts, i.e., Heq = H̄eq + H̃eq . Note that in general,
H̄eq is a function of h̄k’s, while H̃eq is a function of both
h̄k’s and h̃k’s.

For single-user decoding, (8) is divided into sub-models for
each user as follows

ŷk = H̄eq,ksk + H̃eq,ksk + H̄c
eq,ks

c
k + H̃c

eq,ks
c
k + Akn, (9)

where H̄eq,k and H̃eq,k contain entries of H̄eq and H̃eq

between rows (k−1)N +1 to kN and columns (k−1)N +1
to kN , respectively. Also, H̄c

eq,k and H̃c
eq,k are obtained from

the rows (k − 1)N + 1 to kN of H̄eq and H̃eq with H̄eq,k

and H̃eq,k removed, respectively.
Treating uncorrelated interference as noise and using the

results in [35], lower and upper bounds on the achievable
sum-rate (per channel use) with single-user decoding in the
presence of imperfect CSI are obtained as

RSU

≥ 1
TN

K∑
k=1

log
(∣∣∣∣

(
R̃k + R̃c

k+H̄c
eq,k H̄c

eq,k
H +

1
ρ
AkAT

k

)−1

H̄eq,kH̄H
eq,k + IN

∣∣∣∣
)

(10)

and

RSU ≤ 1
TN

K∑
k=1

log
(∣∣∣∣

(
R̃c

k + H̄c
eq,k H̄c

eq,k
H +

1
ρ
AkAT

k

)−1

(
H̄eq,kH̄H

eq,k + R̃k

)
+ IN

∣∣∣∣
)

, (11)
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respectively, where R̃k := E

[
H̃eq,kH̃H

eq,k

]
and R̃c

k :=

E

[
H̃c

eq,k H̃c
eq,k

H
]
, where E denotes statistical expectation.

Note that the case of perfect CSI is recovered when R̃k =
R̃c

k = 0 (i.e., selecting c = 0). Also, using the results in [35],
lower and upper bounds on the time-sharing sum-rate capacity
(per channel use) with imperfect CSI can be obtained as

CTS ≥ 1
K

K∑
k=1

log

(
1 +

Kρ
∣∣h̄k

∣∣2
Kc + 1

)
, (12)

and

CTS ≤ 1
K

K∑
k=1

log
(
1 + Kc + Kρ

∣∣h̄k

∣∣2) , (13)

respectively. Again, the case of perfect CSI is recovered with
c = 0.

IV. TWO USER CASE: CHARACTERIZATION OF ZIGZAG

In this section, we focus on K = 2, T = 2 case as an
important special case of our system model, and consider the
use of the ZigZag algorithm. The basic idea of ZigZag is to
perform interference cancellation based on only the received
signals at the receiver, i.e., without the need for decoding of
users’ messages. Once the interference is canceled out, each
user’s message can be decoded separately.

A. Double-Zipper ZigZag

In the original ZigZag [24], the decoupling process starts
from one side (e.g., left to right) through the received over-
lapped packets. While in the double-zipper ZigZag, in order
to accumulate less noise, the decoupling is performed from
both sides towards the middle of the overlapped packets.
We consider two cases L2 > L1 ≥ 0, where Lt := Lt,2−Lt,1,
and L2 > 0 ≥ L1. Note that relabeling the time-intervals
relabels the delay differences L1 and L2 as well, while
relabeling the users changes the signs of the delay differences.
Clearly, by considering the case of L2 > L1 ≥ 0, the cases
of L1 > L2 ≥ 0 (user relabeling), L2 < L1 ≤ 0 (time-
interval relabeling), and L1 < L2 ≤ 0 (user and time-interval
relabeling) are covered as well. Also, the case of L2 > 0 ≥ L1

covers the cases of L1 > 0 ≥ L2, L2 < 0 ≤ L1, and
L1 < 0 ≤ L2.

Assuming L2 > L1 ≥ 0, the double-zipper ZigZag proceeds
as follows: in the first decoupling step, using the received
signals in the second time-interval, the first L2 symbols of
the first user and the last L2 symbols of the second user
are observed without interference. Next, L2 − L1 symbols of
each user are removed of interference in each step using the
observations of the previous step. The process continues in the
same manner until both packets are interference free.

Let us describe the process more explicitly via an example
with perfect CSI at the receiver. Decoupling steps of the
original and double-zipper ZigZag are depicted in Fig. 3 and
Fig. 4, respectively, for the case with N = 5 and L = [ 0 1

0 3 ].

Fig. 3. Original ZigZag process for N = 5, L1 = 1 and L2 = 3
(L2 > L1 ≥ 0).

Based on Fig. 4, in the first step of the decoupling process,
three interference free symbols of each user are

ŝ1,1 =
1
h1

ŷ1 =
1
h1

y2,1 = s1,1 +
1
h1

n2,1,

ŝ1,2 =
1
h1

ŷ2 =
1
h1

y2,2 = s1,2 +
1
h1

n2,2,

ŝ1,3 =
1
h1

ŷ3 =
1
h1

y2,3 = s1,3 +
1
h1

n2,3,

ŝ2,3 =
1
h2

ŷ8 =
1
h2

y2,6 = s2,3 +
1
h2

n2,6,

ŝ2,4 =
1
h2

ŷ9 =
1
h2

y2,7 = s2,4 +
1
h2

n2,7,

ŝ2,5 =
1
h2

ŷ10 =
1
h2

y2,8 = s2,5 +
1
h2

n2,8, (14)

where ŝk,j is the j-th decoupled (recovered) symbol of the
k-th user and ŷi is the i-th element of ŷ. Also, using (14),
the remaining four symbols are freed of interference in the sec-
ond step, resulting in

ŝ2,1 =
1
h2

ŷ6 =
1
h2

(y1,2 − h1ŝ1,2)=s2,1 +
1
h2

(n1,2 − n2,2),

ŝ2,2 =
1
h2

ŷ7 =
1
h2

(y1,3 − h1ŝ1,3)=s2,2 +
1
h2

(n1,3 − n2,3),

ŝ1,4 =
1
h1

ŷ4 =
1
h1

(y1,4 − h2ŝ2,3)=s1,4 +
1
h1

(n1,4 − n2,6),

ŝ1,5 =
1
h1

ŷ5 =
1
h1

(y1,5 − h2ŝ2,4)=s1,5 +
1
h1

(n1,5 − n2,7).

(15)

Using these two sets of equations, the matrices in (2) are
obtained as

Heq =
[
h1IN 0N

0N h2IN

]
, A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . . . . . 1 . . . . . . .

. . . . . . . 1 . . . . . .

. . . . . . . . 1 . . . . .

. . . 1 . . . . . . . −1 . .

. . . . 1 . . . . . . . −1 .

. . . −1 . . . . . 1 . 1 . .

. . . . −1 . . . . . 1 . 1 .

. . . . . . . . . . . 1 . .

. . . . . . . . . . . . 1 .

. . . . . . . . . . . . . 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where IN and 0N are the N×N identity and all-zero matrices,
respectively, and the 0’s in the matrix A are denoted by dots
for better visibility.
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Fig. 4. Double-zipper ZigZag process for N = 5, L1 = 1 and L2 = 3
(L2 > L1 ≥ 0).

The procedure for the double-zipper ZigZag is similar for
the case of L2 > 0 ≥ L1. In the first step, the first L1

symbols of the second user and the last L1 symbols of the
first user are recovered. In the second time-interval, the first
L2 symbols of the first user and the last L2 symbols of
the second user are recovered as well. In the subsequent
steps, 2 (L2 − L1) symbols are recovered in each step in a
similar manner as in the case of L2 > L1 ≥ 0. As examples,
decoupling processes of the original and double-zipper ZigZag
are depicted in Fig. 5 and Fig. 6, respectively, with N = 5 and
L = [ 1 0

0 1 ].
Note that since the users’ packets decouple completely

in both original and double-zipper ZigZag processes, their
equivalent channel matrices are always equal to the identity
matrix. Also, since the symbols are decoupled using SIC by
simple additions and subtractions, the noise coefficient matrix
is a ternary matrix of 0’s, −1’s and 1’s in ZigZag algorithms.

B. Noise Covariance Matrix

We first review the case of L2 > L1 ≥ 0. In the first step
of the original ZigZag process, L2 symbols are available free
of interference with only one input noise term. Next, in each
middle step, L2−L1 symbols are obtained (with the exception
of r1 := (N − L2) mod (L2 − L1) symbols in third-to-last
and second-to-last steps), accumulating an additional input
noise term in each step. Finally, L1 symbols are obtained in the
last step with one input noise term. The process is completed
after

⌈
N−L2
L2−L1

⌉
+
⌈

N−L1
L2−L1

⌉
+2 = 2

⌈
N−L2
L2−L1

⌉
+3 steps. On the

other hand, the double-zipper ZigZag process has
⌈

N−L2
L2−L1

⌉
+1

steps, which translates to almost half of that of the original
ZigZag for large N , leading to less noise accumulation. To be
exact, 2L2 symbols are available in the first step with one input
noise term. Next, 2 (L2 − L1) symbols are obtained in each
step (2r1 symbols in the last step), accumulating an additional
input noise term in each step.

The process is similar for the case of L2 > 0 ≥ L1.
L2 − L1 symbols are available free of interference in the
first step of the original ZigZag process, with only one input
noise term. Next, L2 − L1 symbols are obtained (with the
exception of r2 := 2N mod (L2 − L1) symbols in the last
step) in each subsequent step, accumulating an additional input

Fig. 5. Original ZigZag process for N = 5, L1 = −1 and L2 = 1
(L2 > 0 ≥ L1).

Fig. 6. Double-zipper ZigZag process for N = 5, L1 = −1 and L2 = 1
(L2 > 0 ≥ L1).

noise term for each. The process is completed after
⌈

2N
L2−L1

⌉
steps. On the other hand, the double-zipper ZigZag process
has

⌈
N

L2−L1

⌉
steps, which translates to almost half of that of

the original ZigZag, leading to less noise accumulation. To be
exact, 2 (L2 − L1) symbols are available in its first step with
one input noise term. Next, 2 (L2 − L1) symbols are obtained
in each step (r3 := 2N mod 2 (L2 − L1) symbols in the last
step), accumulating an additional input noise term for each.
Summing up, we obtain the following lemma.

Lemma 1: For the case of L2 > L1 ≥ 0: In the orig-
inal ZigZag process, the diagonal of the noise covariance
matrix Rn has L1 + L2 elements equal to σ2

n, 2 M1 + 1
groups of L2 − L1 elements each with value kσ2

n, k =
2, . . . , 2 M1 + 2, r1 elements equal to (2 M1 + 3)σ2

n, and

r1 elements equal to (2 M1 + 4)σ2
n, where M1 :=

⌊
N−L2
L2−L1

⌋
.

While in the double-zipper ZigZag process, the diagonal of
the noise covariance matrix Rn has 2L2 elements equal to
σ2

n, M1 groups of 2 (L2 − L1) elements each with value kσ2
n,

k = 2, . . . , M1 + 1, and 2 r1 elements equal to (M1 + 2) σ2
n.

For the case of L2 > 0 ≥ L1: In the original ZigZag
process, the diagonal of the noise covariance matrix Rn

has M2 groups of L2 − L1 elements each with value kσ2
n,

k = 1, . . . , M2, and r2 elements equal to (M2 + 1) σ2
n,

where M2 :=
⌊

2N
L2−L1

⌋
. While in the double-zipper ZigZag

process, the diagonal of the noise covariance matrix Rn has
M3 groups of 2 (L2 − L1) elements each with value kσ2

n,
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k = 1, . . . , M3, and r3 elements equal to (M3 + 1)σ2
n, where

M3 :=
⌊

N
L2−L1

⌋
.

C. Bounds on the Sum-Rate

1) Unit Channel Gains With Perfect CSI: The following
lemma proves that if we replace the correlated noise terms
with independent terms of the same variances, the mutual
information will not increase if the codebooks are constructed
using independent elements.

Lemma 2: Let Y N =XN+ZN with XN =[X1, X2, . . . , XN ]
and ZN = [Z1, Z2, . . . , ZN ]. Assume that Xi’s, and the
vectors XN and ZN are independent; however, Zi’s may be

correlated. Then, I
(
XN ; Y N

) ≥ N∑
i=1

I (Xi; Yi).

Proof: We first expand the mutual information term
I
(
XN ; Y N

)
as

I
(
XN ; Y N

)
=

N∑
i=1

I
(
XN ; Yi

∣∣Y i−1
)

=
N∑

j=1

N∑
i=1

I
(
Xj; Yi

∣∣Xj−1, Y i−1
)
. (16)

Since mutual information is non-negative, keeping only the
terms with j = i, we have

I
(
XN ; Y N

) ≥ N∑
i=1

I
(
Xi; Yi

∣∣X i−1, Y i−1
)
. (17)

Since Xi is independent of X i−1 and Y i−1 (from the convex-
ity of mutual information I (U ; V ) in p (v |u ) for fixed p (u)
[see [36], p. 25]), I

(
Xi; Yi

∣∣X i−1, Y i−1
) ≥ I (Xi; Yi), and

the claim follows.
Let the first and the second delay differences be L1 = β1 N

and L2 = β2 N , respectively.
Theorem 1: Let RDZ and ROZ be the achievable sum-rate

per channel use of the double-zipper and the original ZigZag
algorithms, respectively. Then, RDZ and ROZ can be lower
bounded as follows.

For the case of L2 > L1 ≥ 0:

RDZ ≥ β2 log (1 + ρ) +
r1

N
log

(
1 +

ρ

M1 + 2

)

+ (β2 − β1)
M1∑
k=1

log
(

1 +
ρ

k + 1

)
, (18)

and

ROZ ≥ β1 + β2

2
log (1 + ρ)+

β2−β1

2

1+2M1∑
k=1

log
(

1+
ρ

k+1

)

+
r1

2N

(
log

(
1+

ρ

2M1 + 3

)
+log

(
1+

ρ

2M1+4

))
,

(19)

and for the case of L2 > 0 ≥ L1:

RDZ ≥ r3

2N
log

(
1+

ρ

M3 + 1

)
+ (β2 − β1)

M3∑
k=1

log
(
1+

ρ

k

)
,

(20)

and

ROZ ≥ r2

2N
log

(
1 +

ρ

M2 + 1

)
+

β2 − β1

2

M2∑
k=1

log
(
1 +

ρ

k

)
.

(21)

Proof: We know that Heq = I2N for unit gain channels
in ZigZag algorithms. So, using (4) and Lemma 2, the general
sum-rate of ZigZag algorithms (RZZ ) can be written as:

RZZ ≥ 1
2N

2∑
k=1

log

⎛
⎝
∣∣∣R′

n,k + ρIN

∣∣∣∣∣∣R′
n,k

∣∣∣
⎞
⎠

=
1

2N
log

( |R′
n + ρ I2N |
|R′

n|
)

, (22)

where R′
n and R′

n,k are diagonal matrices with the same
diagonal elements as Rn and Rn,k, respectively, and the

equality is obtained due to the fact that R′
n =

[
R′

n,1 0N

0N R′
n,2

]
.

Next, using Lemma 1, for the double-zipper ZigZag when
L2 > L1 ≥ 0, we have

|R′
n| =

(
σ2

n

)2L2︸ ︷︷ ︸
first step

(
(M1+2)σ2

n

)2r1︸ ︷︷ ︸
last step

M1∏
k=1

(
(k+1)σ2

n

)2(L2−L1)

︸ ︷︷ ︸
middle steps

=
(
σ2

n

)2N
(M1 + 2)2r1

M1∏
k=1

(k + 1)2(L2−L1). (23)

Also, we have

|R′
n + P I|

=
(
σ2

n+P
)2L2︸ ︷︷ ︸

first step

(
(M1+2)σ2

n+P
)2r1︸ ︷︷ ︸

last step

M1∏
k=1

(
(k+1)σ2

n+P
)2(L2−L1)

︸ ︷︷ ︸
middle steps

=
(
σ2

n

)2N
(1+ρ)2L2((M1+2)+ρ)2r1

M1∏
k=1

((k+1)+ρ)2(L2−L1).

(24)

Substituting (23) and (24) into (22), gives (18), i.e., the
lower bound on the achievable sum-rate of the double-zipper
ZigZag process. In a similar manner, the lower bounds on the
achievable sum-rate of the original ZigZag when L2 > L1 ≥ 0
and the achievable sum-rates of the double-zipper and the
original ZigZag processes when L2 > 0 ≥ L1 are obtained as
in (19), (20) and (21), respectively.

2) Non-Unit Channel Gains With Perfect CSI: We now
consider non-unit channel gains, which are taken as constant
during the two time-intervals. We first assume that the receiver
knows all the channel gains perfectly. It is easy to show that,
for both ZigZag algorithms, the equivalent channel matrix
in (2) is diagonal with the first half of diagonal entries being h1

and the second half being h2. So, for both cases, the achievable
sum-rate (4) can be further simplified as

RZZ =
1

2N

2∑
k=1

log
(∣∣∣ρ|hk|2

(
AkAT

k

)−1
+ IN

∣∣∣) . (25)

In the double-zipper ZigZag, half of the symbols (to be
decoupled in each step) are decoupled using the first channel
gain and the other half using the second one. Using this
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fact, similar to Theorem 21, we obtain a lower bound on the
achievable sum-rate (per channel use) for L2 > L1 ≥ 0 as

RDZ ≥ β2

2

(
log

(
1+ρ|h1|2

)
+log

(
1+ρ|h2|2

))
+

β2−β1

2

M1∑
k=1

(
log

(
1+

ρ|h1|2
k+1

)
+log

(
1+

ρ|h2|2
k+1

))

+
r1

2N

(
log

(
1+

ρ|h1|2
M + 2

)
+log

(
1+

ρ|h2|2
M +2

))
. (26)

On the other hand, in the original ZigZag process, the associ-
ated channel gain changes in each step, and we obtain

ROZ ≥ β1

2

(
log

(
1+ρ|h1|2

)
+log

(
1+ρ|h2|2

))
+

β2−β1

2

M1∑
k=0

(
log

(
1+

ρ|h1|2
2k+1

)
+log

(
1+

ρ|h2|2
2k+2

))

+
r1

2N

(
log

(
1+

ρ|h1|2
2M +3

)
+log

(
1+

ρ|h2|2
2M +4

))
. (27)

Also, for the case of L2 > 0 ≥ L1, we have

RDZ ≥ β2−β1

2

M3∑
k=1

(
log

(
1+

ρ|h1|2
k

)
+log

(
1+

ρ|h2|2
k

))

+
r3

4N

(
log

(
1+

ρ|h1|2
M3 + 1

)
+log

(
1+

ρ|h1|2
M3 + 1

))
,

(28)

and

ROZ

≥ −β1

2

M2∑
k=1
odd

log

(
1 +

ρ|h2|2
k

)
+

β2

2

M2∑
k=2
even

log

(
1 +

ρ|h2|2
k

)

+
β2

2

M2∑
k=1
odd

log

(
1 +

ρ|h1|2
k

)
− β1

2

M2∑
k=2
even

log

(
1 +

ρ|h1|2
k

)

+
r2,1

2N
log

(
1+

ρ|h1|2
M2+1

)
+

r2,2

2N
log

(
1+

ρ|h2|2
M2+1

)
, (29)

where r2,1 := (N mod (L2 − L1)) mod L2 and r2,2 :=
(N mod (L2 − L1)) mod −L1. Note that r2,1 + r2,2 = r2.

3) Non-Unit Channel Gains With Imperfect CSI: For the
ZigZag algorithm with imperfect CSI, since the channel
estimates are not used in the decoupling process, the post-
processing system model is the same as the perfect CSI case,
i.e., H̄eq and H̃eq are diagonal matrices consisting of the chan-
nel estimates and the channel estimation errors, respectively.
So, using (10) and (11), the lower and upper bounds on the
achievable sum-rate (per channel use) of ZigZag algorithms
for single-user decoding in the presence of imperfect CSI are
obtained as

RZZ ≥ 1
2N

2∑
k=1

log
(∣∣∣ρ∣∣h̄k

∣∣2(c IN + AkAT
k

)−1
+ IN

∣∣∣) ,

(30)

and

RZZ ≤ 1
2N

2∑
k=1

log
(∣∣∣(c + ρ

∣∣h̄k

∣∣2) (AkAT
k

)−1
+ IN

∣∣∣) , (31)

respectively, with equalities when perfect CSI is available (i.e.,
c = 0), in which case (30) and (31) turn into (25).

Keeping only the diagonals of the noise covariance matrix
and using the results in [35], we can extend the lower
bounds (26)-(29) to the case of imperfect CSI as follows. For
L2 > L1 ≥ 0, we have

RDZ

≥ β2

2

(
log

(
1+

ρ
∣∣h̄1

∣∣2
c + 1

)
+log

(
1+

ρ
∣∣h̄2

∣∣2
c + 1

))

+
β2−β1

2

M∑
k=1

(
log

(
1+

ρ
∣∣h̄1

∣∣2
k+c+1

)
+log

(
1+

ρ
∣∣h̄2

∣∣2
k+c+1

))

+
r

2N

(
log

(
1+

ρ
∣∣h̄1

∣∣2
M +c+2

)
+log

(
1+

ρ
∣∣h̄2

∣∣2
M +c+2

))
, (32)

ROZ

≥ β1

2

(
log

(
1+

ρ
∣∣h̄1

∣∣2
c + 1

)
+log

(
1+

ρ
∣∣h̄2

∣∣2
c + 1

))

+
β2−β1

2

M∑
k=0

(
log

(
1+

ρ
∣∣h̄1

∣∣2
2k+c+1

)
+log

(
1+

ρ
∣∣h̄2

∣∣2
2k+c+2

))

+
r

2N

(
log

(
1+

ρ
∣∣h̄1

∣∣2
2M +c+3

)
+log

(
1+

ρ
∣∣h̄2

∣∣2
2M +c+4

))
.

(33)

Also, for the case of L2 > 0 ≥ L1, we have

RDZ

≥ β2−β1

2

M3∑
k=1

(
log

(
1+

ρ|h1|2
k + c

)
+log

(
1+

ρ|h2|2
k + c

))

+
r3

4N

(
log

(
1+

ρ|h1|2
M3+c+1

)
+log

(
1+

ρ|h1|2
M3+c+1

))
,

(34)

ROZ

≥ −β1

2

M2∑
k=1
odd

log

(
1+

ρ|h2|2
k + c

)
+

β2

2

M2∑
k=2
even

log

(
1+

ρ|h2|2
k + c

)

+
β2

2

M2∑
k=1
odd

log

(
1+

ρ|h1|2
k + c

)
− β1

2

M2∑
k=2
even

log

(
1+

ρ|h1|2
k + c

)

+
r2,1

2N
log

(
1+

ρ|h1|2
M2+c+1

)
+

r2,2

2N
log

(
1+

ρ|h2|2
M2+c+1

)
.

(35)

Note that when perfect CSI is available (i.e., c = 0),
(32)-(35) turn into (26)-(29), respectively.

D. Asymptotic Optimality

In this section, we show that the ZigZag algorithms are
asymptotically optimal. To this end, we prove that the gap
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between the lower bound on the achievable sum-rate of the
ZigZag algorithms and the upper bound on the time-sharing
sum-rate becomes a constant at high SNRs, hence the rel-
ative performance gap (normalized over the SNR) goes to
zero. We also provide some upper bounds on the asymptotic
performance gap.

Theorem 2: In a multiple access system with imperfect
CSI, employing a decoupling algorithm that results in a
post-processing system model as in (8) with diagonal H̄eq

and H̃eq (such as ZigZag), followed by a single-user decoding
algorithm is asymptotically optimal. That is, the gap between
the lower bound on the achievable sum-rate and the upper
bound on the time-sharing sum-rate is upper bounded in high
SNRs by a constant, i.e.,

CHS
TS −RHS

eq ≤ log(K)+
1

KN

KN∑
k=1

log(c+Rn,jj),

(36)

where Rn,jj is the j-th diagonal element of AAT.
Proof: In the high SNR regime, the upper bound on the

time-sharing sum-rate capacity (13) can be simplified to

CHS
TS ≤ log (ρ) + log (K) +

1
K

K∑
k=1

log
(∣∣h̄k

∣∣2) . (37)

Also, using the results in [35], the lower bound on the
achievable sum-rate of the post-processing system model of (8)
can be obtained as

Req ≥ 1
KN

log
(∣∣∣ρ(cIKN + AAT

)−1
H̄eqH̄H

eq + IKN

∣∣∣)
≥ 1

KN

KN∑
j=1

log

(
1 +

ρ
∣∣H̄j,j

∣∣2
c + Rn,jj

)
, (38)

where H̄j,j and Rn,jj are the j-th diagonal elements of
H̄eq and AAT, respectively. In (38) the first and the second
inequalities are obtained based on the results in [35] and
Lemma 2, respectively. Note that the first inequality in (38)
is only valid for multiuser decoding, while the second one is
valid for the single-user decoding as well.

In the high SNR regime, the lower bound on the sum-
rate (38) can be simplified to

RHS
eq

≥ log (ρ)+
1
K

K∑
k=1

log
(∣∣h̄k

∣∣2)− 1
KN

KN∑
k=1

log (c+Rn,jj). (39)

Eq. (36) is obtained using (37) and (39), which concludes the
proof.
Needless to say, Theorem 2 holds for the case of perfect CSI as
well by setting c = 0. We can conclude from Theorem 2 that
the performances of both original and double-zipper ZigZag
algorithms approach that of optimal coordinated time-sharing
based solutions asymptotically for arbitrary user delays.

Corollary 1: For the original and double-zipper ZigZag
algorithms the following upper bounds on the asymptotic
performance gap hold.

For L2 > L1 ≥ 0 (and its equivalent cases):

CHS
TS −RHS

DZ

≤ 1+β2 log (c+1)+
r

N
log (M +c+2)

+ (β2−β1) log
(

Γ (M +c+2)
Γ (c+2)

)
, (40)

CHS
TS −RHS

OZ

≤ 1+ β1 log (c + 1)+(M +1)(β2−β1)

+
r

2N
log ((2M +c+3)(2M +c+4))

+
β2−β1

2
log

(
Γ (2M +c+3)

Γ (c+1)

)
, (41)

where Γ(·) is the gamma function.
For L2 > 0 ≥ L1 (and its equivalent cases):

CHS
TS − RHS

DZ

≤ 1+(β2−β1) log
(

Γ (M3+c+1)
Γ (c+1)

)
+

r3

2N
log (M3+c+1) , (42)

CHS
TS −RHS

OZ

≤ 1+
β2+β1

2
rM2 log

|h2|
|h1|+

r2,1

2N
log|h2|

+
r2,2

2N
log|h1|+ r2

2N
log (M2+c+ 1)

+
β2−β1

2
log

(
Γ
(
2
⌊

M2
2

⌋
+c + 1

)
Γ (c + 1)

)

+
β2−β1

2
rM2 log(M2+c) , (43)

where rM2 := M2 mod 2.
Proof: Eq. (40)-(43) can readily be obtained using (36)

and Lemma 1 after some calculus. In obtaining these upper

bounds, we have used the fact that
b∏

k=a

(k + c) =Γ(b+c+1)
Γ(a+c) ,

β2+ r
N +M1 (β2+β1) = 1, 2 (L2 − L1) M3 + r3 = 2N ,

(L2 − L1)M2 + r2 = 2N , and 2
⌊

M2
2

⌋
+ rM2 = M2.

Note that another option for the two user case is first
de-noising the recovered symbols in each step, then subtracting
them from the received signal in the next step. We do not
discuss this approach in any detail since the main focus of this
paper is to prove the asymptotic optimality of the ZigZag algo-
rithms. In the case of more than two users, however, the com-
bined de-noising becomes infeasible in general since there may
be no individual symbols to begin the denoising process.

V. ARBITRARY NUMBER OF USERS:
DELAY DOMAIN APPROACH

ZigZag algorithms utilized in the previous section cannot
be readily extended to decouple the users’ packets when
there are arbitrary number of users. Therefore, in this section,
we develop simple collision resolution algorithms utilizing
the noisy received signals in a systematic manner in delay
domain. We first introduce linear equalization in the delay
domain in order to decouple the users’ packets. We then show
the connection between the delay domain approach and the
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ZigZag algorithms (for the case of two users) for further
explanation.

Using (1), after equalization at the receiver, we have

y′(D) = W(D)y(D)
= W(D)L(D)Hs(D) + W(D)n(D), (44)

where W(D) is a K × K delay-domain equalizing matrix
intended to decouple the desired users’ signals. After the
equalization, the receiver discards the extra terms of y′(D),
e.g., keeping only the terms up to the power N−1 in k-th entry
as the estimated packet of k-th user. It then applies single user
decoding on each entry in order to decode the users’ packets.

By omitting the extra terms in the polynomials (terms with
higher powers than N −1), (44) can easily be rewritten as the
post-processing system model in (2). Hence, the bounds for
single-user decoding given in (10) and (11) can be employed
for analysis, where Heq and A can be obtained by rewrit-
ing W(D)L(D)Hs(D) and W(D)n(D) as Heqs and An,
respectively.

A. Delay-Domain Zero Forcing

In this subsection, we propose delay-domain zero forcing
(DD-ZF) to extend decoupling of the users’ packets to the
case of arbitrary number of users. We first consider the case
that the number of time-intervals is equal to the number of
users, i.e., T = K . Assuming that L(D) is invertible, utilizing
the zero forcing concept, the equalizing matrix in the delay
domain is given by

WZF (D) = L−1(D). (45)

Note that WZF (D) only needs to contain the clean signals
(in polynomial form) up to a certain power of D. Also, in order
for the delay-domain equalizing matrix to be implementable,
it needs to have finite-order polynomial entries. The following
lemma provides a way to reach this end.

Lemma 3: The inverse of matrix X(D) in the delay domain
up to the power N −1, invN−1 (X(D)), assuming that H(D)
has a non-zero determinant, can be expressed as

invN−1 (X(D)) =
D−γ

λ

N+γ−1∑
j=0

f j(D)adj(X(D)), (46)

where adj(·) denotes the adjugate operator and λDγ is the
term of |H(D)| with the least degree.

Proof: We first decompose X−1(D) as

X−1(D) =
1

|X(D)|adj(X(D)). (47)

Since X(D) is a polynomial matrix, both |X(D)| and
adj(X(D)) become polynomial matrices as well. Next, using
Taylor series expansion, we write 1

|X(D)| as a polynomial as
follows

1
|X(D)| =

1
λDγ(1 − f(D))

=
D−γ

λ

∞∑
j=0

f j(D)

N−1≡ D−γ

λ

N+γ−1∑
j=0

f j(D), (48)

where
p≡ denotes equivalence up to the power p. Since the

packet length is N , we only need terms of up to the power
N − 1. Since the term with the least degree in f(D) has at
least a power of one, it is enough to have a summation up to
j = N + γ − 1, which concludes the proof.

Lemma 3 guarantees that invN−1(X(D))X(D) is the same
as the identity matrix up to the power N − 1 (first N terms).
Therefore, using Lemma 3, the equalizing matrix for DD-ZF
becomes

WDD−ZF (D) = invN−1(L(D)). (49)

Extension of the result to the case of T ≥ K is straightforward.
In this case, using Lemma 3, we have

WDD−ZF (D) = invN−1

(
LT(D)L(D)

)
LT(D). (50)

Since WDD−ZF (D)L(D) is the same as the identity matrix
up to power N −1, the DD-ZF is able to completely decouple
the users’ packets. So, similar to ZigZag algorithms, the equiv-
alent channel matrix in this case is equal to a diagonal matrix
with the first N diagonal elements equal to h1, the second set
of N diagonal elements equal to h2, and so on.

For the two-user case, although the DD-ZF results in
an equivalent channel matrix with the ZigZag algorithms,
the resultant noise coefficient matrix is different, and it is
obtained by rewriting L−1(D)n(D) as An. Accordingly, for
the DD-ZF based decoupling, the achievable sum-rate (4)
becomes

RDD−ZF =
1

TN

K∑
k=1

log
(∣∣∣ρ|hk|2

(
AkAT

k

)−1
+ IN

∣∣∣) . (51)

1) Connection Between the DD-ZF and ZigZag: In order to
make the connection between the ZigZag algorithms and the
delay-domain approach more lucid, we present an example
with the same set of parameters as the first example in
Section III, namely, K = 2, N = 5, L1 = 1 and L2 = 3.
Using (49), the DD-ZF equalizing matrix is obtained as

WDD−ZF (D) =
[ −D2 − D4 1 + D2 + D4

D−1+D+D3 −D−1−D−D3

]
. (52)

By multiplying this matrix by vector of received signals y(D)
and discarding the terms with orders higher than N−1 (taking
first N terms), we obtain an estimate of transmitted signals.
For example, the first estimated signal y′

1(D) is obtained as

y′
1(D) =

(−D2 − D4
)
y1(D)+

(
1 + D2 + D4

)
y2(D), (53)

which in the time-domain can be written as

y′
1(t) = −y1(t − 2) − y1(t−4)+y2(t)+y2(t−2)+y2(t−4).

(54)

Finally, the first N time slots of y′
1(t) gives us an estimate of

the first user’s transmitted packet. This time-domain interpre-
tation and process is depicted in Fig. (7). Note that we have
ignored noise in this figure for simplicity of depiction.
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Fig. 7. Interpretation of DD-ZF in time domain for the two-user case with
N = 5, L1 = 1 and L2 = 3.

B. Regularized DD-ZF

Completely decoupling the users’ packets is not necessarily
the best strategy even with single user decoding treating
interference as noise. With this motivation, using Lemma 3,
we propose a regularized DD-ZF equalizer as follows

WR−DD−ZF (D) = invN−1

(
LT(D)L(D) + αIK

)
LT(D),

(55)

where α is the regularization coefficient. Intuitively, a smaller
value of α should be selected for higher SNR values. A good
option could be to select it inversely proportional to the SNR.

C. Imperfect CSI Case

In the delay domain with imperfect CSI, after equalization
at the receiver, we have

y′(D) = W(D)L(D)
(
H̄ + H̃

)
s(D) + W(D)n(D), (56)

where H̄ and H̃ are K × K diagonal matrices with the
k − th diagonal entries equal to h̄k and h̃k, respectively.
In this case, the bounds for single-user decoding are given
in (10) and (11), where H̄eq , H̃eq and An can be obtained
by rewriting W(D)L(D)H̄s(D), W(D)L(D)H̃s(D) and
W(D)n(D) as H̄eqs, H̃eqs and An, respectively. Note that
since the DD-ZF decouples the users’ packets (i.e., cancels
out the interference) resulting in diagonal channel matrices,
according to Theorem 2, it is asymptotically optimal, even in
the presence of imperfect CSI.

For the DD-ZF, imperfect CSI achievable rate bounds
become

RDD−ZF ≥ 1
TN

K∑
k=1

log
(∣∣∣ρ∣∣h̄k

∣∣2(c IN + AkAT
k

)−1
+IN

∣∣∣) ,

(57)

Fig. 8. Outage capacity of ZigZag with perfect CSI.

RDD−ZF ≤ 1
TN

K∑
k=1

log
(∣∣∣(c + ρ

∣∣h̄k

∣∣2) (AkAT
k

)−1
+IN

∣∣∣) ,

(58)

with equalities when perfect CSI is available (i.e., when c =
0), in which case (57) and (58) turn into (51).

D. Computational Complexity

A naive way to apply the equalizers is to convert (1) into
time domain as

y = HTDs + IT (N+Lmax)n, (59)

where y =
[
yT

1 , . . . ,yT
T

]T
with yt = [yt,1, . . . , yt,N+Lmax ]T

and HTD is a K(N + Lmax) × KN block matrix
with (N + Lmax) × N blocks of the form Ht,k

TD =[
0N×Lt,k

, hkIN ,0N×(Lmax−Lt,k)

]T
, and then apply conven-

tional time-domain equalizers such as zero forcing. How-
ever, this will lead to a computational complexity of
O (

KNT 2(N + Lmax)2
)
, which is much higher than the

proposed delay-domain equalizers with a complexity of
O (

KT 2
)
.

VI. NUMERICAL RESULTS

We compare the performance of the proposed scheme
with that of (coordinated) time-sharing in both perfect and
imperfect CSI scenarios. We assume Rayleigh fading with unit
variance channel gains, which are constant during T time-
intervals. We have set the default values of outage probability
to 10 %, T = K , N = 600, c = 1 (i.e., σ2

h = 1
ρ ), L = IK

for delay-domain algorithms, and β1 = 0 and β2 = 0.05
(L2 = 30) for the ZigZag algorithms.

The outage capacity with perfect CSI is plotted versus the
SNR in Fig. 8 for different delay values (ΔL := L2 − L1).
It can be seen that the original ZigZag performs slightly
better than the double-zipper ZigZag. This can be due to
the observation that although the double-zipper algorithm
accumulates less noise, the higher levels of noise correlation
(off-diagonal elements in the noise correlation matrix Rn) in
the original ZigZag work in its favor. Furthermore, ZigZag

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on November 21,2022 at 06:35:42 UTC from IEEE Xplore.  Restrictions apply. 



KAZEMI et al.: COLLISION RESOLUTION FOR RANDOM ACCESS 3475

Fig. 9. Outage capacity of ZigZag with perfect CSI vs normalized delay
difference.

Fig. 10. BER performance of finite blocklength ZigZag with perfect CSI.

Fig. 11. Finite-alphabet achievable rate of ZigZag with perfect CSI.

even outperforms the result in [32] for some SNR values
(see (7)). Constant capacity gap between the ZigZag perfor-
mance and the sum capacity at high SNRs is also clear.

The outage capacity with perfect CSI is plotted versus the
normalized delay difference in Fig. 9. It is observed that the
performance of both ZigZag algorithms are almost unchanged
when the delay difference increases, and the proposed lower
bounds become tighter.

The bit error rate (BER) performance of ZigZag algorithms
is analyzed in Fig. 8 for both coded and uncoded cases with
unit channel gains with perfect CSI and quadrature phase shift

Fig. 12. Outage capacity with imperfect CSI.

Fig. 13. Relative outage capacity of ZigZag with imperfect CSI.

keying (QPSK) modulation. The channel coded results employ
a rate 1

2 low density parity check (LDPC) code of blocklength
4800. The results show that the double-zipper outperforms the
original ZigZag in both uncoded and coded cases in a practical
system. For instance, at a BER of 10−4, the double-zipper
provides a performance gain of about 3 dB in both coded and
uncoded cases over the original ZigZag. This can be due to
the fact that in order to keep the complexity of the algorithm
low, the noise correlation is not exploited when obtaining these
results.

In order to have a more practical view, achievable rates of
the time-sharing and the ZigZag schemes with finite alphabet
signaling with quadrature amplitude modulation (QAM) are
depicted in Fig. 11. As an example, for 16-QAM at an
SNR of 40 dB, at least 87 % and 91 % of the capac-
ity of time-sharing can be achieved by the original and
the double-zipper ZigZag algorithms, respectively. Clearly,
the asymptotic performances of both ZigZag approaches are
the same as the time-sharing scheme.

For the case of imperfect CSI, the outage and relative
outage capacities are plotted versus SNR in Fig. 12 and
Fig. 13, respectively. The relative capacities are normalized
with respect to the time-sharing sum-rate capacity with perfect
CSI. It can be seen that the capacity gaps of both ZigZag
algorithms fade away in high SNRs, even with imperfect CSI.
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Fig. 14. Outage capacity of delay domain processing with perfect CSI.

Fig. 15. Outage capacity of delay domain processing with imperfect CSI.

Fig. 16. Relative outage capacity of delay domain processing with imperfect
CSI.

Next we analyze the performance of the proposed delay
domain approach. In Fig. 14, the outage capacity with perfect
CSI is plotted versus the SNR. Interestingly, the performance
of the DD-ZF does not improve that much as the number
of users increases beyond two. This is due to the fact that
additional time-intervals are required as the number of users
increases. Also, the constant gap between the DD-ZF and
the sum-capacity at high SNRs demonstrates the asymptotic
optimality of this approach.

The outage and relative outage capacities for the case of
imperfect CSI are plotted versus the SNR in Fig. 15 and

Fig. 16, respectively. The relative capacities are normalized
with respect to the time-sharing sum-rate capacity with perfect
CSI. It can be seen that, similar to ZigZag, the capacity gaps
fade away at high SNRs, even with imperfect CSI.

VII. CONCLUSION

We present simple and scalable collision resolution algo-
rithms based on the received signals in order to decouple
the combined delayed packets of the users at the receiver
in a multiple access setup. We first consider a two-user
multiple access system with ZigZag decoupling at the receiver.
We characterize the noise coefficient matrix and obtain per-
formance bounds for both original and double-zipper ZigZag
algorithms. Employing delay-domain processing, we then
extend the results to arbitrary number of users by introducing
a delay-domain zero forcing algorithm and its regularized
variant. By deriving bounds on the achievable sum-rate of the
proposed scheme for non-unit gain channels with imperfect
CSI, we show that their performance approaches that of the
optimal time-sharing scheme in the high SNR regime. These
results are obtained without the need for any coordination,
contrary to the time-sharing approach, and the performance
is achieved by simple single user codes. Noting that there
is no restriction on the codebooks, these algorithms can be
employed in the setting of massive random access after com-
bining them with suitable medium access protocols. We further
note that we have made some idealistic assumptions such as
perfect user activity estimation in our results. Analysis of the
performance degradation due to more practical assumptions
requires a deeper study, which we leave for future work.
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