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A B S T R A C T

Being one of the most common empirical regularities, the Zipf’s law for word frequencies is a
power law relation between word frequencies and frequency ranks of words. We quantitatively
study semantic uncertainty of words through non-point distribution-based word embeddings
and reveal the Zipfian regularities. Uncertainty of a word can increase due to polysemy, the
word having ‘‘broad’’ meaning (such as the relation between broader emotion and narrower
exasperation) or a combination of both. Variances of Gaussian embeddings are utilized to
quantify the extent a word can be used in different senses or contexts. By using the variance
information embedded in the non-point Gaussian embeddings, we quantitatively show that
semantic breadth of words also exhibits Zipfian patterns, when polysemy is controlled. This
outcome is complementary to Zipf’s law of meaning distribution and the related meaning-
frequency law by indicating the existence of Zipfian patterns: more frequent words tend to
be generic while less frequent ones tend to be specific. Results for two languages, English and
Turkish that belong to different language families, are also provided. Such regularities provide
valuable information to extract and understand relationships between semantic properties
of words and word frequencies. In various applications, performance improvements can be
obtained by employing these regularities. We also propose a method that leverages the Zipfian
regularity to improve the performance of baseline textual entailment detection algorithms. To
the best of our knowledge, our approach is the first quantitative study that uses Gaussian
embeddings to examine the relationships between word frequencies and semantic breadth.

. Introduction

Zipf’s law for word frequencies is a kind of power law relation between frequency of words and their respective frequency
anks (Zipf, 1935, 1949). Since George Kingsley Zipf has introduced it, Zipf’s law has been an important empirical regularity within
he statistical natural language processing (NLP) and computational linguistics (Zipf, 1935, 1949) fields, and, in a more general sense,
ithin the information, physical and social sciences (Newman, 2005). Despite Zipf’s law’s simple essence, several Zipfian regularities
rise in complex linguistic relationships between word features and frequencies of words. The Zipf’s law of meaning distribution and
he related meaning-frequency relationship, and the law of abbreviation are common examples (Casas et al., 2019; Grzybek, 2006;
ipf, 1945, 1949). Interest in the Zipfian regularities has been continuing and remains as an important area of study (Altmann &
erlach, 2016; Baayen, 2002; Casas et al., 2019; Debowski, 2002; Ferrer-i-Cancho & Elvevåg, 2010; Ferrer-i-Cancho & Solé, 2002;
errer-i-Cancho & Vitevitch, 2018; Gerlach & Altmann, 2014; Manin, 2008).
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The Zipf’s law of meaning distribution predicts a relationship between the number of meanings of a word and its frequency
ank, (Zipf, 1945, 1949). The meaning-frequency relationship indicates a similar relationship where the predictor variable is the
requency itself, instead of the frequency rank, (Zipf, 1945). Both relations assert that the frequent words tend to have more number
f meanings. Later, the relation between the number of meanings and word frequencies is studied by Ferrer-i-Cancho (2005a, 2005b,
005c) within the scope of communicative optimization. Another recent and important study is Casas et al. (2019), where the
uthors develop a quantitative analysis to study the meaning-frequency relationship and provide further statistical evidence. The
elation between the word length and the word frequencies is also statistically examined to verify the Zipf’s law of abbreviation,
hich states that more frequent words tend to be shorter. All of the aforementioned studies play a significant role in providing
uantitative evidence for Zipfian regularities.

In this paper, semantic ‘‘breadth’’ is quantitatively studied within the scope of Zipfian statistics. ‘‘Breadth’’ refers to the extent
f meaning of a word when the effects of polysemy are removed. Uncertainty of a word increases due to polysemy, having ‘‘broad’’
eaning (such as the relation between broader emotion and narrower exasperation) or a combination of both. Manin (2008) refers

the notion of meaning extent where words ‘‘broad’’ or ‘‘generic’’ are used on the one hand and ‘‘narrow’’ or ‘‘specific’’ on the other
to refer the ‘‘extent’’ or ‘‘breadth’’ of a word’s meaning. We quantitatively study the relationship between semantic breadth of a
word and its frequency rank and reveal the Zipfian regularities: more frequent words tend to be semantically broader, even when
the effects of polysemy are eliminated. Manin (2008) has touched upon this idea and predicted such a relation, where possible
semantic volumes are mentioned together with the concepts of ‘‘generic’’ and ‘‘specific’’ words. By an approach using ‘‘non-point’’
word representations, our study presents theoretical results that complement the intuition and predictions in Manin (2008). Different
from the previous work where the number of senses of a word is studied with respect to its frequency, we study and reveal the
Zipfian regularities between semantic breadth, or uncertainty in the case when polysemy is controlled, of words and their frequency
ranks.

In order to computationally study semantic breadth, one needs a mathematical representation (or embedding) that can
capture the levels of the uncertainty of words. Continuous dense word embeddings opened a new era in NLP and computational
linguistics (Bojanowski et al., 2017; Mikolov, Chen et al., 2013; Mikolov, Sutskever et al., 2013; Pennington et al., 2014). Besides
their success in high level NLP tasks and applications, word embeddings are also frequently used in information processing field
such as information retrieval from documents, (Bagheri et al., 2018), and social media user profiling, (Lopez-Santillan et al., 2020).
Classical word embeddings treat all words as vectors representing points within a high-dimensional semantic vector space. For
example, words ‘‘emotion’’ and ‘‘exasperation’’ are both represented as points. However, ‘‘emotion’’ contains a broad extent of
meanings and can be used in different contexts and senses. In contrast, ‘‘exasperation’’ stands for only a particular feeling of intense
irritation or annoyance, which is quite specific compared to generic ‘‘emotion’’. Although the neighbors of ‘‘emotion’’ come from
diverse contexts compared to those of ‘‘exasperation’’ in a semantic vector space, ‘‘point-wise’’ word embeddings are not capable of
semantically distinguishing words with broad meanings from words with narrow and specific meanings.

To address this problem, a new line of word embeddings has emerged. The idea is to represent words as Gaussian distribu-
tions (Athiwaratkun & Wilson, 2017; Vilnis & McCallum, 2015) within the semantic space. In Gaussian embeddings, words are
represented as multivariate Gaussian distributions rather than points. Mean vectors of multivariate Gaussians decide the location of
words in the semantic space. Covariance matrices of the multivariate Gaussian embeddings mathematically represent the uncertainty
levels of words. The variance of a word is a measure that quantifies the breadth of meaning around the central semantic location
of that word, which is represented by the mean vector. In other words, variances indicate to what extent words possess different
senses and uncertain/broad meanings. Alternatively, variances can be interpreted as the semantic uncertainty/specificity of words
around the central locations of their meanings. Uncertainty and specificity can also be interpreted as identifiers of possible senses
of a word and the range of possible contexts within which a word can occur. Generally speaking, words with high uncertainty
are more probable to co-occur with various words in many different contexts, whereas words indicating specific concepts can take
place in a limited number of contexts. Gaussian embeddings quantitatively reflect this difference between generic and specific
words to variance values. At first glance, this result is reasonable. For example, the word ‘‘cell’’ is semantically more generic than
‘‘lymphocytes’’ (a kind of white blood cell). Let alone the contribution coming from its other senses, since the word ‘‘cell’’ can be
used with several cell types like ‘‘lymphocytes’’, its extent (variance) within the semantic space is supposed to be higher.

Variance measure of Gaussian embeddings enables us to study the semantic breadth quantitatively. With this tool and by
controlling polysemy, one can compare the semantic breadth of words and look for regularities and relations between semantic
breadth and frequency. By deploying Gaussian word embeddings, we quantitatively show that there are Zipfian regularities between
frequency ranks and semantic breadths of words. We present results for English and Turkish languages, which belong to different
language families. We also provide several experiments on sense-controlled corpora and on sub-corpora compiled from special words
such as Swadesh List (Swadesh, 1950) and number words. The newly revealed Zipfian regularity is also applied to practical problems
related to entailment relations.

Methodologically and conceptually, another closer work to our study is Piantadosi (2014). Piantadosi examined Zipf’s law of word
frequencies in various aspects of language and showed that the relation between word frequencies and their frequency ranks obeys
at least near Zipfian regularities. In Piantadosi (2014), it has also been questioned whether some semantic and syntactic properties
of languages exhibit Zipfian characteristics by using different external lexical resources. Similarly, we also perform experiments
related to some subsets of our lexicon, such as Swadesh words and number words. Our results indicate that variances of words
also display Zipfian patterns in such settings. In our study, we applied corpus related statistical processes in order to obtain more
reliable and uncorrelated results from possible corpus-related errors as followed by Piantadosi (2014). To this end, we estimated
2

the semantic breadth level of words (variances) and their frequency ranks from two independent corpora.
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In addition to investigating and revealing the Zipfian regularity, we also apply it to improve performance in entailment tests.
ince hypernym words have more generic and broader meanings than hyponym words, we expect them to populate higher frequency
anks subject to a Zipfian regularity. Manin (2008) also implemented a study related to frequency and hyponym clusters based on
imilar insight. Frequencies of target words are estimated from their hyponym frequencies in Russian. Likewise, we incorporate
bsolute and relative frequency information of entailment test pairs into a baseline method in order to improve entailment test
erformance.

The paper is organized as follows. In Section 2, related work in the literature will be presented and discussed in detail. The
esearch objectives will be emphasized explicitly in Section 3. The methodology and experimental results will be given in Section 4
nd Section 5, respectively. In Section 6, we present the overall discussion of our results and of possible future implications. Finally,
he paper will conclude in Section 7.

. Related work

.1. Related work on Gaussian embeddings

After the appearance of continuous dense word embeddings such as word2vec and GloVe (Bojanowski et al., 2017; Mikolov, Chen
et al., 2013; Mikolov, Sutskever et al., 2013; Pennington et al., 2014), a new and prominent direction has rapidly emerged within
the NLP field. Recently, word representations are merged into language models with transformers such as ELMo (Peters et al., 2018),
PT (Radford et al., 2019), BERT (Devlin et al., 2019) and ELECTRA (Clark et al., 2020). Word embeddings have been proven to
e very useful and have become common building blocks of neural architectures for addressing high-level NLP tasks. Besides their
entral role in NLP algorithms for high-level downstream applications, word embeddings have also opened new research directions
or better and generalized word representations utilized in computational semantics. In this section, we examine the related work
specially in the area of hierarchical word representations. We also cover several works that focus on aspects of word embeddings
elated to computational linguistics as well as their usage in computational semantics.

As mentioned in the introduction section, there are ‘‘non-point’’ word representations trying to encode word semantics better.
his type of embeddings originates from the idea that words are not to be restricted to single points within the embedding space. Erk
2009b) is one of the pioneering studies that mentions this objective. This work has been followed by Erk (2009a), where a model
as been proposed with the main objective of attenuating the ambiguities emerging from polysemy to capture hypernym–hyponym
elations. Several years later, Vilnis and McCallum (2015) have introduced the multivariate Gaussian distributions into the word
mbedding research. In this model, the mean values of multivariate Gaussians constitute vectors of words in embedding space,
nd variance values define a quantitative ‘‘uncertainty’’/‘‘specificity’’ level of words around this mean. Correspondingly, one can
ecognize the variance as a gauge of the semantic breadth of a word. With this model, some hierarchies and entailment relations
etween words can be captured. Entailment data in Baroni et al. (2012), Baroni and Lenci (2011) contain positive and negative
ntailment samples. As a positive example, 𝑡𝑟𝑒𝑒 ⊧ 𝑝𝑙𝑎𝑛𝑡 can be given because all trees are plants. Similarly, instances like 𝑝𝑒𝑛𝑐𝑖𝑙 ̸⊧ 𝑝𝑙𝑎𝑛𝑡
re negative entailment samples. Additionally, in Vilnis and McCallum (2015), the authors have mentioned relations between word
requencies and variances by sorting variances of 100 nearest neighbors of a set of sample words. They have noted that more
pecific words have smaller variances and polysemous words have larger variances. However, the authors assert that this pattern is
ot regular and does not stem solely from word frequencies.

To improve the pioneering Gaussian embedding model, Chen et al. (2015) and Athiwaratkun and Wilson (2017) have inde-
endently proposed the Gaussian mixture model (GMM) based embeddings, where words are represented as multimodal Gaussian
istributions. The main motivation of ‘‘non-point’’ word embeddings is to better model polysemous words in a semantic vector
pace by representing them as mixtures of more than one Gaussian distributions, where each mode stands for a sense. Therefore,
edundant enlargement of variances of polysemous words and coupling of uncertainty sources coming from polysemy and semantic
readth can be avoided. Mean vectors of multimodal Gaussian embeddings of a particular word are separated such that each vector
s positioned in different parts of the semantic space and represents a different sense. Polysemy is a major cause for variance growth
n the unimodal Gaussian embeddings. Therefore, word variances represent semantic breadth better when the effects of polysemy are
educed by the multimodal Gaussian embeddings. A drawback of the model in (Athiwaratkun & Wilson, 2017) is that it represents
‘all’’ words with multimodal Gaussians with two modes despite most words are not polysemous and several words have more than
wo senses requiring more than two Gaussian modes to be matched. The model proposed in (Chen et al., 2015) decides which
ords are to be represented as multimodal Gaussians in the training phase and eliminates redundant multimodal representations of
on-polysemous words. GMMs are also utilized in other NLP related tasks such as speech recognition, (Lu et al., 2011).

Besides semantic breadth, Gaussian embeddings have been utilized in computational problems related to ambiguities in the
anguage (Roy et al., 2019). Furthermore, Gaussian embeddings have been used to represent actors, movies, and genres, (Kim,
aterenchuk et al., 2019). In this work, variances are deployed as a measure of versatility of actors to be used in cast prediction
pplications.

There are previous ‘‘non-point’’ word embeddings other than the Gaussian models. In (Nickel & Kiela, 2017), Poincaré
mbeddings have been introduced to capture hierarchical relations in an hyperbolic space. Similarly, in (Tifrea et al., 2019), GloVe
lgorithm (Pennington et al., 2014) has been adapted to learn hyperbolic word representations. Muzellec and Cuturi (2018) have
tilized the Wasserstein space of elliptical distributions to represent words. Another study has used the Lorentz model to learn
ierarchical relations in hyperbolic geometry, (Nickel & Kiela, 2018). In (Bražinskas et al., 2018), a similar core idea of the Gaussian
3

mbeddings has been implemented with the Bayesian skip-gram model.
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The common objective of the above previous work is to propose new methods to expand point embeddings to a degree
f ‘‘regional’’ embeddings or distributional representations, i.e. ‘‘non-point’’ embeddings, with the principal concern of better
epresenting lexical hierarchies quantitatively.

Other than the aforementioned ‘‘non-point’’ word representations, in a different body of literature, there are studies that focus
n diachronic semantic change and semantic breadth of words. In (Mitra et al., 2014), semantic changes across different timelines
ave been examined. At different points in time corresponding to different decades, sense clusters are created, and the changes
f the senses of words are detected and tracked in an unsupervised way with the help of graph models. Different types of sense
hanges are named as split, join, birth or death. After the learning process, detected semantic changes are classified into one of these
roups. In (Tang et al., 2016), from entropies of the distribution of possible senses, a proposed semantic feature of a word, called
ord status, is calculated. Possible senses are determined from words that possess the strongest associations with the target word.
ssociation strength is calculated via performing the likelihood ratio test by using co-occurrence statistics. On the other hand, Luo
t al. (2019) have proposed the ‘‘BREADTH’’ concept as a kind of definition for semantic breadth. This concept is used to measure
ow many adjectives with different senses an adverb can pair with. The more the target adverb can be used with many adjectives
ith different meanings, the semantically broader it is considered. In order to measure ‘‘BREADTH’’ of adverbs, negative cosine

imilarities between the target adverb and different adjectives are used. As the similarity increases between the adverb and the
djective, the ‘‘BREADTH’’ value of the target adverb would decrease.

.2. Related work on Zipf’s law

Zipf’s law is a well-known phenomenon in linguistics (Zipf, 1935, 1949). It is demonstrated that Zipfian regularities can also be
bserved in several different disciplines. Okuyama et al. (1999) have studied company income distributions and observed Zipfian
egularities. Similarly, Soo (2005) has revealed the Zipfian distribution of city populations. Another study has associated internet
tatistics (e.g., webpage requests) with Zipf’s law, (Adamic & Huberman, 2002). On the linguistic side, Mandelbrot (1953, 1961) have
eneralized Zipf’s stimulating study to explain word frequency-rank relation better. As a result of this generalization, word frequency
elations are also called Zipf–Mandelbrot law. Later, generalizations and examinations of Zipf’s law in various mathematical and
nformation science fields have continued, (Baayen, 2002; Chen & Leimkuhler, 1987; Shan, 2005). Debowski (2002) has proposed a
odel by combining empirical and rational approaches to show the dependence of the Zipf’s law on the text size. The contribution is

o show that the additional parameters introduced by Mandelbrot depend on text length. Gerlach and Altmann (2013) has proposed
stochastic model to estimate vocabulary sizes of corpora from different timelines. They create two groups of words which are

‘core’’ words and ‘‘non-core’’ words by word frequencies. While core words do not affect the probability of a new word to be joined
o vocabulary, usage of non-core words reduces it. The main result of this study is the generalization of Zipf’s and Heaps’ laws to
ouble power laws. Zipf’s law has been used to track diachronic changes in corpora from different timelines and languages in terms
f lexical and syntactic properties, (Koplenig, 2018).

Zipf’s law has also been expanded and applied to several contextual problems of NLP. For example, many statistical laws including
ipf’s have been tested in complex systems that do not carry typical scenarios for data, (Gerlach & Altmann, 2019). These complex
ystems include earthquake magnitudes, inter-event times of consecutive occurrences of words in texts, frequency rank relationships
f words, relation between the degrees of nodes from a network and the ranks of the degrees of the nodes. Deviations of statistical
aws against the availability of large datasets have also been examined extensively, (Gerlach & Altmann, 2019). In (Gao et al., 2019),
o-occurrence matrices have been subjected to transformations that are compatible with Zipf’s distribution to diminish the effects
f unreasonable weights of frequent words such as ‘‘the’’ or ‘‘is’’.

Generalizations to Zipf’s law and the Zipfian patterns in different knowledge domains are also studied in the literature. Li (1992)
sserts that even randomly composed corpora exhibit Zipfian patterns. As a counter argument, Ferrer-i-Cancho and Elvevåg (2010),
errer-i-Cancho and Solé (2002) show by performing rigorous statistical tests that random texts do not exhibit the consistent patterns
resent in regular texts. They conclude that Zipf’s law does not emerge from purely random processes, but carries meaningful
nformation concerning language structure and its evolution. Another study reveals that passwords also show Zipfian patterns, (Wang
t al., 2017). In (Zhang, 2009), it is asserted that power law regularities can also be discovered in computer programs via empirical
nalysis of real software systems.

To quantitatively study Zipfian patterns, Ferrer-i-Cancho (2005a, 2005b, 2005c) have associated semantic vagueness of words
ith the number of links connecting words with meanings. If a word has more links, it would have a high number of interpretations

n the context where it appears. Precision and vagueness terms used in Ferrer-i-Cancho (2005b) can be interpreted in analogy
ith the semantic specificity and uncertainty. Casas et al. (2019) have conducted experiments on different corpora belonging to
ifferent languages to quantitatively study the meaning-frequency relationship and the law of abbreviation. Their consistent results
rom different corpora indicate that word frequencies are highly correlated with the number of senses of words derived from

ordNet (Miller, 1995). There also exist important theoretical contributions regarding the origins of Zipfian patterns, (Ferrer-i-
ancho & Vitevitch, 2018; Manin, 2008). In (Ferrer-i-Cancho & Vitevitch, 2018), Zipf’s law of meaning has been studied in detail
nd strong positive correlation between word frequency and the number of meanings has been verified. Zipf’s relatively simplistic
ssumption is replaced by a more general and compact assumption that can fit into the general theory of communication, (Ferrer-
-Cancho & Vitevitch, 2018). According to this assumption, the joint distribution of a word and a meaning can be sufficient
o characterize the Zipfian regularities. On the other hand, Manin (2008) has explained the Zipf’s law on purely linguistic
rounds. Manin (2008) has examined the degree of generality of words and composed a theoretical background by modeling the
4
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semantic space and assuming a measure that can specify the generality. With the help of this modeling and assumptions, Manin
(2008) has shown that Zipf’s law can be constructed by arrangements of word meanings in the semantic space.

Review of Piantadosi (2014) on Zipf’s law presents critical procedures to explore word frequencies. In that study, it has been
sserted that word frequencies are complex language features, which cannot be explained by a single power law formula. It is also
laimed that although word frequencies exhibit patterns compatible with Zipf’s law, they have a complicated structure that can
nly be revealed by methods beyond Zipf’s law. Nevertheless, when Piantadosi (2014) has considered the specific subsets of the
exicon, such as the Swadesh list or number words in the scope of Zipf’s law, it has been noticed that those word groups also fit to
ear-Zipfian patterns, (Piantadosi, 2014).

. Research objectives

The main objective of this research is to quantitatively study the relationship between semantic breadth of a word and its
requency rank to reveal the Zipfian regularities: more frequent words tend to be semantically broader. Under the mathematical
oundation of the multivariate Gaussians embeddings, we calculate variances of words, which are quantitative indicators of the
xtent of meanings of words. By quantitatively studying the relations between the word variances of Gaussian embeddings and
ord frequencies, our aim is to show the existence of Zipfian regularities in semantic breadth of words. We also aim to observe
hether some distinctive word groups such as Swadesh words and number words, which obey the regular Zipfian patterns, exhibit
ipfian regularities with respect to variances as well.

As an incidental objective of our research, we aim to leverage the revealed Zipfian regularity to improve the performance of word
ntailment tests. The existence of the Zipfian regularity suggests that frequencies of words are now direct indicators of generality
nd specificity of meaning. Thus, one can leverage frequencies in entailment problems since they require distinguishing general and
pecific words from each other. Textual entailment has been subjected to information processing applications. In (Rooney et al.,
014), textual entailment samples have been classified by ensemble learning. Kim, Rabelo et al. (2019) have combined textual
ntailment with information retrieval on legal texts on the statutory law. Furthermore, in (Clinchant et al., 2006), it has been asserted
hat lexical entailment contributes to performance in information retrieval tasks related to queries and documents. Therefore, our
ast objective involves presenting a lexical entailment improvement that can be used in information retrieval tasks. Our proposed
ethod is based on calculating the given entailment pair’s frequency score and combining it with scores used in baseline methods.
etailed explanations of our methodology and experimental setup will be given in Section 4 and Section 5, respectively.

. Methodology

In this section, we first review the Gaussian embedding methods. Then, we present our proposed methodology to quantitatively
tudy the semantic breadth of words through the variances of Gaussian embeddings and to reveal Zipfian regularities. Finally, our
roposed method to leverage the observed Zipfian regularities in practical entailment tests will be explained.

.1. Gaussian word embeddings

Vilnis and McCallum (2015) propose to learn Gaussian embeddings with energy based max-margin objective. As energy function,
ither expected likelihood kernel (ELK) (Jebara et al., 2004) or well-known Kullback–Leibler (KL) divergence are chosen. In ELK,
he inner product for Gaussian distributions is defined as

𝐸(𝑃𝑖, 𝑃𝑗 ) = ∫  (𝑥;𝜇𝑖, 𝛴𝑖) (𝑥;𝜇𝑗 , 𝛴𝑗 )𝑑𝑥 =  (0;𝜇𝑖 − 𝜇𝑗 , 𝛴𝑖 + 𝛴𝑗 ). (1)

On the other hand, negative energy function with KL divergence is defined as

− 𝐸(𝑃𝑖, 𝑃𝑗 ) = 𝐷𝐾𝐿(𝑗 ,𝑖) = ∫  (𝑥;𝜇𝑖, 𝛴𝑖) log
 (𝑥;𝜇𝑗 , 𝛴𝑗 )
 (𝑥;𝜇𝑖, 𝛴𝑖)

𝑑𝑥. (2)

The reason for using negative sign in Eq. (2) is that KL divergence measures distance, not similarity between two distributions. After
determining the energy function, the max-margin ranking objective is used as

𝐿𝑚(𝑤, 𝑐𝑝, 𝑐𝑛) = 𝑚𝑎𝑥(0, 𝑚 − 𝐸(𝑤, 𝑐𝑝) + 𝐸(𝑤, 𝑐𝑛)) (3)

In Eq. (3), 𝑤 is the target word, and 𝑐𝑝 and 𝑐𝑛 are positive and negative context words co-occurring with the target word, respectively.
The max-margin objective tries to make the difference between the energy of positive context and the energy of negative context be
at least the margin 𝑚 (Vilnis & McCallum, 2015). Word2vec in skip-gram mode, (Mikolov, Sutskever et al., 2013), is used to train
Gaussian embeddings. There are two options for variance calculation. One is the diagonal variance case where a different variance
value is calculated for every dimension. The overall variance is then calculated by the determinant of the covariance matrix. In the
spherical variance option, there is only one variance value per embedding since all diagonal values are same. Geometrically, Gaussian
components are represented by an ellipsoid in the semantic space. The center of the ellipsoid is designated by the mean vector and
the contour surface of that ellipsoid is specified by variances. In this regard, word variances can be interpreted as indicators for the
volume of the semantic uncertainty.
5
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4.2. Multimodal Gaussian word embeddings

To enhance Gaussian embeddings by representing them as a multimodal Gaussian mixture, words 𝑤𝑓 and 𝑤𝑔 are represented
s

𝑓 (𝑥) =
∑𝐾

𝑖=1 𝑝𝑖 (𝑥;𝜇𝑓,𝑖, 𝛴𝑓,𝑖)
𝑔(𝑥) =

∑𝐾
𝑖=1 𝑞𝑖 (𝑥;𝜇𝑔,𝑖, 𝛴𝑔,𝑖),

(4)

respectively, where ∑𝐾
𝑖=1 𝑝𝑖 = 1 and ∑𝐾

𝑖=1 𝑞𝑖 = 1, (Athiwaratkun & Wilson, 2017). In this case, log-energy of two words is calculated
as

log𝐸(𝑓, 𝑔) = log
𝐾
∑

𝑗=1

𝐾
∑

𝑖=1
𝑝𝑖𝑞𝑗𝑒

𝜉𝑖,𝑗 , (5)

here 𝜉𝑖,𝑗 = log (0;𝜇𝑓,𝑖 − 𝜇𝑔,𝑗 , 𝛴𝑓,𝑖 +𝛴𝑔,𝑗 ). To measure the similarity between word vectors, ELK, maximum cosine similarity, and
inimum Euclidean distance metrics are used, (Athiwaratkun & Wilson, 2017). When Gaussian word embeddings are inspected,

t can be seen that mean vectors of polysemous words fall into different locations in the vector space. Since words are divided
nto two modes, their respective variances are not as large as the variances of the pioneering single mode version of the Gaussian
mbeddings.

.3. Uncovering the Zipfian regularities of word variances

While determining the variances of words to measure semantic breadth levels of words, the overall variance of the modes of the
ultimodal Gaussians should be considered accordingly. For the bimodal case, the mean and variance moments of the mixture can

e calculated as:

𝑓 (𝑥) = 𝑝𝑔1(𝑥) + (1 − 𝑝)𝑔2(𝑥), (6a)

𝜇 = 𝑝𝜇1 + (1 − 𝑝)𝜇2, (6b)

𝜈2 = 𝑝[𝜎21 + 𝛿21 ] + (1 − 𝑝)[𝜎22 + 𝛿22 ], (6c)

where
𝜇 = ∫ 𝑥𝑓 (𝑥)𝑑𝑥,
𝛿𝑖 = 𝜇𝑖 − 𝜇,
𝜈𝑟 = ∫ (𝑥 − 𝜇)2𝑓 (𝑥)𝑑𝑥.

(7)

In Eq. (6), 𝑔𝑖(𝑥) stands for the components of mixture distribution. 𝑝 is the mixture probability of the first component in the
bimodal case. 𝜇 and 𝜈2 are the first moment (mean) and the second moment (variance) of the mixture, respectively. Lastly, 𝜎𝑖
and 𝜇𝑖 are the variance and mean of 𝑖th component of the mixture, respectively. Before comparing the variances of words, the
following approximations are made. Since mixture components consist of uncorrelated multivariate Gaussians, they are independent
multivariate at the same time. From independence, the mean of a mixture component can be calculated by multiplying the mean of
each Gaussian multivariate component. This corresponds to the multiplication of every entry of the mean vector of each word. Note
that the mean vectors are normalized. Therefore, the result of the multiplication is very close to zero. This leads to approximating
the variance of a word as the weighted sum of variances of each mixture component from Eq. (6c).

Before sorting the words according to their frequencies, a final operation needs to be performed. Note that using the same
corpus to obtain variances and frequency ranks of word may yield correlated errors. Even in the case that all words are equally
probable, some words would appear more than others by chance. When the variance-rank relationship is plotted based on this
standard measurement, a decreasing pattern of words will not reflect their actual distributions. Using two independent corpora
offers a solution to this problem. One of the two corpora is to estimate variances of words, and the other one will be used to
estimate frequency ranks. This can also be achieved by splitting the single corpus into two corpora by applying a binomial split. To
sum up, using independent corpora or making corpus-splitting let us perform appropriate statistical analysis to calculate deviations
in the Zipfian patterns, (Piantadosi, 2014).

4.4. Use of Zipfian regularities in entailment improvement

The existence of Zipfian regularities can also be exploited in some practical NLP applications. For demonstration purposes, we
present a simple example in this paper. To this end, we propose a method to improve entailment tests by injecting the knowledge
of this regularity to simple point word embeddings. It should be noted that our proposed method does not need training of complex
‘‘non-point’’ word embeddings but only leverages the knowledge of Zipfian patterns.

While deciding whether there is an entailment relation between a given word pair, we incorporate frequency information of
the word in the pair to a baseline method for entailment score calculation. Given the Zipfian regularity between semantic breadth
and frequency rank of words, it is reasonable to say that hypernym words tend to have higher frequencies and higher generality in
6

accordance with a quantitative relation. Similarly, hyponym words are supposed to have lower frequencies and higher specificity.
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We use the cosine similarity between the pair of words as a baseline method. We then infuse frequency information to this baseline
to calculate the overall entailment score for a given pair:

𝐶𝑆(𝑚,𝑛) =
�⃗�𝑇

𝑛 �⃗�𝑚

‖𝑤𝑚‖‖𝑤𝑛‖
, (8)

𝐹𝑆(𝑚,𝑛) =
𝑓𝑛
𝑁

× 100 +
log10(𝑓𝑛∕𝑓𝑚)

𝑘
, (9)

𝑂𝑆(𝑚,𝑛) = 𝐶𝑆(𝑚,𝑛) + 𝐹𝑆(𝑚,𝑛), (10)

where 𝐶𝑆(𝑚,𝑛) stands for the cosine similarity between word vectors 𝑤𝑚 and 𝑤𝑛. When 𝐶𝑆(𝑚,𝑛) is used by itself, it constitutes a
baseline method for the entailment test. 𝐹𝑆(𝑚,𝑛) as given in Eq. (9) indicates the frequency score of the word pair (𝑚, 𝑛). The hypernym
candidate is word 𝑚, and the hyponym candidate is word 𝑛. 𝑓𝑚 and 𝑓𝑛 are frequencies of 𝑚 and 𝑛, respectively. 𝑁 stands for the sum
of frequencies of all words in the vocabulary. The constant 𝑘 can be chosen and fine-tuned according to test type. In general, values
between 20 and 40 give favorable results. Here, one can calculate the frequency score by using two approaches. The first is related to
the respective frequency of the candidate hypernym word according to total word frequencies of all words in the vocabulary. As we
will experimentally show in Section 5 that the probability of being simultaneously both a low-frequency word and a hypernym word,
which is semantically broader, is small. Therefore, the frequency score of the given pair with low frequency hypernym candidate
will also be small. In the second approach, relative frequencies of hypernym and hyponym words are considered. If the frequency
gap between the second word and the first word becomes small, the probability of the entailment relation will decrease. If the first
word frequency is greater than that of the second, it contributes to the frequency score negatively. In order to decrease the frequency
score, in this case, the logarithm of the ratio between frequencies of the pair is taken. Overall entailment score for word pair (𝑚, 𝑛)
is calculated by adding the frequency score to the cosine similarity of the given word pair as in Eq. (10).

5. Experiments and Results1

In this section, we present the results of our experiments. First, experiments that use multimodal Gaussian embeddings are
presented in Section 5.1. Then, we will give extensive experimental results and discussions regarding isolating the effect of polysemy
in Section 5.2. To isolate the effect of polysemy, we first present results for unimodal Gaussians to quantitatively show that
multimodal Gaussians are better models in eliminating the effects of polysemy. Then, we give results obtained from sense-controlled
corpora so that the effect of polysemy is completely removed and the variances represent only the extent of semantic breadth of
words. In Section 5.3, we will present results of experiments performed for Swadesh and number words. Analysis of the effects
of frequency threshold used in constructing the vocabulary is given in Section 5.4. The results for Turkish corpus is presented in
Section 5.5. Finally, we will present results regarding the entailment tests in Section 5.6. To diversify our experiments, we have
performed experiments both with or without corpus splitting. In Sections 5.1 and 5.3 , we have performed corpus splitting while
Sections 5.2, 5.4 and 5.5 utilize the entire corpus to provide more data for training the Gaussian embeddings.

5.1. Examining Zipfian regularities on multimodal Gaussian embeddings

In this subsection, we use the model of multimodal Gaussian embeddings trained on a concatenated corpus of UKWAC and
Wackypedia (Baroni et al., 2009) to obtain variance values of the words, (Athiwaratkun & Wilson, 2017). As a regular statistical
process, words whose frequencies are less than the threshold 100 are removed from the vocabulary. Final vocabulary size is 314,129.
We have experimentally studied the effects of the threshold and showed that its value is inconsequential in Section 5.4. The
dimensionality of mean vectors of all the models used throughout this paper is 50. We use a second corpus to determine the frequency
ranks of words. The second corpus is the English Wikipedia with a vocabulary of size 229,922. In order to be compatible with the
trained model’s vocabulary, words with occurrences of less than 100 in the second corpus are also discarded. For pre-processing,
downloaded Wikipedia dump is cleaned from all redundant materials such as document numbers, URLs and HTML syntax. All
non-alphanumeric characters are also removed. Lastly, all characters are made lowercase. In total, there are 2,127,511,369 tokens
in the Wikipedia corpus. 229,922 of them are types and have frequency more than 100. After pre-processing steps, we rank words
according to their frequencies by using the Wikipedia corpus. Then, the acquired rank orders and variance values are combined to
obtain the relation between variances and frequency ranks.

In the standard Zipf’s law, we expect to have frequency-rank relation that is compatible with the power law relation, as expressed
in Eq. (11):

𝑓𝑟 ∝ 𝑏∕(𝑟𝑎) (11)

Here, 𝑟 and 𝑓𝑟 stand for word rank and the corresponding frequency value of word whose rank is 𝑟, respectively. In standard Zipf’s
law, parameters 𝑎 and 𝑏 are approximately 1. Note that there are deviations from the above formula for infrequent words, (Ferrer-
i-Cancho & Solé, 2001). One can obtain more accurate results by using a second exponent for higher ranking words to deal with

1 Source codes and data are available at https://github.com/koc-lab/w2gm-zipfian.
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Fig. 1. Two dimensional histogram of word variances and work ranks.

the deviations caused by infrequent word. However, since addressing deviations due to infrequent words is beyond the scope of our
study, we use the standard formula of Zipf’s law.

Throughout this section, we will present several Zipfian plots of variance versus frequency rank of words in both regular or
log–log forms. In the insets of figures, regression parameters (𝑎 and 𝑏) according to the expression given in Eq. (11) can also be
found. Figs. 1 and 2 demonstrate the pattern between variance and word rank. In these figures, mixture weighted average of two
variances is calculated as stated in Eq. (6). For practical reasons, around the first seventy five thousand words of the vocabulary,
which sufficiently demonstrate the general pattern, are displayed. A two-dimensional histogram is used because there are many
ripples between variances of successive words when the gap between frequency ranks is small. As shown in figures, variances
of words display a Zipfian pattern where they decrease following the Zipf’s law as the order of word rank increases noticeably.
Regression parameters to fit the curve are not divergent from classical Zipf’s law parameters.

It is important to emphasize that although the regression curves exhibit strict Zipfian regularity, the relationship between variance
and frequency rank does not entirely satisfy Zipf’s law. There are fast changes in variances of adjacent words. Our study’s main aim is
to indicate the general pattern of the variance of words at a similar rank order. Although there may be an arbitrary increase/decrease
in variance for words of close frequency ranks, it is possible to see a decrease in variance when the word frequency decreases
considerably.

The results reported above are intuitively meaningful. The observed Zipfian regularity can be elucidated by using the word
‘‘animal’’ as a qualitative example. ‘‘Animal’’ points out relatively broader concepts compared to the name of a specific animal. In
the corpus, it co-occurs with a variety of different animals in specific word windows. It is reasonable to say that the word ‘‘animal’’
has both high frequency and uncertainty (or variance) because the word ‘‘animal’’ cannot specify any species (let alone a family of
species) when it is used in a sentence all alone. This leads to an increase in its variance. Although it can gain different side meanings
or be used metaphorically in a sentence, note that ‘‘animal’’ is not a polysemous word. Therefore, associating the increased variance
only with polysemy would not be a reliable inference. Multimodal Gaussians eliminate the impact of polysemy on variance. On the
other hand, a specific animal ‘‘antelope’’ denotes a way more specific entity. Since it is a very specific word, its word frequency
is naturally low. Consistently, its uncertainty is low, and it can be seen that its variance value is low through our results. We will
present comprehensive experimental results in the following subsections to quantitatively verify our qualitative analysis by also
eliminating the effects of polysemy.

In order to make experimental results more reliable and involved, in addition to averaged variances, we examined maximum and
minimum variances of the multimodals. Figs. 3, 4 demonstrate the behavior of maximum and minimum variances of words with
respect to frequency ranks. Consistently, a similar Zipfian pattern can be observed in both figures. Independent of which mode of
the multimodal Gaussians are used, Zipfian pattern remains. These experimental results from multimodal Gaussians further support
the Zipfian regularity between uncertainty and frequency ranks.

5.2. Effects of polysemy and experiments on sense-controlled corpora

The main motivation of multimodal Gaussians is to minimize the impact of polysemy on word variances. In this model, Gaussian
embeddings with more than one mode give extra degrees of freedom to treat different senses of words as distinct words. Different
senses are learned more independently in the semantic space. Therefore, excessive increase on variances can be eliminated such
that the variance values represent the uncertainty coming from semantic breadth of words other than contributions coming from
different senses due to polysemy. For example, the word ‘‘rock’’ takes place in the same context with the words that are related to
8
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Fig. 2. Two dimensional histogram of word variances and word ranks in logarithmic scale.

Fig. 3. Minimum variances of multimodal Gaussian embeddings.

Fig. 4. Maximum variances of multimodal Gaussian embeddings.
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Fig. 5. Variances of unimodal Gaussians embeddings.

Table 1
Logarithmic variance values of the word ‘‘bank’’ for multimodal Gaussian embeddings with
different number of modes.

Variance value

1 Mode variance(‘‘bank’’,0) 0.147

2 Modes variance(‘‘bank’’,0) 0.081
variance(‘‘bank’’,1) 0.085

3 Modes
variance(‘‘bank’’,0) 0.076
variance(‘‘bank’’,1) 0.077
variance(‘‘bank’’,2) 0.070

music and also geography. If the Gaussian model is unimodal, then variance of ‘‘rock’’ will try to capture different meanings from
both music and geography concepts.

To quantitatively support the qualitative discussions stating that polysemous words tend to have high variances, we first trained
a unimodal Gaussian embeddings model on our Wikipedia corpus. The pattern obtained from unimodal Gaussian model is given in
Fig. 5. As can be seen in Fig. 5, word variances obtained from unimodal Gaussians are significantly higher than those of bimodals.
Additionally, Table 1 also tabulates the variance values of unimodal, bimodal and trimodal Gaussian embeddings of the word ‘‘bank’’
as an additional experimental demonstration. In Table 1, it can be seen that the variance values of the Gaussian embeddings of
‘‘bank’’ decrease as the number of the modes in the model increases. Although variances tend to decrease in unimodal models as
frequency decreases, variances do not fit well to Zipfian patterns. The reason is that the Zipfian regularities coming from Zipf’s
meaning-frequency law and from the semantic breadth couple to each other. This coupling prevents us to conclude that word
frequencies are directly related to semantic breadth. Therefore, we can infer that freeing variances from the effects of polysemy
plays a significant role to reveal the Zipfian regularities of word variances. As it was mentioned before, Gaussian models with single
mode carry excessive amounts of uncertainty, and so variance, due to their attempt to capture too many senses as well as their
semantic breadth. That is why utilizing the multimodal Gaussian embeddings more accurately represents the semantic breadth of
words.

Now, we move to present our experiments on sense-controlled corpora. In (Casas et al., 2019), the number of senses for each
word is imported from WordNet. Following a similar procedure, we labeled the words in our corpus according to their WordNet
senses by using the Lesk algorithm provided by NLTK library (Bird et al., 2009; Lesk, 1986). Lesk algorithm receives a sentence
as input and returns the WordNet senses of every word in the given sentence. In order to increase the disambiguation success,
we also provided the part-of-speech (PoS) information. PoS tags alleviate the complexity of disambiguating senses from WordNet.
Nevertheless, we should note that some words are not present in WordNet. We labeled such words with a single dummy label. By
treating every sense of a word as distinct words and assigning them to distinct Gaussian embeddings, the effects of polysemy is
removed. Then, our sense-controlled corpus is used to train the Gaussian embedding model. In Fig. 6, the Zipfian pattern of the
variance values can be observed. We performed another experiment with the manually sense-annotated SemCor corpus (Miller et al.,
1994). Since this corpus is manually annotated, it is relatively small with approximately 200,000 tokens. We implemented the same
experiment on this corpus. Fig. 7 demonstrates the behavior of variances. Although corpus size is small, manual sense annotation
provides us a better fit to Zipfian regularity. It is well-known that although there are several well-performing algorithms, word-sense
disambiguation with high performance is still a challenging task, especially in unsupervised way. Therefore, obtaining better fit to
Zipfian patterns from the manually sense-annotated SemCor corpus is not surprising.
10
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Fig. 6. Variances of Gaussian embeddings trained with the sense-controlled corpus.

Fig. 7. Variances of Gaussian embeddings trained on the sense-controlled SemCor corpus.

In our experiments on sense-controlled corpora, we showed that the variances of Gaussian embeddings are now only measuring
the semantic extents of words without the effects of polysemy. Results of experiments on sense-controlled corpora strongly indicate
that there is a Zipfian relation between semantic breadth and frequency.

Lastly, we performed correlation analysis between word variances and word frequencies by following the procedure given
in (Casas et al., 2019). We calculated Pearson, Spearman and Kendall correlations between variances and frequency, obtained from
both our Wikipedia corpus and its sense-controlled version. Results are tabulated in Table 2, where we also copied the correlation
results between the number of senses and frequency from Casas et al. (2019)’s quantitative study for Zipf’s meaning-frequency
relation. We observe that the variance values are highly correlated with frequencies. Since these independent experiments correlate
different variable pairs, our correlation results are not totally comparable with those from Casas et al. (2019). However, in terms
of the statistical significance levels that are reached, our results are compatible with those in Casas et al. (2019).

5.3. Zipfian regularities on Swadesh and number words

In (Piantadosi, 2014), many experiments are implemented to investigate whether there are other features of language satisfying
Zipf’s law, other than just word frequency rank and word frequencies. One of these experiments is related to the Swadesh
list (Swadesh, 1950). Swadesh list is a collection of certain words reflecting basic frequent concepts in the language such as ‘‘mother’’,
‘‘we’’, ‘‘one’’, walk’’. In different languages, Swadesh lists reflect the same basic concepts. In (Piantadosi, 2014), frequency-rank
curves of Swadesh lists from different languages are examined. In this experiment, ranks of words pointing to the same concepts
across different languages are fixed. Acquired patterns are highly similar to each other, and every language sample shows a Zipfian
11
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Table 2
Correlation scores. Variance vs. frequency for both bimodal and sense-controlled corpora. WordNet number of senses vs. frequency
from Casas et al. (2019).

Pearson Spearman Kendall

𝑟 𝑝-value 𝜌 𝑝-value 𝜏 𝑝-value

Variance (bimodal) 0.083 <10−323 0.828 <10−323 0.647 <10−323

Variance (sense-controlled) 0.042 <10−94 0.861 <10−323 0.677 <10−323

Number of senses 0.068 <10−323 0.422 <10−323 0.307 <10−323

Fig. 8. Two dimensional histogram of average variances for the ‘‘Swadesh’’ list.

pattern. Likewise, we also investigated the behavior of variances of words in the Swadesh list. Results are given in Fig. 8, where
the weighted average of variances is used. Indeed, like the original Zipfian patterns of Swadesh list given in (Piantadosi, 2014),
variances of Swadesh words display similar linearity in the logarithmic scale.

Another interesting subset that can be studied to strengthen our analysis is the number words, e.g., ‘‘one’’, ‘‘two’’, ‘‘ten’’, ‘‘twenty’’.
In this experiment, word ranks of number words are not used. Instead, words are ordered by their cardinality. One critical remark
is that decades (e.g., ‘‘ten’’, ‘‘twenty’’) are not included in this experiment since their frequencies are exceedingly higher than the
common usage of any arbitrary number. Although word ranks based on word frequencies are not used, a near-Zipfian distribution
can still be observed in results reported by Piantadosi (2014). We extend this experiment to variance analysis with our proposed
methodology. As can be seen in Fig. 9, the linear pattern of the Zipfian regularity is present in the log–log plot. One drawback of
this experiment is that there are not so many numbers consisting of a single word. However, available words are still sufficient to
observe the pattern.

5.4. Experiments with different frequency thresholds

Threshold for the minimum word frequency count in determining the vocabulary is an important hyperparameter. Especially in
our experiments, frequencies of words play the central role in Zipfian regularities. In the original model of the multimodal Gaussian
embeddings that we deployed, the frequency threshold was chosen as 100. We used this value in our experiments. However, to
observe the behavior of word variances under different thresholds, we also performed experiments with two additional threshold
parameters, 50 and 200. Fig. 10, 11 demonstrate that the Zipfian patterns of word variances. Although the relative frequencies of
words change due to threshold selection, Zipfian patterns are preserved for both models. In particular, after thresholding with 50
and 200, the difference between vocabulary sizes of two corpora is approximately 200,000. Nevertheless, Zipfian regularities are
clearly observed in both models. These results further validate the consistency of the relation between word frequencies and word
variances.

5.5. Results on the Turkish Corpus

To enrich our demonstration of Zipfian regularities with another language not belonging to the Indo-European language family,
we study Turkish, which is a member of the Altaic language family. We compiled Turkish corpus from the Turkish Wikipedia. The
same experiments were repeated with the same pre-processing procedures. All non-alphanumeric characters and stop words were
removed. Since Turkish is an agglutinative language, several words can be derived from the same stem. Therefore, we also applied
12
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Fig. 9. Two dimensional histogram of average variances of ‘‘number words’’.

Fig. 10. Average variances of Gaussian embeddings (frequency threshold = 50).

Fig. 11. Average variances of Gaussian embeddings (frequency threshold = 200).
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Fig. 12. Average variances of Gaussian embeddings for Turkish corpus.

Table 3
Variance vs. frequency correlations for Turkish Corpus.

Pearson Spearman Kendall

𝑟 𝑝-value 𝜌 𝑝-value 𝜏 𝑝-value

Variance vs Frequency 0.518 <10−323 0.535 <10−323 0.383 <10−323

Table 4
Precision, Recall and F1 scores of the entailment test on BBDS dataset.
BBDS Baseline w2gm (KL) BSG (Cos) Proposed

Precision 0.671 0.742 0.662 0.696
Recall 0.887 0.815 0.891 0.891
F1 0.764 0.776 0.759 0.781

Table 5
Precision, Recall and F1 scores of the entailment test on BLESS dataset.
BLESS Baseline w2gm (Cos) BSG (Cos) Proposed

Precision 0.131 0.545 0.124 0.135
Recall 0.618 0.134 0.647 0.546
F1 0.216 0.204 0.208 0.217

stemming to Turkish corpus.2 In total, the Turkish corpus includes 271,317,649 tokens. Since this corpus is relatively smaller than
the English Wikipedia corpus, the frequency threshold was determined as 20. The size of the vocabulary with this threshold is
around 38,000. The results are presented in Fig. 12 where Zipfian pattern is clearly seen. This experiment provides further evidence
that the Zipfian patterns can be observed across different languages and also in relatively smaller corpora (see also Table 3).

5.6. Entailment

For entailment tests, two datasets are utilized: BBDS (Baroni et al., 2012) and BLESS (Baroni & Lenci, 2011) as given
in (Bražinskas et al., 2018). Word2vec embeddings are used to calculate the cosine similarity between words, (Mikolov, Sutskever
et al., 2013). After calculating overall scores based on the baseline and our proposed method, the threshold that results in the best F1
score is obtained. Parameter 𝑘 in Eq. (9) is set to 20 and 40 for BBDS and BLESS datasets, respectively. Results from the baseline cosine
similarity, the multimodal Gaussian (w2gm) (Athiwaratkun & Wilson, 2017), the Bayesian Skip-gram distribution (BSG) (Bražinskas
et al., 2018), and the proposed Zipfian-frequency-injected cosine similarity methods are all tabulated in Tables 4 and 5. For w2gm
and BSG, the results of the highest-performing implementation (with KL-divergence or cosine similarity) are presented.

As can be observed from Tables 4 and 5, our proposed method offers improvements over both datasets. The entailment pairs
of BLESS are more detailed compared to BBDS. Therefore, extracting the correct entailment relations from BLESS is a harder task.

2 www.cmpe.boun.edu.tr/tr/content/boun-nlp-morphological-analysis-system-turkish.
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Additionally, the number of positive pairs and the number of negative pairs on BBDS are equal. In contrast, the ratio of the numbers
of positive and negative pairs is about 0.10 in BLESS. This is why it is more difficult to discriminate positive and negative samples
from each other in BLESS compared to BBDS. By this experiment, we showed that capturing entailment relations can be improved
by using frequency. Utilizing frequency may not be successful in all scores metrics and sometimes yields mixed results. However,
the presented method displays a better trade-off between precision and recall to get higher F1 scores. Due to the difficulty of the
BLESS dataset, this improvement can be small compared to other BBDS dataset. Capturing entailment relations is still a challenging
and unsolved problem. The main purpose of this experiment is to show the potential of using frequency regularities to reinforce the
methods in the literature, not to present state-of-the-art results.

6. Discussion of results and implications

As a result of a trade off between the sender and the receiver in language, which is named ‘‘the principle of least effort’’, words
ith both broad and narrow meanings emerged, (Zipf, 1949). In (Ferrer-i-Cancho, 2005a, 2005c; Ferrer-i-Cancho & Solé, 2003), the

ompromise between sender and receiver is studied quantitatively. It is shown that Zipf’s law should not be considered as a null
ypothesis of a language feature. There is a plausible motivation to study the existence of a relation between semantic breadth of
ords and word frequency rank. Our contribution comprises the first exhibition of Zipfian patterns between generality and specificity
f words and their frequency ranks when polysemy is controlled. We also employ the Gaussian embedding models to study Zipfian
tatistics, where the variance of Gaussian embeddings is used as a measure for semantic uncertainty of words.

Needless to say, mathematical and quantitative modeling of semantic breadth by variances of ‘‘non-point’’ word embeddings is not
s straightforward as simply counting word frequencies within a corpus. Language and word meaning are very flexible concepts, and
uantization of meaning may not reflect all aspects of word sense. Thus, ripples in variance values between adjacent words in rank
rder lists are expected to arise. However, ripples do not constitute a hindrance to apprehend the general Zipfian regularity occurring
etween word variances and word frequencies. Furthermore, frequency information helps determine entailment relations between
ords. Assuming that hypernym words have larger frequencies compared to hyponym words, existence of a Zipfian regularity in

he semantic breadth of words can be leveraged to enhance baseline methods used to the detect entailment.
Hierarchical relations between concepts can be compelling to some information retrieval tasks. Particularly, information content

ased studies adopt hierarchical relations. For example, there are studies working on semantic similarities between Wikipedia
oncepts by using hyponym and hypernym links of categories (Hussain et al., 2020; Jiang et al., 2017, 2015). Therefore, our findings
f a fundamental empirical regularity of words and improvements in the detection of entailment, are natural candidates for being
ools that may be utilized in information science.

The main results of our paper are the presented Zipfian regularity between the semantic breadth and frequency ranks and the
tilization of Gaussian embeddings in a quantitative study of Zipfian statistics and computational semantics. Gaussian embeddings
re tools capable of modeling semantics and semantic uncertainty simultaneously. We believe that these findings can also generate
ew ideas and research directions in computational linguistics as well as several possible utilizations of the presented Zipfian
egularity in NLP, information science and computer science applications.

. Conclusion & future work

We studied the relation between the uncertainty of words and word frequencies by using ‘‘non-point’’ Gaussian embeddings,
hich are capable of modeling semantics along with semantic uncertainty of words. Gaussian embeddings can handle polysemy as
ell by assigning different Gaussian modes to different senses. Our quantitative study and experiments showed that variances (or
ncertainty) of word embeddings possess a close connection with word frequency ranks, and there are Zipfian regularities in non-
oint word representations modeling the semantic breadth of words. We performed experiments where the polysemy is eliminated
nd showed that the variances of Gaussian embeddings only measure the semantic extents of words irrespective of the effects of
olysemy. We also showed that our results are valid for different languages and valid for special vocabularies such as Swadesh list
nd number words.

Our computational study revealed the existence of new Zipfian patterns: more frequent words tend to be generic while less
requent ones tend to be specific. Our contributions are complementary to Zipf’s law of meaning distribution and the related
eaning-frequency law. Uncovering such a Zipfian regularity present in the semantic breadth of words is essential in linguistic

tudies, information retrieval, and common NLP tasks. Our results related to the uncertainty of words and the usage of Gaussian
mbeddings can also be very helpful for further quantitative studies of various semantic properties of words.

To leverage our results, we also presented a method where an immediate utilization of Zipfian regularities in the semantic
readth of words is leveraged. Zipfian regularities are merged with baseline methods to improve the performance of practical word
ntailment tests, which are important for several NLP and information retrieval tasks.

As a future work, diachronic changes of variances can be examined by using corpora compiled from text samples belonging to
ifferent time periods. Hamilton et al. (2016) examine words in a diachronic framework and study how meaning and embeddings
n vector spaces change over time. The evolution of language over time in the probabilistic framework is studied as well, (Bamler

Mandt, 2017; Rudolph & Blei, 2018). ‘‘Non-point’’ word embeddings can open up new research directions for diachronic analysis
15

ince they can model the dynamic semantic structures of words that may enlarge or shrink through time.
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