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a b s t r a c t 

In this study, we consider an airport gate assignment problem that assigns a set of aircraft to a set of 

gates. The aircraft that cannot be assigned to any gate are directed to an apron. We aim to make aircraft- 

gate assignments so as to minimize the number of aircraft assigned to apron and among the apron usage 

minimizing solutions, we aim to minimize total walking distance travelled by all passengers. The problem 

is formulated as a mixed-integer nonlinear programming model and then it is linearized. A branch and 

bound algorithm, beam search and filtered beam search algorithms that employ powerful lower and up- 

per bounding mechanisms are developed. The results of the computational experiment have shown the 

satisfactory performance of the algorithms. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Assignment problem deals with allocating a particular set of 

asks, activities or people to a set of resources so as to maximize 

he utility of allocation or minimize its cost. Allocation of tasks to 

eople at workplaces, allocation of vehicles to service areas, alloca- 

ion of financial resources to government agencies (capital budget- 

ng and planning) are some notable assignment problems encoun- 

ered in real-life [31] . 

One application area in which assignment problems are of great 

elevance is airline operational planning. It is a very important as 

uch complex area, where the managers and operation planners 

ely on assignment problems like crew, fleet and gate assignments 

o find efficient and effective ways to handle airline operations [4] . 

We study the airport gate assignment problem (AGAP) that con- 

iders the allocation of the aircraft, with pre-specified arrival and 

eparture times to the gates in airports. 

Due to its practical importance, several variants of the AGAP 

ave been considered in the literature. The variants differ with re- 

pect to the objectives, constraints and preferences, which are de- 

ermined based on the characteristics of the specific setting. 

Major airports have fixed gates, which allow passengers to 

oard into the aircraft using a jet bridge and an apron that is used 
✩ Area: Optimization; Health Care Systems and Applications. This manuscript was 
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hen the fixed gates are not sufficient. The passengers reach the 

pron by bus or by walking longer distances and then climb to the 

ircraft using steep stairs. The fixed gates are usually more conve- 

ient for the passengers; hence they are preferred over the apron. 

There are two types of passengers: transfer passengers and 

on-transfer passengers. Transfer passengers are those who arrive 

t the airport by a flight and depart on another flight. Non-transfer 

assengers are those who either arrive at the airport from the city 

nd depart with a flight or arrive at the airport by a flight and 

eave the airport afterwards. 

The airports can be categorized based on the type of flights 

hat they serve. In Turkey, some airports are only available for 

omestic flights, whereas airports in larger cities and touristic ar- 

as are “international airports”, serving international flights as well 

s domestic flights. In airports with both domestic and interna- 

ional flights, the international and domestic terminals are sepa- 

ated due to their different control procedures (passport/identity 

heck). Some metropolitan airports allow towing, i.e., transporta- 

ion of the aircraft from one place to another in the airport us- 

ng specialized ground vehicles. In such airports, the aircraft can 

hange from its pre-assigned gate to another when necessary. 

The air transportation traffic has been roughly doubled from 

he early 1980s to 2006 [14] and according to International Air 

ransport Association [20] , average yearly increase in the number 

f airline passengers is 5.85% between the years 2006 and 2017. As 

he air traffic grows and operational environment changes through- 

ut the years, needs of airport operators and airline companies 

ave evolved. Thus, many different objectives have been consid- 
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red in the AGAP. The most widely-considered ones are minimiz- 

ng the number of un-gated (unassigned) aircraft, maximizing pref- 

rences/utility of assigning certain aircraft to specific gates (util- 

ty can be, for example, a function of profitability of shops), mini- 

izing total passenger walking distance, minimizing the deviation 

rom the original/reference schedule [42] and minimizing towing 

osts [14] . 

There are also studies that consider minimizing other metrics 

uch as gate idle time, waiting time, total connection time, bag- 

age transport distance, total duration of ungated flights, number 

f conflicts, and buffer times [2] . 

Metropolitan airports are usually located in large areas, so it 

ay take a significant amount of time and effort for a passenger 

o travel within the airport. Therefore, minimizing total passenger 

alking distance is the most considered objective [2] . Total passen- 

er walking distance includes the distances between the gates in- 

luding the apron (for transfer passengers), between the gates and 

irport entrance and airport exit (for non-transfer passengers) and 

rom the gates to the common areas such as luggage claim area 

for all passengers). Minimizing total passenger distance traveled 

s a passenger oriented concern that would be achieved by proper 

ssignment of the aircraft to the gates and apron. 

Our objective is to minimize the total passenger distance trav- 

led subject to the minimum number of aircraft assigned to the 

pron. In that sense, we consider a lexicographic approach for a 

icriteria optimization problem, where the criteria are apron us- 

ge and passenger walking distance. Minimizing the number of 

ircraft assigned to an apron is an important managerial concern 

hose reduction contributes to the proper organization of the 

irline operations and reduces the walking distances of the pas- 

engers. We formulate the problem as a nonlinear mathematical 

odel and provide its linearized version. We design a branch-and- 

ound algorithm and beam and filtered beam search algorithms 

long with powerful bounding schemes. The computational runs 

re performed using the layouts of Esenbo ̆ga and Atatürk Airports. 

o the best of our knowledge we are proposing the first implicit 

numeration algorithm for the hierarchical AGAP where the pri- 

ary and secondary objectives are the number of aircraft assigned 

o apron and the total passenger walking distance, respectively. 

In Section 2 , we provide a review of the related literature and 

larify our contribution. We give the mathematical models of the 

GAP, and give linear programs that return the minimum number 

f aircraft assigned to apron, in Sections 3 and 4 , respectively. In 

ection 5 , we explain our Branch and Bound, Beam Search and Fil- 

ered Beam Search algorithms. In Section 6 , we report the results 

f our computational experiment. Section 7 concludes the paper 

nd discusses some future research directions. 

. Literature review 

The airport gate assignment problem (AGAP) is a widely stud- 

ed problem in the operational research literature attributed to its 

ractical importance (see [34] for an early work). Detailed surveys 

re due to Dorndorf et al. [14] and Da ̧s et al. [11] . 

One can classify the AGAP variants into two categories with re- 

pect to formulation: static AGAP and stochastic & robust AGAP 

 9 , 28 ]. In the static AGAP, a deterministic model is formulated, 

ypically with the objectives of minimizing waiting time, ungated 

ights or total walking distance. Stochastic and robust AGAP are 

ormulated considering some stochastic aspects like flight delays 

nd disruptions. Commonly used objectives in the stochastic AGAP 

re minimizing the idle time, gate conflicts and flight delays. 

Another classification of the AGAP studies is made with respect 

o the solution methodology [9] . The solution methodologies are 

ategorized into three: expert system approaches, exact solution 

pproaches and heuristic approaches. 
2 
Expert systems can be defined as software systems that aim to 

imulate the decision-making process of human experts. The rules 

btained from human knowledge are given to the software for sug- 

esting solutions. Some studies that propose expert systems for 

olving the AGAP are Brazile & Swigger [7] , Gosling [17] , Srihari 

 Muthukrishnan [33] and Su & Srihari [35] . 

Attributed to our main focus, we emphasize the AGAP studies 

n exact methods. 

One of the earliest studies is due to Babi ́c et al. [3] where the

verage walking distance covered by the arriving and departing 

assengers is minimized. They assumed that there are no trans- 

er passengers and in the flight schedule one airplane could always 

e assigned to an unoccupied gate. They proposed a branch-and- 

ound algorithm along with a lower bound that underestimates 

he total walking distance of the upcoming passengers. 

Bihr [5] assumed fixed departure gates and formulated an as- 

ignment model to assign arriving flights to gates so as to mini- 

ize the total walking distance of the passengers. 

Mangoubi & Mathaisel [24] proposed a greedy heuristic and an 

P relaxation for the total walking distance minimizing AGAP. They 

ssumed that a passenger arriving at a gate would be equally likely 

o board his next flight at any gate; hence used expected walk- 

ng distances through a uniform distribution for transfer passen- 

ers, which simplifies the problem. They used real time data from 

oronto International Airport (with 138 aircraft and 20 gates) to 

ssess the performance of their solution approaches. 

Bolat [6] proposed a branch-and-bound algorithm and a heuris- 

ic called branch-and-trim for solving the robust AGAP so as to 

inimize the difference between the minimum and maximum 

lack times. Their computational studies performed using data 

rom Riyadh International Airport showed that the branch-and- 

rim heuristic significantly outperforms the currently used proce- 

ure in the number of ungated aircraft and towing operations. 

Yu et al. [40] focused on the robustness issue and proposed 

athematical models for the robust AGAP. Their objectives were 

inimizing the expected conflict time between schedules (for ro- 

ustness), minimizing towing costs and minimizing the total dis- 

ance traveled by transfer passengers. They developed three math- 

matical models: a network flow model with a quadratic objective 

unction and two mixed integer programming (MIP) models with 

inearized objective functions. They also proposed heuristics and 

ompared their performance relative to the CPLEX branch-and-cut 

cheme. Their experimental results showed that one MIP model is 

ar superior to the network flow model with quadratic objective. 

hey also showed that exact quadratic expressions are clearly bet- 

er than approximate ones that use the average distance assuming 

 uniform distribution for the experience of transfer passengers. 

Attributing to the complexity of the problem, heuristic ap- 

roaches are more commonly studied than exact algorithms. Some 

xample works proposing various heuristic and meta-heuristic ap- 

roaches for the variants of the AGAP are Haghani & Chen [18] , 

an & Huo [38] , Yan et al. [39] , Xu & Bailey [37] , Ding et al. [13] ,

heng et al. [9] , Genç et al. [16] , Ş eker & Noyan [32] , Marinelli et al.

25] , Aktel et al. [2] , Kim et al. [23] , Hu & Di Paolo [19] , Mokhta-

imousavi et al. [26] , Deng et al. [12] , Da ̧s [10] , Yu et al. [41] and

iang et al. [22] . 

Mangoubi & Mathaisel [24] minimized the passenger walk- 

ng distance and assumed that a transfer passenger arriving at a 

ate would be equally likely to board his next flight at any gate. 

ence they took expected walking distances of the transfer pas- 

engers from uniform distribution, which simplifies the problem. 

e formulate the minimum total walking distance problem as a 

uadratic assignment model with overlap and minimum apron as- 

ignment constraints; then linearize the quadratic term and pro- 

ose a mixed integer linear programming formulation (see Pentico 

31] and Loiola et al. [43] for reviews on assignment problems and 
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uadratic assignment problems, respectively. See also Bouras et al. 

44] , and the references therein, for quadratic programming formu- 

ations). 

Other studies that formulate the AGAP as a quadratic assign- 

ent problem are Haghani & Chen [18] , Jalalian et al. [21] and 

rexl & Nikulin [45] . Haghani & Chen [18] minimized total pas- 

enger walking distance and formulated a quadratic assignment 

roblem. They then proposed an integer linear programming re- 

ormulation and developed a heuristic algorithm. Jalalian et al. 

21] and Drexl & Nikulin (2008) considered multi-objective formu- 

ations and suggested simulated annealing to find an approximate 

areto set. Jalalian et al. [21] considered CO2 emissions, cruise 

ight time and passenger walking distances as objectives whereas 

rexl & Nikulin [45] considered total passenger walking distances, 

ate preferences and number of ungated flights as objectives. An- 

ther multi objective gate assignment study is due to Chao et al. 

8] who considered carbon emissions for airports and carbon emis- 

ion costs for airlines. We study a hierarchical AGAP where the pri- 

ary and secondary objectives are minimizing the number of air- 

raft assigned to apron and the total passenger walking distance, 

espectively. We propose a branch and bound algorithm for exact 

olutions as well as beam search and filtered beam search algo- 

ithms for heuristic solutions. 

. Problem definition 

We study an AGAP where aircraft have to be assigned to fixed 

ates and an apron. The aircraft are either associated to the domes- 

ic flights or international ones. There are fixed gates in domestic 

nd international terminals. There is only one apron in the airport 

hat serves both terminals. The apron is far from all other gates 

nd the airport exit. 

Once the aircraft arrives at the airport at the arrival time, its 

ssigned gate is empty and it occupies the gate till its depar- 

ure time. Each aircraft has a specified set of passengers, who 

re either transfer passengers departing from/arriving for other 

ircraft or non-transfer passengers that enter to and exit from 

he airport using the same point. The passengers may include 

he crew, cargo/flight shipping and maintenance workers, cater- 

ng/provisioning employees who transfer to other aircraft or en- 

er/exit from the airport. 

Our primary aim is to minimize the number of aircraft assigned 

o apron. Among the solutions with minimum apron usage we aim 

o minimize the total walking distance by all passengers, which 

an be expressed as the sum of distances covered by non-transfer 

assengers (from entrance to the gate through security check and 

rom gate to exit through baggage hall) and transfer passengers 

from gate to gate via transit counters). In small airports, passen- 

er walking is convenient; hence the passenger walking distances 

re the actual walking distances. However in medium and large 

irports, the passengers may not be allowed to walk for long dis- 

ances, hence walking may mean being transported by bus, which 

ay be more convenient to reach fixed gates and apron. The pro- 

osed model is still valid as the walking distance used may corre- 

pond to the distance covered by other means. 

We show that the minimum number of aircraft to be assigned 

o apron is found via maximum cost network flow models that are 

xplained in Section 4 . We discourage apron assignments by im- 

osing minimum number of aircraft assigned to apron as a con- 

traint. 

We assume that all parameters are known and not subject to 

ny change, i.e., the system is deterministic and static. 

The sets and parameters related to the aircraft are as follows: 

I : set of all domestic aircraft; | I | : number of domestic aircraft 
D D 

3 
I I : set of all international aircraft; | I I | : number of international 

aircraft 

I: set of all aircraft = I D ∪ I I 
n : number of the aircraft (i.e., the cardinality of the set I, | I|) 

p i j : number of transfer passengers between aircraft i and air- 

craft j ( ∀ i , ∀ j∈ I) 

e i : number of passengers coming from the entrance for aircraft 

i ( ∀ i ∈ I) 

f i : number of passengers leaving the airport from the exit after 

aircraft i arrives ( ∀ i ∈ I) 

a i : arrival time of aircraft i ( ∀ i ∈ I) 

d i : departure time of aircraft i ( d i > a i ) ( ∀ i ∈ I) 

Aircraft i stays in the airport in interval [ a i , d i ] . During that 

nterval the boarding/ unboarding of the passengers and crew, 

oading/unloading of the baggages, cargo, catering materials; some 

reparation tasks like cleaning, fueling and maintenance are per- 

ormed. 

{ a d 1 , a d 2 , …, a d R }: set of distinct a i and d i values in chrono-

ogical order, i.e., a d 1 < a d 2 < … < a d R , where R is the number of

istinct a i and d i values. 

om p ir = 

{ 

1 , if airc raft i is in the airp ort 
at inte rval [ ad r , ad r+1 ) 

0 , othe rwise 
∀ i ∈ I, r ∈ { 1 , ..., R − 1 }

 ( i ) : 

{
D, i f aircra f t i is domestic 
I, i f aircra f t i is international 

∀ i ∈ I 

NA 

∗ : minimum number of aircraft assigned to apron (Found as 

xplained in Section 4 ) 

The sets and parameters related to gates are as follows: 

K D : set of all gates (fixed gates + apron) at the domestic termi- 

nal 

K I : set of all gates (fixed gates + apron) at the international 

terminal 

K : set of all gates = K D ∪ K I 

m : number of all fixed gates; m : | K| - 1, gate m + 1 is the apron 

d kl : distance between gates k and l ( ∀ k , l∈ K) 

e d k : distance between gate k and airport entrance/exit point ( ∀ k 

∈ K) 

Without loss of generality, e d k may be defined as distance be- 

ween gate k and the baggage claim area + distance between the 

aggage claim area and the entrance/exit point 

The decision variable is as follows: 

 ik = 

{ 

1 , if airc raft i is assi gned to gate k ∀ ( i, k ) ∈ ( I D , K D ) and ( I I , K I ) 
0 , othe rwise 

The nonlinear objective function is stated below: 

in 

n −1 ∑ 

i =1 

∑ 

k ∈ K g(i ) 

n ∑ 

j= i +1 

∑ 

l∈ K g( j) 

p ij d kl x ik x jl + 

∑ 

i ∈ I D 

∑ 

k ∈ K D 
( e i + f i ) ed k x ik 

+ 

∑ 

i ∈ I I 

∑ 

k ∈ K I 
( e i + f i ) ed k x ik (O1) 

The first term is the total distance covered by the transfer pas- 

engers that relies on two assignment decisions, making the func- 

ion nonlinear. The second term is the total distance covered by 

he non-transfer passengers. The constraint sets are as follows: ∑ 

 ∈ K D 
x ik = 1 ∀ i ∈ I D (1) 

 

 ∈ K I 
x ik = 1 ∀ i ∈ I I (2) 

n 
 

i =1 

com p ir x ik ≤ 1 ∀ k ∈ ( K\ { ( m + 1 ) } ) , r = 1 , . . . , R − 1 (3)
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i ∈ I 
x im +1 = NA 

∗ (4) 

 ik ∈ { 0 , 1 } ∀ ( i, k ) ∈ ( I D , K D ) and ( I I , K I ) (5) 

Constraint sets (1) and (2) assign each aircraft to exactly one 

ate in its respective terminal. Constraint set (3) guarantees that 

here are no overlapping aircraft in any fixed gate. Two aircraft 

re said overlapping if the time intervals they spent in the airport 

verlap. The minimum number of aircraft assigned to apron is de- 

ned in Constraint (4). Constraint set (5) ensures that all decision 

ariables are binary. 

We now discuss the linearization of the objective function ex- 

ressed in (O1). In doing so, we introduce a new decision variable 

s: 

 ijkl = 

{
1 , if x ik and x jl are both equal to 1 

0 , otherwise ∀ ( i, k ) and ( j > i, l ) ∈ ( I D , K D ) and ( I I , K I )

We introduce the following constraint sets. 

 ijkl ≥ x ik + x jl − 1 ∀ ( i, k ) and ( j > i, l ) ∈ ( I D , K D ) and ( I I , K I ) 

(6) 

 ijkl ≥ 0 ∀ ( i, k ) and ( j > i, l ) ∈ ( I D , K D ) and ( I I , K I ) (7) 

Note that at an optimal solution y i jkl variables take value 1 

nly when both x ik and x jl are 1, as they are penalized with posi- 

ive coefficients in the following linearized objective function: 

in 

n −1 ∑ 

i =1 

∑ 

k ∈ K g ( i ) 

n ∑ 

j= i +1 

∑ 

l∈ K g ( j ) 
p i j d kl y i jkl + 

∑ 

i ∈ I D 

∑ 

k ∈ K D 
( e i + f i ) e d k x ik 

+ 

∑ 

i ∈ I I 

∑ 

k ∈ K I 
( e i + f i ) e d k x ik (02) 

The compact forms of the models are as stated: 

Nonlinear AGAP Model: Min O1 subject to constraint sets (1) through (5) 

Linear AGAP Model: Min O2 subject to constraint sets (1) through (7) 

. Finding the minimum number of aircraft assigned to apron 

In this section we present the models that find minimum num- 

er of aircraft assigned to apron, thereby maximum number of air- 

raft assigned to fixed gates. We let NA 

∗
D and NA 

∗
I be the maximum 

umber of aircraft assigned to domestic gates and international 

ates, respectively. The minimum number of aircraft assigned to 

pron, NA 

∗is n - NA 

∗
D - NA 

∗
I . NA 

∗
D and NA 

∗
I can be found indepen-

ently, as domestic and international aircraft are served in differ- 

nt terminals. 

Consider a maximum cost network flow model with nodes 

epresenting the domestic aircraft and with arcs between non- 

verlapping aircraft. Fig. 1 depicts this network structure. 

The network has | I D | + 1 arcs departing from node 0, one to each

omestic aircraft and one to terminal node | I D | + 1. There are | I D | + 1

rcs arriving to node | I D | + 1, one from each domestic aircraft and

ne from the source node (node 0). There is an arc between two 

odes if the corresponding domestic aircraft do not overlap. All arc 

eights are 1. 

We send | K D |-1 units of flow from node 0 to node | I D | + 1 so as

o maximize the number of arcs visited. The maximum cost value 

rom node 0 to node | I D | + 1 gives the maximum number of domes-

ic aircraft that can be feasibly assigned to | K D | −1 gates. 

The associated mathematical model for the domestic aircraft is 

s stated below. 
4 
A D : set of arcs representing domestic aircraft on the maximum 

ost network 

 ij = 

{
1 , if arc ( i, j ) is selected 
0 , otherwise ( i, j ) ∈ A D 

ax Z D = 

∑ 

( i, j ) ∈ A D 
z i j 

∑ 

 

0 , j ) ∈ A D 
z 0 j ≤ | K D | − 1 

∑ 

i, | I D | +1) ∈ A D 
z i (| I D | +1) ≤ | K D | − 1 

∑ 

 

i, j ) ∈ A D 
z i j = 

∑ 

( j,i ) ∈ A D 
z ji i = 1 , . . . , | I D | 

∑ 

 

i, j ) ∈ A D 
z i j ≤ 1 i = 1 , . . . , | I D | 

The optimal objective function value of the model, Z ∗D , is the 

aximum number of domestic aircraft that can be assigned to all 

omestic gates and NA 

∗
D 

= | I D | - Z 
∗
D 

is the minimum number of do-

estic aircraft on the apron. 

The model for the international aircraft is the same except that 

 I D | is replaced by | I I |; | K D | is replaced by | K I |; NA 

∗
D 

is replaced by

A 

∗
I 

and A D is replaced by A I (set of arcs representing international 

ircraft). 

The total unimodularity structure of the maximum cost net- 

ork flow model implies that it can be solved in polynomial time 

y LP methods as its optimal solution and the optimal solution to 

ts LP relaxation are identical (see [29] ). This follows NA 

∗
D 

and NA 

∗
I 
,

hereby NA 

∗, can be found in polynomial time. 

. Branch-and-bound, beam search and filtered beam search 

lgorithms 

The airport gate assignment problem is shown to be strongly 

P-hard [30] . Hence, to find exact solutions, one should rely on 

athematical models or implicit enumeration techniques like a 

ranch and Bound (B&B) algorithm. We propose a B&B algorithm 

or the exact solutions of medium sized instances that could not be 

olved by our mathematical model. We also propose Beam Search 

BS) and Filtered Beam Search (FBS) algorithms for the heuristic 

olutions of the large sized instances. 

BS and FBS algorithms are curtailed B&B algorithms that eval- 

ate a subset of all partial solutions. As some nodes are not eval- 

ated, the solutions are usually obtained quickly however with no 

uarantee of optimality. We refer the reader to Morton and Pentico 

27] for the details of the BS and FBS algorithms and their gener- 

lizations. 

We index the domestic (international) gates except apron in 

on-decreasing order of their distance to the airport entrance & 

xit point. Accordingly, gate 1 (| K 

D 
|) is the closest domestic (in- 

ernational) gate and gate m + 1, i.e., apron, is the farthest gate, to 

he airport entrance & exit point. The aircraft are indexed by their 

on-increasing order of arrival times to the airport. 

The B&B tree has at most n levels and each level has at most 

 + 1 nodes. Level i of the tree represents the assignment of air- 

raft i . Node k at level i is for the assignment of aircraft i to gate k .

he nodes representing the infeasible assignments are not created. 

he B&B algorithm employs a depth-first strategy. At any level, 

t selects the node with the smallest lower bound on the total 

eighted walking distance value and proceeds to the succeeding 

evels. If all nodes at any level are evaluated or discarded we back- 

rack to previous level. We terminate whenever level 0 is reached. 
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Fig. 1. Maximum cost network flow model. 
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The BS and FBS trees have at most n levels where level i of 

he tree represents the assignment of aircraft i . The BS algorithm 

valuates the nodes by their lower bounds on the total distance 

ravelled values and selects the most attractive beam width nodes 

mong the promising ones for further branching while discarding 

he rest permanently. The FBS algorithm selects the most attrac- 

ive nodes among the promising nodes in two steps: At first, the 

lgorithm evaluates the nodes with respect to the realized walk- 

ng distances and chooses at most filter width promising nodes for 

urther evaluation, discarding the rest. The selected nodes are fur- 

her evaluated based on the lower bounds on total distance trav- 

lled; the most attractive beam width nodes are chosen for further 

ranching, while the rest are removed. 

We call a node promising if it is not discarded by our elim- 

nation rules, if it does not make more apron assignments than 

he initial upper bound and if its lower bound is smaller than the 

nitial upper bound. That is, when the initial upper bound is not 

pron feasible (does not make minimum number of apron assign- 

ents), we allow violation of constraint (4). 

We now discuss the elimination rules, lower bounds and an ini- 

ial upper bound used to evaluate the partial solutions of the B&B, 

S and FBS algorithms. 

.1. Elimination rules based on properties of feasible and optimal 

olutions 

At any partial solution, we find the set of eligible gates for each 

nassigned aircraft and determine the unassigned aircraft with no 

ligible gate other than the apron. Let: 

AA 

D 
( AA 

I 
) = the number of domestic (international) aircraft al- 

eady assigned to apron + the number of yet-to-be assigned do- 

estic (international) aircraft with no eligible gate other than the 

pron. 

The node is fathomed by feasibility if AA D >NA 

∗
D or AA I >NA 

∗
I . 

We calculate a lower bound on the number of yet-to-be- 

ssigned domestic aircraft to apron by checking the intervals de- 

ned by the chronological ordering of the arrival times. 

We let 

n t r = set of not yet assigned domestic aircraft that will be at 

the airport in interval [ ad r , ad r+1 ) 

 r = number of domestic gates not yet occupied in interval 

[ a d r , a d r+1 ) 

We start with [ a d 1 , a d 2 ) . If | In t 1 | > m 1 then at least | In t 1 | −
 1 aircraft should be assigned to apron. While checking [ a d 2 , a d 3 ) 

e consider set I n t 2 \ I n t 1 to avoid double counting of the air-

raft in In t 1 that were considered for [ a d 1 , a d 2 ) . If | I n t 2 \ I n t 1 | > 

 2 then at least | I n t 2 \ I n t 1 | − m 2 more aircraft should be assigned 

o apron. Similarly, for [ a d , a d ) we consider set | I n t \ I n t \ I n t | 
3 4 3 2 1 

5 
o avoid double counting of the aircraft in In t 1 and In t 2 that were 

onsidered in [ a d 1 , a d 3 ) . If | I n t 3 \ I n t 2 \ I n t 1 | > m 3 then at least 

 I n t 3 \ I n t 2 \ I n t 1 | − m 3 more aircraft should be assigned to apron. 

elow is the formal description of the lower bound. 

ower bound = 0 

or r = 1 to R do 

f | In t r | > m r then l ower bound = l ower bound + | In t r | − m r 

 n t t = I n t t \ I n t r t = r + 1 , r + 2 , . . . , R 

nd for 

The same method is applied to find a lower bound on number 

f yet-to-be-assigned international aircraft to apron. 

We eliminate the partial solution if the domestic (international) 

ircraft already assigned to apron + lower bound > N A 

∗
D ( N A 

∗
I ) . 

We eliminate some other nodes using the results of the proper- 

ies of optimal solutions that are stated below. 

roperty 1. If domestic (international) aircraft i overlaps with less 

han | K D |-1 domestic (| K I |-1 international) aircraft then it is not as-

igned to apron. 

roof. Assume a solution S in which domestic (international) air- 

raft i is assigned to apron. Taking domestic (international) aircraft 

 from the apron and replacing it to one of the fixed gates, is fea-

ible as there is at least one empty gate in interval [ a i, d i ] (due to

t most | K D |– 1 overlaps). Such a replacement improves the ob- 

ective function as the apron is the most distant gate to all other 

ates and exit and entrance points. Hence, a solution that assigns 

omestic (international) aircraft i to apron, cannot be optimal. 

We do not consider a node that represents the assignment of 

ircraft i (that satisfies the condition of the Property 1 ) to apron. 

roperty 2. For two domestic (international) aircraft i and j, if a i ≤
 j , d i ≤ d j , e i ≤ e j , f i ≤ f j , p ik ≤ p jk for all k � = i, j, then aircraft i is

ssigned to apron only when aircraft j is assigned to apron. 

roof. Assume a solution S in which domestic (international) air- 

raft i, but not domestic (international) aircraft j, is assigned to 

pron. Replacing the gates of domestic (international) aircraft i and 

omestic (international) aircraft j is feasible as a i ≤ a j and d i ≤ d j . 

uch a replacement improves the objective function as e i ≤ e j , f i ≤
f j , p ik ≤ p jk for all k � = i, j and apron is the most distant gate to

ll other gates and exit and entrance points. Hence, a solution that 

ssigns domestic (international) aircraft i , but not domestic (inter- 

ational) aircraft j, to apron cannot be optimal. 

We use Property 2 as follows. Consider two domestic (interna- 

ional) aircraft i and j that satisfy the condition of Property 2 , if

omestic (international) aircraft i is assigned to apron then for do- 

estic (international) aircraft j only apron should be considered. 
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Fig. 2. Generalized network of domestic non-transfer passengers. 
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.2. Lower bounds 

For each partial solution, two lower bounds are calculated: one 

or non-transfer passengers and one for transfer passengers. 

Non-Transfer Passengers Walking Distance Lower Bound: The 

istance to be covered by all non-transfer passengers is the num- 

er of non-transfer passengers of aircraft i times the distance be- 

ween the gate of aircraft i and the airport entrance & exit point. 

he distance of the gate of aircraft i is a decision that could be un-

erestimated by the distance of gate 1 to entrance & exit point as 

ate 1 is the closest gate due to our indexing. At any node s , let

A be the set of unassigned aircraft. A valid lower bound is; ∑ 

 ∈ UA 

nt i ed 1 

here, 

n t i : number of non-transfer passengers in aircraft i = e i + f i ( ∀ i ∈
). 

This lower bound is improved by the maximum number of do- 

estic (international) non-transfer passengers that can be assigned 

o a domestic (international) gate. This number is found through a 

ongest path algorithm on a network with nodes representing the 

ircraft and with arcs between non-overlapping aircraft. 

We explain the lower bound calculations for domestic non- 

ransfer passengers ( L B NT D ) . For international ones, we perform the 

ame type of calculations. Let U A D be the set of all unassigned do- 

estic aircraft. 

The arc weights in the network represent the number of non- 

ransfer passengers where n t i is the weight of the arc from air- 

raft i ∈ U A D to aircraft j ∈ U A D . Fig. 2 depicts the longest path

etwork for any domestic gate. 

The above network has | U A D | + 1 arcs departing from node 0, 

ne to each (unassigned) aircraft and one to terminal node | U A D | + 

 . There are | U A D | + 1 arcs arriving to node ( | U A D | + 1 ), each from

ne aircraft and one from the source node (node 0). The longest 

ath between node 0 and node ( | U A D | + 1) gives the maximum

umber of passengers that can be feasibly assigned (without any 

verlaps) to any one of the gates. 

The length of the longest path L D gives the maximum number 

f domestic non-transfer passengers (whose aircraft is not assigned 

o a gate yet) that can be served by one gate. 

To find L D we solve the longest path problem using the reaching 

lgorithm (see [1] ) proposed for acyclic networks. 

After L D is found we let m 

∗ : m 

∗L D ≤
∑ 

i ∈ U A D 
n t i and ( m 

∗ + 1) L D > ∑ 

 ∈ U A D 
n t i . 

As each gate can serve at most L D non-transfer passengers, 

here should be at least m 

∗ gates, to serve all non-transfer passen- 

ers. To guarantee a lower bound on the total walking distance of 

hose passengers, we take the first m 

∗ domestic gates, hence the 

losest gates to the entrance & exit point. Starting from the first 

ate, L passengers are matched with each of the ( m 

∗ − 1) domes- 
D 

6 
ic gates and the remaining non-transfer passengers are assigned 

o domestic gate m 

∗ . This provides the following lower bound for 

he total walking distance of non-transfer domestic passengers. 

 B NT D = 

m 

∗−1 ∑ 

k =1 

L D e d k + 

( ∑ 

i ∈ U A D 
n t i − ( m 

∗ − 1 ) L D 

) 

e d m 

∗

Recall that A A D = the number of domestic aircraft already as- 

igned to apron + the number of yet-to-be assigned domestic air- 

raft with no eligible gate other than the apron. 

Max { 0 , NA 

∗
D 

− A A D } is the number of domestic aircraft that 

hould be added to apron. This additional assignment produces 

 minimum walking distance of (e d m +1 − e d m 

∗ ) per non-transfer 

assenger and there are at least 
NA ∗

D 
−A A D ∑ 

i =1 

n t [ i ] ([i] is the index for 

he ith smallest n t i value among the not-yet-assigned domestic air- 

raft) non-transfer domestic passengers. Hence to strengthen L B NT D 

he following term is added, if NA 

∗
D 

> A A D : 

A ∗D −A A D ∑ 

i =1 

n t [ i ] (e d m +1 − e d m 

∗ ) . 

L B NT I (International part) is calculated and strengthened simi- 

arly. 

L B NT is found for domestic and international aircraft separately 

nd their sum is taken. 

The realized walking distance is R C NT = 

s ∑ 

i =1 

∑ 

k ∈ K g(i ) 

n t i e d k x ik 

The overall lower bound for non-transfer passengers walking 

istance is L B NT + R C NT 

Transfer Passengers Walking Distance Lower Bound 1 (LB T 1 ) : At 

ny level of the branch-and-bound tree, LB T 1 is calculated, con- 

idering the assigned and not-yet-assigned aircraft. For level s ∈ I, 

hree cases exist: 

Case 1 Aircraft i, j ≤ s are both assigned. The realized travel 

istance of transfer passengers, R C T , is; 

s −1 
 

i =1 

∑ 

k ∈ K g ( i ) 

s ∑ 

j= i +1 

∑ 

l∈ K g ( j ) 
p i j d kl x ik x jl 

For other cases, we find eligible gates for each unassigned air- 

raft i . A gate is said to be eligible for aircraft i if none of its over-

apping aircraft have yet been assigned to that gate. 

We let eg(i ) be the set of eligible gates for aircraft i . At the

oot node when all the gates are empty, eg(i ) is the set of all gates

f the same type as aircraft i . Once an overlapping aircraft with 

ircraft i is assigned to gate k, eg(i ) is updated as { eg(i ) \ k }. 

Case 2 Aircraft i ≤ s, j > s , i.e., i is assigned, j is not yet as-

igned. 

Let g t i be the gate that aircraft i is assigned. Two sub-cases ex- 

st: 

Case 2.1 Aircraft i and aircraft j are non-overlapping. 
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The minimum distance is zero if aircraft i and j are of the same

ype; i.e., both are domestic or international; otherwise it is the 

inimum distance between g t i and gates of the other type. The 

ower bound on the realized weighted distance is as follows: 

B Tij = 

{ 

p ij × min 

k ∈ eg ( j) 

{
d gt i , k 

}
if i and j are of different type 

0 , othe rwise 

Case 2.2 Aircraft i and aircraft j are overlapping 

Overlapping aircraft i and aircraft j should be assigned to dif- 

erent gates. The minimum travel distance is min 

k � = g t i 
k ε eg( j) 

{ d g t i , k } . 

The lower bound on the realized weighted distance is 

 B T i j = p i j × min 

k � = g t i 
k ε eg( j) 

{ d g t i , k } . 

Case 3. Aircraft i > s, j > s , i.e., i and j are both unassigned. 

Note that Case 1 returns the realized walking distance. Cases 2 

nd 3 return lower bounds using realized and not-yet-realized as- 

ignments, respectively. Therefore, the overall lower bound L B T 1 = 

 −1 ∑ 

i =1 

n ∑ 

j= i +1 

L B T i j is the sum of Case 2 and Case 3 lower bounds. 

 B T i j = p i j × min 

k ∈ eg ( i ) 
l ∈ eg ( j ) 

{ d kl } 

We further strengthen the lower bound on the transfer passen- 

ers so as to include the movements from fixed gates to apron. In 

oing so, we first find a lower bound on the number of transfers 

o be realized to apron as follows: 

Let α= the number of aircraft at fixed gates that has transfer 

passengers to the aircraft at apron, i.e., number of transfers 

from fixed gates to apron 

LB (α) = a lower bound on the α value 

LB (α) = 

NA ∗∑ 

i =1 

( h i − i + 1) , where 

h i is the number of aircraft that aircraft i has transfer passen- 

ers with. 

We index h i values as h 1 ≤ h 2 ≤ … ≤ h n and find a lower bound 

n the number of transfer passengers for any LB (α) transfers as 

ollows: 

Let p [ t] = tth smallest p i j value over all aircraft pairs ( i and j ).
LB (α) ∑ 

t=1 

p [ t] is a lower bound on the number of transfer passen- 

gers to apron. 

P = number of transfer passengers who bear the apron distance 

so far. 

If 
LB (α) ∑ 

t=1 

p [ t] > P then at least ( 
LB (α) ∑ 

t=1 

p [ t] − P ) more passengers 

hould be assigned to apron and the following term is added to 

L B T 1 . 
 

LB ( α) ∑ 

t=1 

p [ t ] − P 

) 

× (D − ma x k,l∈ K/ { m +1 } { d kl } ) 

here D is the distance between the apron and its closest gate. 

Transfer Passengers Walking Distance Lower Bound 2 ( L B T 2 ) : 

e define another lower bound, L B T 2 , which can be used as an 

lternative to L B T 1 . 

We use the following notation. 

M D ( M I ) = the maximum number of domestic (international) 

ircraft that can be served by a domestic (international) gate in 

he set of not-yet-assigned aircraft 
7 
D O i ( I O i )= the set of not-yet-assigned domestic (international) 

ircraft overlapping with aircraft i that is kept in nonincreasing or- 

er of p ij values. 

DN O i ( IN O i ) = the set of not-yet-assigned domestic (interna- 

ional) aircraft nonoverlapping with aircraft i that is kept in nonin- 

reasing order of p ij values. 

For each aircraft i , we calculate the contribution to L B T 2 , de- 

oted as L B T i . L B T 2 is then calculated as L B T 2 = 

∑ 

i ∈ I 
L B T i . 

The following pseudo code shows the L B T i calculations for do- 

estic aircraft i when assigned to any gate in the partial solution. 

1: DD : the set of ordered distances of domestic gates from the assigned gate 

of aircraft i (including itself). 

2 : DI : the ordered distances of international gates from the assigned gate of 

aircraft i ; 

3 : L B Ti = 0 

4: next = 2, count = 0. 

5: for j ∈ D O i do 

6: LB Ti = LB Ti + p ij DD next ;
7: count ++ ; 

8: if count = M D and D D next < d m +1 then 

9: next ++ ; 

10: end if 

11: end for 

12: next = 1, count = 0. 

13: for j ∈ DN O i do 

14: L B Ti = L B Ti + p i j D D next ;
15: count ++ ; 

16: if count = M D and D D next < d m +1 then 

17: next ++ ; 

18: end if 

19: end for 

20: next = 1, count = 0. 

21: for j ∈ I O i ∪ IN O i do 

22: L B Ti = L B Ti + p i j D I next ;
23: count ++ ; 

24: if count = M I and D I next < d m +1 then 

25: next ++ ; 

26: end if 

27: end for 

For domestic aircraft i that has been assigned to a gate, we first 

onsider the not-yet-assigned domestic aircraft overlapping with 

ircraft i (D O i ) (Line 5). The aircraft in D O i cannot share the same 

ate with aircraft i , so we assign their passengers, starting from the 

losest domestic gate to the gate of aircraft i. To ensure a lower 

ound on the transfer walking distance we use a nonincreasing or- 

er of the number of the passengers. In set DD, the domestic gates 

re ordered by their distances to the gate of aircraft i , the first el-

ment being the gate itself. Hence for overlapping aircraft in set 

 O i , we start from its second element, DD 2 . This is demonstrated 

s setting the parameter next as 2 in Line 4, using DD next in Line

 and M D while making the assignments. If the number of assign- 

ents to the closest gate ( count ) exceeds M D , we consider the next 

losest domestic gate and so on (Lines 8-10). Note that if the con- 

idered distance is the apron distance ( d m + 1 ), this increase is not 

ade (See Line 8). 

For the set of not-yet-assigned domestic aircraft that do not 

verlap with aircraft i ( DN O i ), we perform the same computa- 

ions (Lines 12-19), but now considering the possibility of assign- 

ng them to the gate of aircraft i, hence setting next as 1 at Line

2 . Finally, we make the calculations for the international aircraft, 

his time considering the distances between the gate of aircraft i 

nd the set of international gates (Lines 21-27). 

For an unassigned domestic aircraft, the procedure is the same. 

he only difference is that the distance sets DD and DI are not de- 

ned for a specific gate; but correspond to the ordered sets of the 

istance levels between two domestic gates and between a domes- 

ic and an international gate, respectively. 

For any international aircraft a similar procedure is applied. 

owever, the aircraft and distance sets are changed accordingly. 
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pecifically, we replace DO i , DNO i with IO i , and INO i , and vice

ersa. M D is replaced with M I and vice versa. Finally, the distance 

et DD is replaced with II . The distance sets are determined based 

n whether the aircraft is already assigned or not, as in domestic 

ircraft case. 

We strengthen this bound in the same way as in Transfer Pas- 

engers Walking Distance Lower Bound 1. 

Now we discuss the use of our lower bounds in evaluating the 

artial solutions. 

Any partial solution cannot lead to an optimal solution if 

 B T 1 + R C T + L B NT + R C NT > U 

nd cannot lead to a unique optimal solution if 

 B T 1 + R C T + L B NT + R C NT ≥ UB 

here UB : the best known objective function value 

Note that since L B T 1 and L B T 2 are alternative lower bounds for 

alking distance of transit passengers, once L B T 2 is used, L B T 1 is 

eplaced with L B T 2 in the above equations. 

We apply the lower bounds in a sequel. We first find the real- 

zed travel distances and fathom the partial solution if the follow- 

ng condition holds: 

 C T + R C NT ≥ UB 

If not, we calculate L B NT and check whether the following con- 

ition holds: 

 C T + R C NT + L B NT ≥ UB 

If not, we compute the first lower bound for the transfer pas- 

engers walking distance ( L B T 1 ) and check whether the following 

olds: 

 B T 1 + R C T + L B NT + R C NT ≥ UB 

f the lower bound with L B T 1 does not eliminate the node, then 

 B T 2 is calculated and used by checking the following: 

 B T 2 + R C T + L B NT + R C NT ≥ UB 

Note that we are proceeding from easier to compute bound to 

 more difficult one to increase the speed of elimination. 

If all nodes at a level are eliminated by UB , we backtrack to the

revious level. 

The initial upper bound is found by a heuristic procedure dis- 

ussed next and it is updated whenever a complete assignment 

ith a better objective function value is reached. The upper bound 

olution at termination is the optimal solution. 

Initial Upper Bound ( UB ) Procedure : 

We make assignments to one gate at a time starting with gate 

, using a longest path algorithm. The longest path structure is the 

ame as the one defined for lower bound for non-transfer passen- 

ers’ walking distance (see Fig. 2 ); but the arc weights are differ- 

nt. The arc weight between aircraft i and j is p i j + n t i , i.e. the

umber of transfer passengers between these two aircraft plus the 

umber of non-transfer passengers arriving at and departing by 

ircraft i . Arc weight between the root node and aircraft i is zero 

nd arc weight between aircraft i and the dummy end node is the 

umber of non-transfer passengers arriving at and departing by 

ircraft i ( n t i ) . 

On this network, the length of the longest path from node 0 

o the terminal node gives the maximum number of transfer pas- 

engers whose arrival and departure aircraft are assigned to the 

ame gate once the non-transfer passengers are ignored. We also 

ount the number of non-transfer passengers as their travel dis- 

ance should also be shortened. 

The first problem considers all aircraft and solves a longest path 

roblem for gate 1. The aircraft appearing on the longest path are 

ssigned to gate 1. After these aircraft are assigned to gate 1, we 
8 
pdate the aircraft set and solve a longest path problem for gate 2, 

his time only considering the remaining aircraft. Recall that gate 

 is the second closest gate to entrance & exit point and should 

eceive higher priority for assignment due to non-transfer passen- 

ers. We continue for gate 3 and so on, till all gates are scheduled, 

r all aircraft are assigned; i.e., the assignment schedule is com- 

lete. 

The upper bounds for the domestic and international terminal 

ate assignments are found separately. The sum of these upper 

ounds is used to start the branch-and-bound algorithm. Below is 

he stepwise description of the initial upper bound heuristic for 

he domestic aircraft. The modifications for the international air- 

raft are direct. 

Step 0. S et N = I D (set of domestic aircraft) and k = 1. 

Step 1. Solve the longest path problem for gate k with set N with arc weights 

n t i + p i j between aircraft i and j, 

0 between node 0 and aircraft i , 

n t i between aircraft i and node | N| + 1. 

Step 2. Let S k be the set of aircraft appearing on the longest path. 

Set N= N \ S k . 
If N = ∅ or k = | K D | − 1 then go to Step 3. 

Set k = k + 1 and go to Step 1. 

Step 3. If k = | K D | − 1 and N � = ∅ then k = k + 1 and S k = N

Upper bound schedule is formed by ∪ j=1 , ... ,k S j 
UB is the total weighted distance value of the upper bound schedule. 

In our algorithms, we start with an initial upper bound if it sat- 

sfies the minimum number of apron assignments constraint. Oth- 

rwise the initial upper bound is set to a very large number. 

At termination, the B&B algorithm returns an optimal solution. 

n the other hand, the BS and FBS algorithms return at most beam 

idth number of complete solutions some of which may violate 

inimum number of apron assignments constraint. 

The generalization of our model may include additional aircraft 

equirements some of which are stated below: 

• Gate eligibility: some aircraft cannot be assigned to some gates 
• Aircraft compatibility: some aircraft may not be assigned to 

neighbor gates due to dimension concerns 
• Airline balancing: the number of aircraft assigned to apron from 

each airline should not exceed a specified value 

Once any constraint representing a special aircraft requirement 

s included into our minimum apron usage network flow model, 

ts total unimodularity nature would dispel. The resulting network 

ow model becomes an integer program whose optimal solution 

ould require an exponential effort. Hence, for the cases having 

pecial aircraft requirements, in place of using the network flow 

odel to find the minimum apron usage value and then find the 

inimum total weighted distance, our mathematical model and 

olution procedures could be modified to deliver the minimum 

pron usage value and the total weighted distance solution among 

he ones having the minimum apron usage value, simultaneously. 

he modified solution procedures would require developing lower 

ounds on the apron usage values as their optimal values would 

e no more available. 

. Computational results 

In this section, we discuss our data generation scheme and the 

esults of our computational experiments. We first investigate the 

ffect of the proposed lower bound on the performance of the 

athematical model and demonstrate the performance of the B&B 

lgorithm relative to solving the mathematical model by the CPLEX 

IP solver, on smaller-sized-instances. We then provide further re- 

ults on the performance of our heuristic procedures, the upper 

ound and the beam search (BS) and filtered beam search (FBS) 

lgorithms, on problems of larger size. 
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Fig. 3. The layout structure for 10 gates. 

Table 1 

Results of the exact approaches. 

Model without LB Model with LB B&B Algorithm 

CPU Time CPU Time CPU Time 

m n TAD TAI Avg Max NotOpt Avg Max NotOpt Avg Max NotOpt 

Set 

1 

8 15 0 0 1.04 2.19 0 1.36 2.57 0 0.03 0.13 0 

20 0 0 22.81 83.63 0 72.29 558.12 0 2.14 6.66 0 

25 1 0 185.37 418.95 0 166.83 371.18 0 392.25 3600 1 

10 15 0 0 2.78 4.69 0 4.10 12.96 0 0.12 0.51 0 

20 0 0 116.44 660.20 0 86.32 279.55 0 7.86 36.68 0 

25 1 1 1269.24 3600 2 1115.41 2389.82 0 608.40 3600 1 

12 15 0 0 2.13 3.28 0 2.55 4.03 0 0.26 1.42 0 

20 0 0 94.30 354.51 0 96.53 192.72 0 9.56 58.06 0 

25 0 0 2076.46 3600 4 3328.15 3600 8 890.13 3600 2 

Set 

2 

8 15 16 13 4.33 8.14 0 3.97 14.61 0 0.79 1.42 0 

20 29 34 87.51 169.75 0 21.93 32.10 0 33.82 116.11 0 

25 57 48 245.42 819.61 0 71.07 162.39 0 294.09 608.24 0 

10 15 9 7 133.26 1065.68 0 18.27 32.92 0 4.72 19.58 0 

20 26 21 750.42 1484.73 0 200.81 333.13 0 653.84 3377.47 0 

12 15 2 2 88.22 321.68 0 410.83 3600 1 18.55 90.14 0 

20 10 12 2869.19 3600 5 1777.66 3309.39 0 1360.86 3600 1 
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Fig. 3 shows the layout structure used in the first experiment 

et, for an instance with 10 gates, whose distance data are pro- 

ided in Table 1 . These distances are based on the discussion in 

rsan [15] that uses Atatürk Airport layout as its reference. The 

pron is taken too far from all fixed gates; hence a larger num- 

er is assigned to each associated distance. We use Manhattan dis- 

ance to set the distances of the gates (except the apron) to the 

ntrance/exit point and take { e d k } = {3, 5, 7, 9, 11, 5, 7, 9, 11} for

0-gate case. 

We generate additional instances with 8 and 12 gates. For m = 8, 

he layout in Fig. 3 is used by removing gates 5 and 10 and for

 = 12, adding one domestic and one international gate next to 

ates 5 and 10 in Fig. 3 . The distance data are generated accord- 

ngly. 

In the first part of the experiments on smaller-sized instances, 

e consider three values for the number of fixed gates, m : 8, 10, 

2. For each m value, we generate instances by varying the number 

f aircraft, n , starting from 15 in increments of 5. We generate 10

roblem instances for each ( m,n ) combination. 

Other parameters are generated from discrete uniform distribu- 

ions ( DU) as: 

- Number of transfer passengers between aircraft i and j ( p i j ) ∼
DU( 0 , 200 /n ) . 

- Number of non-transfer passengers in aircraft i ( n t i ) ∼
DU( 0 , 100 ) . 

The maximum number of passengers in an aircraft is taken as 

00 based on information reported on the website of a commercial 

irline company [36] . We assume that the total number of transfer 

assengers does not exceed 200 and that a transfer passenger has 

n equal connection probability to all other aircraft. We assume 
9 
hat maximum 50 passengers go from an aircraft to airport exit 

nd maximum 50 passengers arrive at airport from outside for the 

ame aircraft. The total number of non-transfer passengers in an 

ircraft is generated from DU( 0 , 100 ) . 

We generate the following two sets of the arrival times in min- 

tes ( a i ) and durations of stay of the aircraft at the airport in

inutes ( du r i ); representing low and high apron requirement in- 

tances. 

Set 1: a i ∼ DU( 0 , 300 ) du r i ∼30 + DU( 0 , 30 ) . 

Set 2: a i ∼ DU( 0 , 150 ) . du r i ∼60 + DU( 0 , 60 ) . 

The departure time of an aircraft i in minutes ( d i ) is set to a i +
u r i . 

The B&B, BS and FBS algorithms are coded in C ++ and solved 

y a dual-core (Intel Core i7 2.70 GHz) computer with 8 GB RAM. 

ll models are solved by CPLEX 12.7.0. The solution times are ex- 

ressed in Central Processing Unit (CPU) seconds. 

.1. Results for the exact approaches 

We now discuss the performance of the mathematical model 

when solved by CPLEX MIP solver) and B&B algorithm; and sum- 

arize the results in Table 1 . To see the extent that the proposed

ounds can speed the MIP solver implementation, we calculate our 

roposed lower bound at the root node (LB) and solve the Linear 

GAP Model by the CPLEX MIP solver with and without constraint 

2 ≥LB. 

For each set and ( m, n ) combination, we report the total num- 

ers of domestic and international assignments to apron over all 

he ten instances, in TAD and TAI columns. We also report the av- 

rage and maximum solution times for all methods: the mathe- 
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Table 2 

Results of the BS and FBS algorithms – Set 1 (all instances are found apron feasible). 

BS FBS 

m n Avg CPU Time Avg WD Dev. (All) Avg CPU Time Avg WD Dev. (All) OptKnown 

8 15 0.13 0 0.11 0.82 10 

20 0.18 0.11 0.10 1.55 10 

25 0.26 0.06 0.10 1.29 10 

10 15 0.14 0 0.10 0.75 10 

20 0.25 0 0.10 0.45 10 

25 0.47 0.27 0.11 1.11 10 

12 15 0.17 0.07 0.11 0.54 10 

20 0.39 0 0.12 0.81 10 

25 0.79 0.01 0.12 1.71 8 
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1 In this set, the optimal solutions of all instances are known. 
atical model (without LB); the variant with the additional con- 

traint (with LB) and B&B algorithm. We set a time limit of 1 hour 

or both mathematical model and B&B algorithm. The tables also 

nclude the number of instances that could not be solved optimally 

ithin 1 hour (in NotOpt columns). 

For Set 1 instances, where the apron usage is low, the B&B al- 

orithm has notably lower solution times than the mathematical 

odel without LB for most ( m,n ) combinations and solves more 

f the larger-sized instances to optimality. For relatively small- 

ized and medium-sized instances (( m,n ) = (8,15), (8, 20), (10, 15), 

12, 15)) both approaches use negligible time, while the B&B al- 

orithm always being faster. For medium-sized instances where 

 m,n ) = (10, 20) and (12, 20) the average solution time of the B&B

lgorithm is less than one tenth of the solution time of the math- 

matical model without LB. As expected, for fixed m , the solution 

imes increase as n increases and both approaches fail to return 

olutions in one hour. 

For Set 2 instances, where the apron usage is significantly high, 

he B&B algorithm still outperforms the mathematical model with- 

ut LB in most instances. It is also seen that the mathematical 

odel with LB has notably better performance than the model 

ithout LB in most combinations, demonstrating the value of the 

roposed lower bound. In Set 1 ( m,n ) = (10, 25) instances the 

odel with LB returns the optimal solutions for all instances, while 

he model without LB fails to do so in 2 of the 10 instances. A sim-

lar effect is observed in Set 2 ( m,n ) = (12, 20) instances. Note that

here are also instances where the LB increases the solution time 

f the mathematical model. For example, the mathematical model 

ith LB fails to terminate in one hour for almost all ( m,n ) = (12,

5) instances of Set 1. For this set, B&B algorithm is the best per-

ormer, returning the optimal solution in 8 instances. Overall, the 

esults show that the B&B algorithm outperforms the mathemat- 

cal model without LB in most problem instances in terms of the 

olution time and has comparable performance to the mathemati- 

al model with LB. 

.2. Results for the heuristic approaches 

In this section we report on the performances of the BS and FBS 

lgorithms and the upper bound (UB). For initial observations on 

he performance of the algorithms, we use Set 1 and Set 2, since 

he optimal solutions are known for most instances of these sets. 

ables 2 and 3 summarize the performance results on Set 1. 

For each ( m,n ) combination, in the BS algorithm we set beam 

idth to ( m × n ) . In the FBS algorithm we set filter width to 

 m × n ) / 20 and beam width to filter width/4. In Table 2 , we report

he average solution times. We also report the deviation of total 

alking distance from its optimal value as a percentage of the op- 

imal, over the instances with known optimal solutions (found us- 

ng the B&B algorithm or the CPLEX MIP solver within 1 hour). In 

ptKnown column we report the number of instances with known 

ptimal solutions. We observe that for all Set 1 instances, the BS 
10 
nd FBS algorithms both return solutions with minimum number 

f aircraft assigned to apron in negligible time and these solu- 

ions slightly deviate from the optimal walking distance. We also 

bserve that the BS algorithm provides shorter total walking dis- 

ances. 

Our upper bound used at the root node of the B&B algorithm 

elivers an implementable feasible solution. In Table 3 , we report 

omparative results for the BS, FBS and UB solutions. For each 

 m,n ) combination, we report the average solution times (calcu- 

ated over all instances), and the deviation of the total walking 

istance from its optimal value. Note that the solutions may not 

uarantee the minimum number of apron assignments. To make 

 fair comparison, we consider the walking distance deviations 

nly for the instances with known optimal solutions and in which 

he UB, BS and FBS solutions have the same number of apron as- 

ignments. The number of such instances is given in the column 

amed ApronSame and OptKnown. Note from the table that all av- 

rage UB deviations are very low (below 3%). In most instances the 

S and FBS algorithms improve over the upper bound solutions, re- 

ulting in even better solution quality. 

We also investigate the quality of the BS, FBS and UB solutions 

ith respect to the level of apron usage. In Set 1, the BS and FBS

lgorithms achieve minimum apron usage over all instances while 

he UB returns one apron infeasible solution with ( m,n ) = (8, 25). 

evertheless, the infeasible solution assigns only one more aircraft 

o the apron. 

Tables 4 , 5 and 6 summarize the results on Set 2 instances, i.e., 

he instances with high apron requirements. In Table 4 , we report 

he average solution times and deviations from the optimal walk- 

ng distance, calculated over all instances 1 and over apron feasible 

nstances. The results show that both algorithms provide very high 

uality solutions in negligible time. 

Table 5 compares the BS, FBS and UB solutions with respect to 

he solution time and total walking distance, reporting the average 

alking distance deviation from the optimal, over the instances 

aving the same number of apron assignments. Similar to the re- 

ults for Set 1, it is seen that all algorithms return solutions with 

ery low walking distance deviation while the BS and FBS algo- 

ithms improve the UB solution in negligible time. The solution 

imes are very low for all small-sized instances. 

Table 6 compares the BS, FBS and UB solutions for the level of 

pron usage. We report the number of instances for which mini- 

um apron usage is achieved (#Apron Feasible) and average dif- 

erence from the minimum number of apron assignments over all 

nstances (Apron Dif. (All)), and over the apron infeasible instances, 

or the BS, FBS and UB solutions. The results show that the BS 

nd FBS algorithms find more solutions with minimum apron us- 

ge compared to UB. 
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Table 3 

Results of the BS and FBS algorithms and UB – Set 1. 

BS FBS UB 

m n Avg CPU Time Avg WD Dev. Avg CPU Time Avg WD Dev. Avg CPU Time Avg WD Dev. Apron Same and OptKnown 

8 15 0.13 0 0.11 0.82 0.11 0.86 10 

20 0.18 0.11 0.10 1.55 0.10 2.70 10 

25 0.26 0.05 0.10 1.01 0.10 1.83 9 

10 15 0.14 0 0.10 0.75 0.10 1.17 10 

20 0.25 0 0.10 0.45 0.10 1.69 10 

25 0.47 0.27 0.11 1.11 0.10 2.04 10 

12 15 0.17 0.07 0.11 0.54 0.11 1.05 10 

20 0.39 0 0.12 0.81 0.12 2.16 10 

25 0.79 0.01 0.12 1.71 0.11 2.67 8 

Table 4 

Results of the BS and FBS algorithms – Set 2 (See Table 6 for Apron feasible instances). 

BS FBS 

m n 

Avg CPU 

Time 

Avg WD 

Dev. (All) 

Avg WD Dev. 

(Apron Feas.) 

Avg CPU 

Time 

Avg WD 

Dev. (All) 

Avg WD Dev. 

(Apron Feas.) OptKnown 

8 15 0.12 3.17 3.17 0.10 4.27 4.27 10 

20 0.16 2.48 1.48 0.10 2.92 2.11 10 

25 0.23 2.42 1.58 0.10 2.95 0.53 10 

10 15 0.14 1.25 1.25 0.10 2.41 2.41 10 

20 0.23 2.75 2.73 0.10 6.10 6.32 10 

12 15 0.18 1.18 1.18 0.11 1.69 1.69 10 

20 0.35 2.23 2.23 0.11 3.13 3.13 10 

Table 5 

Comparison of the BS and FBS algorithms and UB – Set 2. 

BS FBS UB 

m n 

Avg CPU 

Time 

Avg WD 

Dev 

Avg CPU 

Time 

Avg WD 

Dev 

Avg CPU 

Time 

Avg WD 

Dev 

Apron Same 

and Opt Known 

8 15 0.12 1.32 0.10 1.70 0.10 2.32 8 

20 0.16 2.73 0.10 2.86 0.10 3.14 8 

25 0.23 1.31 0.10 1.31 0.10 1.31 6 

10 15 0.14 0.87 0.10 1.20 0.10 1.67 9 

20 0.23 2.15 0.10 2.17 0.10 2.17 5 

12 15 0.18 1.18 0.11 1.69 0.11 1.69 10 

20 0.35 0.96 0.11 1.21 0.11 1.21 8 

Table 6 

Results of the BS and FBS algorithms and UB – Set 2. 

BS FBS UB 

m n 

# Apron 

Feasible 

Avg Apron 

Dif. (All) 

Avg Apron Dif. 

(Apron Inf.) 

# Apron 

Feasible 

Avg Apron 

Dif. (All) 

Avg Apron Dif. 

(Apron Inf.) 

# Apron 

Feasible 

Avg Apron 

Dif. (All) 

Avg Apron Dif. 

(Apron Inf.) 

8 15 10 0 10 0 8 0.2 1 

20 7 0.3 1 7 0.3 1 5 0.5 1 

25 5 0.5 1 3 0.8 1.1 3 1 1.4 

10 15 10 0 10 0 9 0.1 1 

20 8 0.2 1 9 0.1 1 4 0.9 1.5 

12 15 10 0 10 0 10 0 

20 10 0 10 0 8 0.2 1 
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Overall, the satisfactory performance of the upper bound con- 

ributes to the success of our BS and FBS algorithms and through 

hese algorithms we achieve even better performance. For the 

pron infeasible instances, the differences from the minimum 

pron levels are quite low (respective average differences are at 

ost 1, 1.1. and 1.5 for BS, FBS and UB). 

To evaluate the performance of the heuristic solutions on 

arger-sized instances, we perform an additional experiment us- 

ng Ankara Esenbo ̆ga airport and İstanbul Atatürk airport layouts, 

hich have 18 gates (9 domestic, 9 international) and 38 gates (12 

omestic, 26 international), respectively. The layouts are provided 

n Appendix A. 
11 
We use the same generation scheme for the arrival and de- 

arture times, and number of transfer passengers. For the num- 

er non-transfer passengers, we use DU( 0 , 100 ) and DU( 0 , 75 ) 

or the domestic and international aircraft, respectively, assuming 

hat the ratio of the transfer passengers is higher for the interna- 

ional aircraft. In line with our previous notation, Set 1 and Set 2 

orrespond to the arrival time and duration sets with low and high 

pron requirements, respectively. 

For Esenbo ̆ga Airport Layout, we generate moderate-sized in- 

tances with 50, 100 aircraft as well as large-sized instances with 

50, 200 aircraft. Tables 7 - 9 summarize the results for the Ankara 

senbo ̆ga Airport layout. For moderate-sized instances, we perform 
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Table 7 

Results of the BS and FBS algorithms and UB – Esenbo ̆ga Airport. 

BS FBS UB 

Set n 

Avg CPU 

Time 

Avg WD 

Imp. (%) 

Same 

Apron 

Avg CPU 

Time 

Avg WD 

Imp. (%) 

Same 

Apron 

Avg CPU 

Time 

1 50 54.64 0.54 10 0.54 0.01 10 0.112 

100 663.47 0 5 7.20 0 3 0.113 

2 50 36.58 0 3 0.36 0 1 0.105 

100 458.75 0 10 0.69 0 1 0.106 

Table 8 

Results of the BS and FBS algorithms and UB – Esenbo ̆ga Airport. 

BS FBS UB 

Set n 

# Apron 

Feasible 

Avg Apron 

Dif. (All) 

Avg Apron 

Dif. (Apron 

Inf.) 

# Apron 

Feasible 

Avg Apron 

Dif. (All) 

Avg Apron 

Dif. (Apron 

Inf.) 

# Apron 

Feasible 

Avg Apron 

Dif. (All) 

Avg Apron 

Dif. (Apron 

Inf.) 

1 50 10 0 10 0 10 0 

100 2 2 2.5 2 1.3 1.6 0 2.9 2.9 

2 50 0 1.4 1.4 4 0.7 1.2 0 2.6 2.6 

100 5 0.5 1 5 0.5 1 5 0.5 1 

Table 9 

Results of the FBS algorithm and UB – Esenbo ̆ga Airport. 

FBS UB 

Set n 

Avg CPU 

Time 

Avg WD 

Imp. (%) 

Same 

Apron 

# Apron 

Feasible 

Avg Apron 

Dif. (All) 

Avg Apron 

Dif. (Apron 

Inf.) 

Avg CPU 

Time 

# Apron 

Feasible 

Avg Apron 

Dif. (All) 

Avg Apron 

Dif. (Apron 

Inf.) 

1 150 30.84 0.00 1 0 2.8 2.8 0.13 0 7.7 7.7 

200 91.32 0.00 1 0 6.6 6.6 0.16 0 9.1 9.1 

2 150 21.10 0.00 10 5 0.6 1.2 0.11 5 0.6 1.2 

200 67.63 0.00 10 5 0.8 1.6 0.12 5 0.8 1.6 
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 comparative analysis of all procedures in Tables 7 and 8 . Table 9

ummarizes the results of FBS and UB for larger instances. 

In Table 7 we report the solution times of the BS, FBS and UB 

or instances with n = 50 and 100. Since the exact approaches could 

ot solve these instances in reasonable time, we cannot provide in- 

ormation on the walking distance deviations. Instead, we report 

n the percentage walking distance improvement of the BS and 

BS solutions over the UB solution for the instances having the 

ame number of apron assignments as UB. In Table 8 , we report 

n the performance for the number of apron assignments. 

Overall, we observe that for the medium-sized instances the 

S algorithm still performs well, returning solutions in reasonable 

ime. In Set 1 instances with 50 aircraft, all algorithms return solu- 

ions with minimum apron assignment. The numbers of apron as- 

ignments are slightly higher than their minimum levels in larger 

nstances; however the average differences are very low (below 2, 

.3 and 2.9 for BS, FBS, and UB, resp.). In Set 2 instances, the differ-

nces from the minimum number of apron assignments are even 

ower (all below 0.5). 

We observe that the BS and FBS algorithms improve the UB so- 

ution with respect to both the number of apron assignments and 

otal walking distances. Note that in most instances the walking 

istance improvements are 0 since these are only calculated when 

he BS, FBS algorithms and UB return the same number of apron 

ssignments. Since the BS and FBS solutions improve the UB solu- 

ion with respect to the number of apron assignments, the walking 

istance improvement does not truly reflect their improvements. 

e also observe the computational advantage of the FBS algorithm 

ver the BS algorithm, in returning fewer apron assignments in less 

ime. 

In Table 9 , we report the walking distance and apron difference 
esults for instances with n = 150 and 200. It is seen that the FBS 

12 
eturns good solutions in negligible time; outperforming UB with 

espect to number of apron assignments in Set 1 instances. The dif- 

erence from the minimum number of apron assignments is even 

ower in Set 2 instances. 

We generate even larger-sized instances with 50, 100, 150, 200 

ircraft and 38 gates, based on İstanbul Atatürk Airport Layout. 

ables 10 and 11 present the results of the BS, FBS algorithms and 

B for n = 50. For larger n , we report the performances of the FBS

lgorithm and UB in Table 12 . We observe that in most instances 

he BS and FBS solutions are better than the UB solutions with re- 

pect to the number of apron assignments. When they make the 

ame number of apron assignments, the BS and FBS solutions im- 

rove the walking distances. 

We also observe that the algorithms return high-quality solu- 

ions with minimum apron assignments for most Set 1 instances 

nd with very low differences from the minimum apron assign- 

ents for all Set 2 instances. 

For the larger-sized instances shown in Table 12 , UB provides 

atisfactory results, with low difference from the minimum num- 

er of apron assignments. FBS is observed to provide even better 

esults in most instances, either with smaller walking distances or 

ith less apron assignments. 

The results demonstrate that the BS and FBS algorithms are 

oth viable options for obtaining high quality solutions with near 

inimum apron assignments for medium-sized instances. More- 

ver, the experiments performed on the smaller-sized instances 

ith known optimal walking distances indicate that the walking 

istance deviations of these solutions are very low. For large-sized 

nstances the FBS algorithm provides good quality solutions rea- 

onable time, improving the UB solutions, which are also of ac- 

eptable quality. The good performance of the BS and FBS algo- 
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Table 10 

Results of the BS and FBS algorithms and UB –Atatürk Airport. 

BS FBS UB 

Set n 

Avg CPU 

Time 

Avg WD 

Imp. (%) 

Avg CPU 

Time 

Avg WD 

Imp. (%) 

Avg CPU 

Time 

Same 

Apron 

1 50 1602.65 11.26 4.30 10.47 0.112 10 

2 50 1352.73 4.66 4.24 3.51 0.107 8 

Table 11 

Results of the BS and FBS algorithms and UB –Atatürk Airport. 

BS FBS UB 

Set n 

# Apron 

Feasible 

Avg Apron 

Dif. (All) 

Avg Apron 

Dif. (Apron 

Inf.) 

# Apron 

Feasible 

Avg Apron 

Dif. (All) 

Avg Apron 

Dif. (Apron 

Inf.) 

# Apron 

Feasible 

Avg Apron 

Dif. (All) 

Avg Apron 

Dif. (Apron 

Inf.) 

1 50 10 0 0 10 0 10 0 0 

2 50 9 0.1 1 10 0 8 0.2 1 

Table 12 

Results of the BS and FBS algorithms and UB –Atatürk Airport. 

FBS UB 

Set n 

Avg CPU 

Time 

Avg WD 

Imp. (%) 

Same 

Apron 

# Apron 

Feasible 

Avg Apron 

Dif. (All) 

Avg Apron 

Dif. (Apron 

Inf.) 

Avg CPU 

Time 

# Apron 

Feasible 

Avg Apron 

Dif. (All) 

Avg Apron 

Dif. (Apron 

Inf.) 

1 100 71.6 12.56 10 10 0 0.126 10 0 

150 361.2 6.06 10 10 0 0.154 10 0 

200 1095.0 0 1 4 0.9 1.5 0.184 0 4.7 4.7 

2 100 60.9 0 1 2.2 2.4 0.115 0 5.1 5.1 

150 281.1 0 2 0 3.1 3.1 0.130 0 4.2 4.2 

200 804.3 0 9 2 1.5 1.9 0.130 2 1.6 2 
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ithms can be attributed to the algorithms’ prioritizing rule using 

he powerful walking distance lower bounds. 

. Conclusions 

In this study we consider an airport gate assignment problem 

hat aims to minimize the total passenger distance traveled sub- 

ect to the minimum number of aircraft assigned to apron. We as- 

ume that the fixed gates can handle only one aircraft at a time 

nd the apron has an unlimited capacity. We find the minimum 

umber aircraft assigned to apron using maximum cost network 

ow models. 

We formulate the problem as a mixed integer nonlinear pro- 

ramming model and then linearize it. We then develop a branch- 

nd-bound algorithm and beam search and filtered beam search 

lgorithms along with powerful lower and upper bounding mech- 

nisms. 

The results of our computational experiments based on the 

ayout data of Atatürk Airport have revealed the superiority of 

he proposed branch-and-bound algorithm over the mathematical 

odel for most problem combinations. 

To the best of our knowledge we propose the first optimization 

lgorithm for the problem of minimizing the total passenger dis- 

ance traveled subject to the minimum number of aircraft assigned 

o apron. The algorithm could return optimal solutions to the prob- 

em instances with up to 25 aircraft when there are 8 gates and up 

o 25 and 20 aircraft there are 10 and 12 gates, respectively, in our 
13 
ermination limit of one hour. For the problem instances of larger 

izes, we propose beam search and filtered beam search algorithms 

hat use the same mechanisms with our branch and bound algo- 

ithm. The beam search algorithm could return good quality solu- 

ions to the real life problem instances with up to 100 aircraft and 

8 gates and 50 aircraft and 38 gates, while filtered beam search 

eturns solutions for problems of even larger sizes, with up to 200 

ircraft and 38 gates. 

We assume that the arrival times and departure times are 

nown with certainty and not subject to any change. Future re- 

earch may consider algorithms that incorporate stochastic arrival 

nd/or departure times. Moreover reassignment studies that would 

ake our initial assignments as base-plan and minimize the devia- 

ions between the base-plan and new plan are worth-studying. 

One may extend our models and solution procedures to include 

ome practical aircraft assignment requirements like gate eligibil- 

ty (some aircraft cannot be assigned to some gates) and aircraft 

ompatibility (some aircraft may not be assigned to neighbor gates 

ue to dimension concerns). 

Future research may also consider the extension of our ap- 

roach to the problems with additional objectives such as balanc- 

ng the airport congestion and minimizing baggage movement. 
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Fig. 4. Layout of Esenbo ̆ga Airport (source: https://webcmsesb.tav.aero/files/1551878584 _ ESB%20Gelis _ 2019.pdf ). (Accessed on September 14, 2020). 

Fig. 5. Layout of Atatürk Airport (Gates 101-112 and 201-226 are considered). 

(source: http://www.primeclass.com.tr/tr/Documents/istanbul%20gidi%C5%9F%20kat%C4%B1%20kroki.pdf . Accessed on September 15, 2020). 
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32] Ş eker M, Noyan N. Stochastic optimization models for the airport gate as- 
signment problem. Transp Res Part E: Log Transp Rev 2012;48:438–59. doi: 10. 

1016/j.tre.2011.10.008 . 

33] Srihari K, Muthukrishnan R. An expert system methodology for aircraft- 
gate assignment. Comput Ind Eng 1991;21:101–5. doi: 10.1016/0360-8352(91) 

90071-d . 
34] Steuart GN. Gate position requirements at metropolitan airports. Transp Sci 

1974;8:169–89. doi: 10.1287/trsc.8.2.169 . 
35] Su Y, Srihari K. A knowledge based aircraft-gate assignment advisor. Comput 

Ind Eng 1993;25:123–6. doi: 10.1016/0360- 8352(93)90236- q . 

36] Turkish Airlines. Retrieved September 1, 2019, from https://www. 
turkishairlines.com/ . 

37] Xu J, Bailey G. The airport gate assignment problem: mathematical model and 
a tabu search algorithm. In: Proceedings of the 34th annual Hawaii interna- 

tional conference on system sciences; 2001. p. 3032. doi: 10.1109/hicss.2001. 
926327 . 

38] Yan S, Huo C. Optimization of multiple objective gate assignments. Transp Res 

Part A: Policy Pract 2001;35:413–32. doi: 10.1016/s0965-8564(99)0 0 065-8 . 
39] Yan S, Shieh C, Chen M. A simulation framework for evaluating airport gate 

assignments. Transp Res Part A: Policy Pract 2002;36(10):885–98. doi: 10.1016/ 
s0965-8564(01)0 0 045-3 . 

40] Yu C, Zhang D, Lau H. MIP-based heuristics for solving robust gate assignment 
problems. Comput Ind Eng 2016;93:171–91. doi: 10.1016/j.cie.2015.12.013 . 

[41] Yu C, Zhang D, Lau HY. An adaptive large neighborhood search heuristic for 

solving a robust gate assignment problem. Expert Syst Appl 2017;84:143–54. 
doi: 10.1016/j.eswa.2017.04.050 . 

42] Zhang D , Klabjan D . Optimization for gate re-assignment. Transp Res Part B: 
Methodol 2017;95:260–84 . 

43] Loiola EM , de Abreu NMM , Boaventura-Netto PO , Hahn P , Querido T . A survey
for the quadratic assignment problem. ur J Oper Res 2007;176(2):657–90 . 

44] Bouras A , Ghaleb MA , Suryahatmaja US , Salem AM . The airport gate assign-

ment problem: a survey. The scientific world journal, 2014.. Sci World J 2014 . 
45] Drexl A , Nikulin Y . Multicriteria airport gate assignment and Pareto simulated 

annealing. IIE Trans 2008;40(4):385–97 . 

https://doi.org/10.1080/15568318.2019.1597225
https://doi.org/10.1016/j.eswa.2012.04.071
https://doi.org/10.1016/j.cie.2017.04.042
http://refhub.elsevier.com/S0305-0483(21)00031-1/sbref0012
http://refhub.elsevier.com/S0305-0483(21)00031-1/sbref0012
http://refhub.elsevier.com/S0305-0483(21)00031-1/sbref0012
http://refhub.elsevier.com/S0305-0483(21)00031-1/sbref0012
https://doi.org/10.1108/k-08-2017-0279
https://doi.org/10.1016/j.cor.2003.12.003
https://doi.org/10.1016/j.omega.2005.07.001
http://refhub.elsevier.com/S0305-0483(21)00031-1/sbref0016
http://refhub.elsevier.com/S0305-0483(21)00031-1/sbref0016
https://doi.org/10.1016/j.eswa.2011.07.021
https://doi.org/10.1016/0191-2607(90)90071-d
https://doi.org/10.1016/s0965-8564(98)00005-6
https://doi.org/10.1007/978-3-540-88051-6_4
https://www.statista.com/statistics/193533/growth-of-global-air-traffic-passenger-demand
https://doi.org/10.1016/j.jcle.2018.09.139
https://doi.org/10.1155/2013/361031
https://doi.org/10.2514/1.57022
https://doi.org/10.1287/trsc.19.2.173
https://doi.org/10.1016/j.trpro.2015.01.013
http://refhub.elsevier.com/S0305-0483(21)00031-1/sbref0027
http://refhub.elsevier.com/S0305-0483(21)00031-1/sbref0027
http://refhub.elsevier.com/S0305-0483(21)00031-1/sbref0027
http://refhub.elsevier.com/S0305-0483(21)00031-1/sbref0027
http://refhub.elsevier.com/S0305-0483(21)00031-1/sbref0028
http://refhub.elsevier.com/S0305-0483(21)00031-1/sbref0028
http://refhub.elsevier.com/S0305-0483(21)00031-1/sbref0028
http://refhub.elsevier.com/S0305-0483(21)00031-1/sbref0029
http://refhub.elsevier.com/S0305-0483(21)00031-1/sbref0029
http://refhub.elsevier.com/S0305-0483(21)00031-1/sbref0029
http://refhub.elsevier.com/S0305-0483(21)00031-1/sbref0030
http://refhub.elsevier.com/S0305-0483(21)00031-1/sbref0030
http://refhub.elsevier.com/S0305-0483(21)00031-1/sbref0030
http://refhub.elsevier.com/S0305-0483(21)00031-1/sbref0031
http://refhub.elsevier.com/S0305-0483(21)00031-1/sbref0031
https://doi.org/10.1016/j.ejor.2005.09.014
https://doi.org/10.1016/j.tre.2011.10.008
https://doi.org/10.1016/0360-8352(91)90071-d
https://doi.org/10.1287/trsc.8.2.169
https://doi.org/10.1016/0360-8352(93)90236-q
https://www.turkishairlines.com/
https://doi.org/10.1109/hicss.2001.926327
https://doi.org/10.1016/s0965-8564(99)00065-8
https://doi.org/10.1016/s0965-8564(01)00045-3
https://doi.org/10.1016/j.cie.2015.12.013
https://doi.org/10.1016/j.eswa.2017.04.050
http://refhub.elsevier.com/S0305-0483(21)00031-1/sbref0043
http://refhub.elsevier.com/S0305-0483(21)00031-1/sbref0043
http://refhub.elsevier.com/S0305-0483(21)00031-1/sbref0043
http://refhub.elsevier.com/S0305-0483(21)00031-1/optwaIp4eF96F
http://refhub.elsevier.com/S0305-0483(21)00031-1/optwaIp4eF96F
http://refhub.elsevier.com/S0305-0483(21)00031-1/optwaIp4eF96F
http://refhub.elsevier.com/S0305-0483(21)00031-1/optwaIp4eF96F
http://refhub.elsevier.com/S0305-0483(21)00031-1/optwaIp4eF96F
http://refhub.elsevier.com/S0305-0483(21)00031-1/optwaIp4eF96F
http://refhub.elsevier.com/S0305-0483(21)00031-1/opthTIb59562c
http://refhub.elsevier.com/S0305-0483(21)00031-1/opthTIb59562c
http://refhub.elsevier.com/S0305-0483(21)00031-1/opthTIb59562c
http://refhub.elsevier.com/S0305-0483(21)00031-1/opthTIb59562c
http://refhub.elsevier.com/S0305-0483(21)00031-1/opthTIb59562c
http://refhub.elsevier.com/S0305-0483(21)00031-1/optcaCsEVbbSR
http://refhub.elsevier.com/S0305-0483(21)00031-1/optcaCsEVbbSR
http://refhub.elsevier.com/S0305-0483(21)00031-1/optcaCsEVbbSR

	Exact and heuristic solution approaches for the airport gate assignment problem
	1 Introduction
	2 Literature review
	3 Problem definition
	4 Finding the minimum number of aircraft assigned to apron
	5 Branch-and-bound, beam search and filtered beam search algorithms
	5.1 Elimination rules based on properties of feasible and optimal solutions
	5.2 Lower bounds

	6 Computational results
	6.1 Results for the exact approaches
	6.2 Results for the heuristic approaches

	7 Conclusions
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A Layouts
	References


