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ABSTRACT

Buyers have easier access to a variety of products with the rise of multi-channel distribution strategies
and the increase in new product introductions. On the other hand, firms experience greater pressure in
offering the correct product variety given that the manufacturing infrastructure often imposes physical
and financial constraints in attaining variety. This study examines a firm’s optimal assortment planning
problem under an exogenous demand model, where each customer has a predetermined preference for
each product from a potential set. Proportional demand substitutions are allowed from out-of-assortment
products to those available. We show that the problem is NP-complete. We also show that an optimal as-
sortment is composed of some number of the highest margin products, if one product having a higher
margin than another implies that the former product has a lower demand rate than the latter. The firm’s
assortment capacity is fully utilized at the optimum if the customers’ substitution ratio does not exceed
a particular threshold. We also introduce several approximate assortment policies that can be easily im-
plemented, and test these policies through extensive numerical analyses. The results reveal that some of
the policies can provide less than a 1% profit gap with an optimal solution for a 20-product set. The pol-
icy’s performance highly depends on the firm’s assortment capacity-to-product set size ratio. Moreover,

we provide performance bounds for two of these well-performing approximate policies.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

When the Ford Motor Company revealed a newly revised Ford
Fusion sedan in March 2018, they also announced that they stan-
dardized many features of the vehicle—for example, Ford’'s Co-
Pilot360 driver-assist technology—while leaving only a few addi-
tional options (Ford, 2018). The company states that this strategy
substantially decreased the number of orderable configurations for
the Ford Fusion, from approximately 2000 to 36. By decreasing
these configurations, they decreased their manufacturing complex-
ity with the aim to reduce costs.

In parallel to the reduced number of configurations per
model, the number of car models produced in each plant
also significantly decreased with a similar incentive of ob-
taining a leaner production plant operating at lower costs.
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Choudhary, Hasija, and Netessine (2018) report that between 1998
and 2006, the number of models produced in assembly plants
by three major U.S. automobile manufacturers—Chrysler, Ford, and
General Motors—is decreasing. For example, while Ford manufac-
tured up to nine models per plant in 1998, the maximum number
of models per plant decreased to three in 2006. The authors note
that each plant should reach a particular level of variety to balance
the demand satisfaction benefits and excessive set-up costs.

One critical decision for the automotive industry involves as-
signing models and their subsequent configurations to production
plants. These assignments are determined by tooling and capac-
ity investment decisions that must be made between one to three
years before production begins. Further, this may require substan-
tial investment, such as funds for a new assembly line, additional
tooling, or employee training (Jordan & Graves, 1995). The problem
of assigning products to automobile production plants is a strategic
assortment-planning problem that does not often consider inven-
tory.

Generally, the firm'’s limited assortment, or set of products of-
fered at any time, should be carefully set consistent with the firm’s
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strategy. Assortment planning is the process of deciding (i) the
number of categories, called the breadth; (ii) the number of prod-
ucts in each category, called the depth; and (iii) the correspond-
ing inventory levels for each product to be offered at any time. An
assortment of a certain size involves its relevant operational com-
plexities and costs as well as customer sales potential. Further, as-
sortment planning aims to offer an optimal variety of products to
customers to maximize the total profit from sales relative to the
given costs and limitations of this variety.

Briesch, Chintagunta, and Fox (2009) report that customers’
brand choice decisions can be more sensitive to assortments than
to prices. Further, firms must attempt to implement periodical
assortment planning to consider customers’ changing preferences
over time, seasons, and the launch of new products on the market
(Kok, Fisher, & Vaidyanathan, 2015). The assortment-planning de-
cision is complex due to several trade-offs between having a rich
versus limited assortment. From the customer’s perspective, on the
one hand, a rich and variable assortment draws higher customer
traffic (Timonina-Farkas, Katsifou, & Seifert, 2020). For example, ex-
panding an assortment in a retail setting can decrease consumers’
search even with unprofitable products, consequently increasing
profit (Cachon, Terwiesch, & Xu, 2005). On the other hand, a nar-
row assortment can make customers’ decision easier thus increas-
ing the probability of purchase (de Vries-van Ketel, 2006; Mantrala
et al., 2009). Moreover, Boatwright and Nunes (2001) reveal that
reducing the assortment by up to 54% increases average sales by
11%.

From an operational perspective, firms may also experience
space and budget constraints regarding the variety offered. Each
product requires substantial investment, such as funds for new as-
sembly lines, additional tooling, or employee training. For example,
Toyota Europe announced that they will invest 300 million euros
in its plant in France to build a platform to enable the produc-
tion of new Toyota models (Toyota-Europe, 2018). After a prod-
uct is included in the assortment, operational costs per product
are incurred because of material handling and warehousing, as
well as merchandize presentation (Smith & Agrawal, 2000), record-
keeping, and reordering. While it might be more challenging to
compute the fixed assortment costs per product, a constrained
assortment size often inevitably arises in practice. Subsequently,
manufacturers are limited in the number of assembly lines they
can place into service, and each line can only produce a few mod-
els. Each offered product involves handling, replenishment, and in-
ventory costs, as a certain quantity of inventory should be main-
tained. All products in an assortment are intertwined through the
total available budget. If all products have symmetrical or similar
space and/or financial needs, then assortment constraints can be
reduced to a cardinality constraint.

Given that the assortment size will be limited because of both
demand and cost perspectives, firms should also consider the be-
haviors of consumers faced with a limited variety. When customers
visit a firm, they typically demand a specific product, and its un-
availability may lead them to consider either leaving the firm with-
out purchasing, or switching to another product. The act of switch-
ing to an alternative product when the favored product is unavail-
able is known as substitution (Shin, Park, Lee, & Benton, 2015). This
can occur when either a shortage exists in the product’s inven-
tory, called stockout-based substitution, or the product is not offered
within the assortment, called assortment-based substitution. Corsten
and Gruen (2004) report that almost half of customers may tend
to switch to different products when their favorite is unavailable.
Customers’ substitution-behavior effects can also further compli-
cate firms’ assortment choices. A survey of U.S. vehicle dealers in-
dicated that 15-30% of customers switched from the car they orig-
inally sought to one available on the lot (Stalk, Stephenson, & King,
1997). Further, Mahajan and van Ryzin (2001b) indicate that firms
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can stock relatively more quantities of popular products and rela-
tively fewer unpopular ones under substitution than in the event in
which substitutions are not allowed; thus, inventory will be more
evenly spread across variants.

This paper examines the optimal assortment of a manufacturing
firm whose assortment size constrained by manufacturing infras-
tructure requirements (Hart & Rafiq, 2006) and that explicitly con-
siders customers’ substitution behavior. It is studied as a strategic
problem, thus tactical level inventory and/or production capacity
decisions are not incorporated at assortment planning stage. The
existence of product substitution complicates the assortment plan-
ning problem. We actually show that the problem is NP-complete,
which invalidates the use of simple “greedy” algorithms for opti-
mal solution. So, we aim to illustrate the properties of optimal as-
sortments to understand the effects of substitution and capacity
constraints on the choice of assortment.

We demonstrate that the optimal assortment contains most
preferred products, and that its capacity is always fully utilized if
products have different customer preference rates but equal profit
margins. When products also vary in their profit margins, the op-
timal assortment cannot be obtained with a “greedy” algorithm.
If all products can be sorted monotonically in increasing order of
their profit margins and decreasing order of their demand prob-
abilities, the optimal assortment is composed of some number of
most dominant (profitable) products, which can be lower than the
assortment capacity. It is shown that by keeping a low profit mar-
gin, but high demand product out of the assortment, its demand
can be directed to higher margin substitutes.

If all products do not posit monotonic ordering of profit mar-
gins and demand probabilities, some number of highly dominant
products can omitted from the assortment under a high substitu-
tion ratio, which increases the probability of retaining high-margin
substitutes. It is proven that when the substitution ratio is smaller,
it is more likely that the assortment capacity is fully utilized and
an optimal assortment will be composed of the most profitable
products. We introduce an upper limit on the substitution ratio
below which the assortment capacity of the firm is always fully
utilized at optimality. Alternatively, when the assortment capacity
is high, capacity utilization may decrease and the optimal assort-
ment may include some less profitable products while excluding
some that are more profitable to direct customers to high-margin
products in the assortment. We prove that the firm may take the
risk of a shallower assortment and expect customers to substitute
their demands with those that are high-margin under a high sub-
stitution ratio.

Next, our work benefits from obtained optimality properties
to introduce seven heuristic assortment-planning algorithms, the
complexities of which vary according to their optimality properties
and differ in a range from simple sorting to complete profit com-
putation. Our numerical analyses demonstrate that a firm should
consider the product set’s size, the assortment capacity, and com-
putational capability when deciding not only whether to use a
heuristic policy, but also which to utilize.

We contribute to strategic assortment-planning literature by
analyzing a generalized exogenous demand model with product-
specific demand rates and profit margins under assortment capac-
ity. We analytically show how substitution ratio affects the prod-
uct choice as well as the optimal assortment capacity utilization.
Moreover, the approximate algorithms we introduce are efficient in
computation and effective in obtaining nearly optimal assortments
proved by their performance bounds. The assortment optimization
problem can also be formulated as a mixed-integer model, but
the resulting problem can still be computationally very challeng-
ing to solve (Chung, Ahn, & Jasin, 2019) and would not provide
the insights on optimal assortments that we obtain in our current
study.
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We consider manufacturing firms’ strategic assortment deci-
sions, thus excluding inventory decisions in assortment planning.
The proposed methodologies are also applicable to other assort-
ment problems without significant inventory concerns during the
assortment planning stage, such as when either the inventory
management is relatively easier as with slow-moving goods or
all inventory is not carried on shelves, but in a depot with lim-
ited shelf facings (Kok et al, 2015). For example, Fisher and
Vaidyanathan (2014) study the assortment-planning problem for
slow-moving products with no inventory concerns motivated by
retailers who carry a fixed, often small inventory for each SKU.
Feldman and Topaloglu (2017) provide a detailed list of similar as-
sortment problems independent of inventory decisions.

While we primarily express our motivation using automobile
manufacturers, the problem setting and results are largely gen-
eralizable to other manufacturing industries where the inclusion
of each product in a production assortment requires substantial
investment. For example, Akcay and Tan (2008) state that small
to medium-sized enterprises (SMEs), and textile manufacturers in
particular, collect orders from large buyers and procure accordingly
(i.e., make-to-order firms). However, each SME specializes in the
production of certain types of fabric and subsequently constructs
their assortments accordingly. Thus, each SME commits to produc-
ing a limited number of varieties due to the significant assortment
costs per product. Tan and Akcay (2014) provide the furniture in-
dustry as an example, in which a manufacturer has a production
catalog with a limited number of models, and each model may re-
quire a specific expertise and tooling set-up. Thus, our model and
insights are also valid for manufacturers operating in these indus-
tries.

The remainder of this paper is organized as follows. In
Section 2, we review related studies in literature. In Section 3, we
present the problem and show that it is NP-Complete. We reveal
the analytical properties of an optimal assortment in Section 4.
We provide numerical analysis results to further explain and il-
lustrate the optimal assortment’s properties in Section 5. Next, we
introduce several approximate assortment policies that are easy to
use and compare their performances with system parameters in
Section 6. Finally, Section 7 presents our final remarks by summa-
rizing our findings and obtained insights from the perspective of
subsequent research.

2. Literature review

Assortment planning has two main inputs. One of them is
customer-related, as assortment affects customer traffic and sales.
The other is operations-related, as the assortment size determines
many cost terms, such as handling, shelving, and replenishment,
as discussed in Section 1. Thus, both operations management and
marketing researchers work on assortment planning. This section
presents a brief survey of related literature. Extensive reviews of
assortment planning literature are provided by Pentico (2008),
Mantrala et al. (2009), Misra (2010), Chernev (2012), and Kok et al.
(2015). It is also worth to note that studies incorporating strate-
gic level supply chain concerns into assortment planning problems
are still very scarce, where one of the contributions of this study
stands in (Umpfenbach, Dalkiran, Chinnam, & Murat, 2018a).

Assortment planning literature dates back to the 1950s, when
Sadowski (1959) was likely the first to label the “assortment prob-
lem” (Pentico, 2008). Past studies differ in terms of the model
characteristics considered, such as the consumer demand model,
demand substitution pattern, the inclusion of inventory-level de-
cisions, and the consideration of assortment capacity. Mantrala
et al. (2009) differentiate assortment studies according to resulting
trade-offs in optimization by considering these characteristics sep-
arate from the consumer, retailer, and environmental perspectives.
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Table 1 lists the most related past work to the current study by
categorizing according to demand model, whether inventory deci-
sion is included, whether assortment capacity is used, substitution
model, and solution methodology utilized. Besides, main contribu-
tion of each study to the literature is noted in the table.

Bernstein, Kok, and Xie (2015) categorize earlier work accord-
ing to the customer choice model used—such as the multinomial
logit (MNL) and exogenous demand models—which greatly affect
the other problem characteristics that can be modeled, such as the
substitution type. Chung et al. (2019) state that estimating con-
sumer behavior precisely is one of the most challenging issues
in assortment problems and more realistic and detailed models
sacrifice from the tractability of the problem solution. The MNL
model is one of the most commonly used customer behavior mod-
els in assortment problems given its robust practical estimations,
as noted by van Ryzin and Mahajan (1999), Mahajan and van Ryzin
(2001a), and Cachon and K&k (2007). This utility-based model eas-
ily incorporates pricing into a customer demand model. Further,
the MNL model assumes that each customer visiting a store as-
sociates a utility with each product that can be decomposed into
two parts: deterministic and random components. This assumes
that customers deciding from a discrete set of products are utility-
maximizing individuals. However, two primary criticisms exist re-
garding the MNL model. First, the independence from irrelevant al-
ternatives (IIA) property states that a customer’s ratio of choice
probabilities for two products is independent of other available
choices in the overall set. Therefore, omitting a product from the
model will change the parameter estimates of all the remaining
items at the same relative rate, which cannot always be correct.
Nonetheless, this is commonly applied in the market research, eco-
nomics, and logistics fields, among others. A second criticism of
the MNL model involves its restricted modeling of substitutions.

In an exogenous demand model, the demand for each product
is specified ex-ante for all possible products, and thus, does not
depend on a selected assortment (Smith & Agrawal, 2000). More-
over, customers’ substitution behaviors are predefined independent
of the choice of assortment set. When a customer’s most favored
product is unavailable—either due to stock-out conditions or it has
been omitted from the assortment—this demand is substituted by
the customer’s second-favorite product, which is not necessarily
within the available assortment, with a predetermined probabil-
ity. The number of substitutions can be fixed at a certain number,
or it can continue until an available product can be reached. Ex-
ogenous demand models are heavily used in the literature, espe-
cially in studies that involve real life applications. Important ex-
amples include Kok and Fisher (2007), Fisher and Vaidyanathan
(2014) and Bernales, Guan, Natarajan, Gimenez, and Tajes (2017).
The exogenous demand model has more degrees of freedom and
provides more flexibility in modeling substitution behavior (Kék
et al., 2015). A recent work by Chung et al. (2019) show that using
exogenous demand models in assortment planning do not lead to
significant shortfall in revenue when compared to using the ex-
act choice models such as mixtures of MNLs and are shown to
approximate any random utility model with a desired level of ac-
curacy (McFadden & Train, 2000). The exogenous demand model’s
primary shortcoming is its lack of an underlying consumer behav-
ior model defining demand rates, which consequently requires sig-
nificant data collected for an application.

Gallego, Ratliff, and Shebalov (2014) introduced the generalized
attraction model (GAM) as a customer demand model, which is a
generalized model that may be reduced to the MNL or exogenous
demand models in special cases. The MNL model ignores the con-
sumer search option when the first choice is unavailable, and this
yields to the overestimation of recaptured demand. In contrast, the
exogenous demand model ignores the switching option from di-
rect demand, subsequently yielding an underestimation of overall
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Table 1
Overview of the most related past studies.
Authors Demand Solution Main
model™ Capacity Substitution®  method® contribution

Our work Exogenous v Assortment Optimal & Approximate Explicit relationship between substitution and optimal
assortment

Aouad et al. (2018) Choice Assortment Approximate Approximability bounds under a general choice model

Baloch and Gzara (2020) Empirical v Both MIO Assortment, inventory and substitution policies for kiosks
with real data

Bernstein et al. (2015) MNL Stock-out Optimal & Approximate Customized assortments based on available inventory

Besbes and Saure (2016) MNL v Assortment Optimal Joint assortment and price competitions under the MNL
model

Blanchet et al. (2016) Choice Assortment Approximate Computationally tractable approach to choice model

Cachon et al. (2005) MNL Assortment Optimal Accounting consumer search in assortment planning

Cachon and Kok (2007) MNL Assortment Optimal& Approximate Competing retailers for basket shopping consumers

Chung et al. (2019) Exogenous v Assortment MIO Approximation to any random-utility choice model

Désir et al. (2020) Choice v Assortment Approximate Approximation for constrained problems under choice
model

Fadiloglu et al. (2010) Exogenous Assortment Optimal Optimization model with minimal data requirement

Feldman and Topaloglu MNL v Assortment Optimal & Approximate Tractable solutions under constrained nested logit model

(2015a)

Feldman and Topaloglu Mix MNL Assortment Approximate Upper bound on the optimal solution for mixed MNL

(2015b) model

Feldman and Topaloglu Choice Assortment Optimal & LP LP to obtain the optimal solution with Markov chain

(2017) choice model

Feldman et al. (2019) Choice Assortment Approximate Customer choice model with a limit on customer
substitutions

Fisher and Vaidyanathan Exogenous v Assortment Approximate Real example for parameter estimation and heuristic

(2014) application

Gallego and Topaloglu Nested v Assortment LP & Approximate Cardinality and space constraints with the nested logit

(2014) model

Golrezaei et al. (2014) Choice v - Approximate Algorithms for real-time personalized assortments

Goyal et al. (2016) Choice v Both Approximate Algorithm with provable performance under dynamic
substitution

Honhon et al. (2012) Choice Assortment Optimal Practically motivated special cases of assortment

Jagabathula (2014) Choice v Assortment Approximate Local search heuristic

Jagabathula and Choice Assortment Optimal& Approximate Nonparametric approach for joint assortment and price

Rusmevichientong (2017) optimization

Kok and Fisher (2007) Exogenous v Both Iterative Approximate Practical assortment planning approach

Mahajan and van Ryzin Utility Both Optimal& Gradient Efficient computational approach using gradients

(2001b)

Nip et al. (2017) Choice Assortment Optimal & MIO Seller can recommend products for substitution

Rusmevichientong et al. Nested v Assortment Approximate Approximation for capacitated nested logit choice model

(2009)

Rusmevichientong et al. MNL v Assortment Optimal Capacitated problem both in static and dynamic settings

(2010)

Smith and Agrawal (2000) Exogenous v Both Lagrange relaxation Demand substitution and customer service level for all
items

Sen et al. (2018) Mix MNL v Assortment MIO Conic quadratic MIO to solve large size capacitated
problems

van Ryzin and Mahajan MNL Assortment Optimal Theoretical insights on joint assortment and inventory

(1999) problem

Wang (2012) MNL v Assortment Optimal Capacitated assortment and price optimization under the
MNL model

Wang (2013) GAM v Assortment Optimal & Approximate Optimal assortment under GAM

Yiicel et al. (2009) Exogenous v Both MIO Practical and flexible model

Acronyms: (1) Choice: Consumer choice model, Nested: Nested logit choice model (2) Assortment: Assortment-based, Stock-out: Stock-out-based, Both: Both assortment and
stock-out based (2) MIO: Mixed Integer Optimization, LP: Linear Program, Optimal: Optimality Characterization

demand. In addition to the direct attraction values, this demand
model also considers switching attraction values.

Some recent work has used a ranking-based consumer choice
model to represent consumer preferences such that each customer
has a ranking of the potential product. Golrezaei, Nazerzadeh,
and Rusmevichientong (2014) propose approximate policies that
use real-time inventory information to offer personalized assort-
ments for arriving customers. Jagabathula and Rusmevichientong
(2017) incorporate price thresholds for each customer in addition
to general preference lists, and propose an approximation algo-
rithm to jointly determine an assortment set and product prices.
Honhon, Jonnalagedda, and Pan (2012) use a ranking-based con-
sumer choice model. For the special case of one-way substitutions,
they obtain optimality properties to offer an efficient optimization
algorithm. Aouad, Farias, Levi, and Segev (2018) prove the com-
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plexity of an assortment optimization when customers’ choices are
modeled through arbitrary ranking-based preference lists, but also
demonstrate that the widely studied revenue-ordered assortments
achieve the best possible approximation performance. Feldman,
Paul, and Topaloglu (2019) note that even when customers’ pref-
erence lists are incredibly limited, the assortment problem is NP-
hard for which they develop an approximation algorithm.

To model customers’ multiple substitution attempts, Blanchet,
Gallego, and Goyal (2016) propose an iterative Markov search
model where the substitution probability is indicated as a tran-
sition probability in a Markov chain. In this model, a customer
continues searching until she finds a preferred product or decides
to leave the system with no-purchase. The proposed model ap-
proximates the true choice model well and is a good approxi-
mation of existing choice models, including logit and exogenous
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demand models. They introduce a polynomial-time algorithm
to solve the corresponding assortment problem. Feldman and
Topaloglu (2017) introduce a linear-programming-based solution
for an assortment problem with a similar Markov chain choice
model. Nip, Wang, and Wang (2017) study a Markov chain choice
model with single transition, where the seller controls the set of
products to recommend for this transition. They show that the
problem is generally NP-Hard, so they provide polynomial time al-
gorithms for special cases, such as each product can only transit to
one other product. Désir, Goyal, Segev, and Chun (2020) study an
constrained assortment problem under Markov chain choice model
and introduce an approximation algorithm with a provable worst-
case gap.

The current studies that use general demand choice or Markov
chain choice either derive efficient algorithms under specific para-
metric structures, or propose approximate solutions with certain
performance bounds (Jagabathula, 2014). On the other hand, we
aim to obtain the structural properties of optimal assortments to
understand their dynamics and also use these results to intro-
duce easily implementable assortment-planning policies. Moreover,
we explicitly study the substitution effect on assortment planning,
which to our knowledge would be extremely challenging with a
more generalized demand choice model (Chung et al., 2019).

This study uses an exogenous demand model to explicitly cap-
ture customer demand substitutions. We also consider assortment
capacities, which are relatively limited compared to non-capacity
models. Assortment planning studies that do not consider assort-
ment capacity solve for the trade-off between the extra revenue
brought by including each product in the assortment and the prod-
uct’s additional operational cost. In this category, van Ryzin and
Mahajan’s (1999) seminal paper considers all product variants as
having an identical retail price and unit cost, and assortment-based
substitutions are allowed. They reveal that the optimal assortment
consists of a certain number of the most popular products, or those
with the highest demand rates.

Literature less often studies assortment planning problems that
consider constraints on the assortment capacity, such as the num-
ber of products, space consumption, and substitution ratio. Smith
and Agrawal (2000) use an exogenous demand model to observe
the effects of substitution in deciding inventory levels subject to
resource constraints; they consider either unequal product profit
margins or demand rates, but not both. Through illustrative exam-
ples, they reveal that substitution reduces the optimal number of
items to stock under fixed costs. Even if fixed costs are neglected,
it is not always optimal to offer all items in the assortment when
items have different profit margins.

K6k and Fisher (2007) study an assortment-planning problem
for which they first present a procedure to estimate the substi-
tution and demand parameters using sales summary data, then
develop an iterative heuristic to discover the assortment’s struc-
tural properties, such as deciding the priority order of the products
in the assortment. For each product subcategory, each product’s
number of facings is determined subject to shelf-space constraints.
Fadiloglu, Karasan, and Pinar (2010) provide an optimization model
to eliminate some SKUs from the shelf to prevent product pol-
lution. The demand substitution from out-of-assortment products
is defined by exogenously establishing a substitution ratio, as in
our model, as well as the relative weight of sales for each SKU.
Rusmevichientong, Shen, and Shmoys (2010) study MNL demand
for an assortment problem with a cardinality constraint; they solve
for the optimal assortment using a static model in which customer
preferences are known. Goyal, Levi, and Segev (2016) study an as-
sortment problem under dynamic substitution, stochastic demand,
and a total inventory capacity. After illustrating that the problem
is NP-hard, they provide an efficient algorithm with near-optimal
performance guarantees.
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Wang (2012) studies a joint-assortment and price-optimization
problem under a cardinality constraint and MNL demand. This
study proves that an optimal assortment’s size equals the capac-
ity when prices are jointly determined with the assortment. When
prices are set ex-ante, some low-margin products can be set out of
the assortment to direct customers to those high-margin products.
Wang (2013) studies a cardinality-constrained assortment problem
with a GAM and fixed prices. The study provides an efficient algo-
rithm to discover the optimal assortment in polynomial time for
a static problem, and to establish a time threshold structure for a
dynamic problem. Baloch and Gzara (2020) investigate the assort-
ment and stocking decisions of medications at pharmacy kiosks,
which are limited by stocking capacity. They develop several differ-
ent mixed integer optimization models that use sales data. Besbes
and Saure (2016) analyze retailers’ joint assortment and price com-
petitions under the MNL model. They reveal that the optimal as-
sortment has a nested structure to allow the products to be simply
ranked by quality values and costs; further, the optimal assortment
includes the top products in the ranking to fully utilize the capac-
ity.

Rusmevichientong, Shen, and Shmoys (2009) address an as-
sortment problem under the nested logit choice model, formu-
lated as an integer-programming problem involving a sum of ra-
tios that reduces to a knapsack problem. The authors provide a
polynomial time approximation for the optimization problem with
a budget constraint. Gallego and Topaloglu (2014) also use the
nested logit model with cardinality and space constraints for each
nest. They indicate that the optimal assortment under cardinality
constraints can be obtained through a linear program, but under
space constraints the problem is NP-hard. Feldman and Topaloglu
(2015a) also study a similar problem, but they impose a com-
mon capacity constraint on all nests. Another variant of the MNL
model is the mixed MNL model, in which customers are grouped
into multiple segments, each of which has a separate MNL model.
Feldman and Topaloglu (2015b) and Sen, Atamturk, and Kamin-
sky (2018) consider constrained assortment optimization under
this model. Sen et al. (2018) introduce a conic quadratic mixed-
integer formulation to optimally solve relatively large size prob-
lems. Feldman and Topaloglu (2015a) present an efficient algorithm
to compute the optimal assortment for the cardinality constrained
case and approximation under the general capacity constraint.

3. Assortment planning model

We model the assortment-planning problem of a manufactur-
ing firm that needs to determine its limited product portfolio due
to significant investment limitations, which is ultimately treated as
a cardinality constraint. Each product in the possible set has a pre-
determined customer preference and a profit margin. The goal is to
select the right products to be offered in the assortment to maxi-
mize the firm’s total profit from sales relative to the capacity limi-
tation.

The set of all potential products is N. Without loss of general-
ity, the total demand of the firm is reduced to a unit. The prob-
ability of demand coming for a specific product in N is known
as customer preference and is independent of the offered assort-
ment. Literature notes this demand pattern as the exogenous de-
mand model (Smith & Agrawal, 2000; Yiicel, Karaesmen, Salman,
& Tiirkay, 2009). Each product i has a certain probability of be-
ing the first choice of a visiting customer, denoted as «;, such that
O<oj<land Y o;=1.

ieN

If an arriving customer’s favorite product i is in the firm’s as-
sortment, he or she will pay r; to purchase it. If the firm does not
offer product i, then the customer may substitute another prod-
uct with probability 8 < 1. The substitution from an unavailable
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product to another product, regardless of whether it is in the as-
sortment, can occur in different ways: randomly, or to any other
product with the same probability; adjacent, or to neighboring
products according to some attributes; or proportionally according
to the demand rates of other products in the potential set N (Kok
et al.,, 2015). Here, we define proportional or “market share-based”
substitutions (Karabati, Tan, & Ozturk, 2009; Smith & Agrawal,
2000). If the customer decides to substitute his first choice with
a second one, the probability that the customer substitutes prod-
uct i with product j is
o

81] - (1 — (Xi>
where 8xx= 0. If the second-favorite product j is in the assortment,
then the customer’s demand is satisfied; otherwise, the customer
leaves the system without any purchase.

Kok and Fisher (2007) provide a detailed discussion on how
to estimate initial customer demand for each product «; and the
assortment-based substitution ratio # in an exogenous demand
model using sales data. Briefly, at a store that operates with al-
most hundred percent service level and offers an assortment that
is smaller than the potential set, demand rates are estimated from
the past sales, which may include substitutions as well. The de-
mand rates without substitutions can be estimated from sales data
of a similar store that carries a full assortment. If the demand rates
at the store with less than full assortment are higher than those in
full assortment store, it can be concluded that the substitution ra-
tio is positive and substitution ratio can be estimated by regression
model.

As this paper does not consider inventory decisions, stock-out-
based substitutions—also called dynamic substitutions—are out-
side of this paper’s scope. Consequently, the term “substitution”
refers to assortment-based substitution. Other assortment studies
in literature have also considered this form of demand substitu-
tion, also known as static substitution, such as works by Besbes
and Saure (2016), Kok and Fisher (2007), Yiicel et al. (2009), and
Umpfenbach, Dalkiran, Chinnam, and Murat (2018b). We implic-
itly assume that any demand for the products existing in the as-
sortment can be satisfied. We primarily allow for at most one
substitution attempt due to analytical tractability, which does not
significantly contribute to the model because it is possible to ap-
proximate multiple substitution behaviors with a single substitu-
tion by increasing the substitution ratio (Karabati et al., 2009; Kok,
2003; Kok & Fisher, 2007; Smith & Agrawal, 2000).

The firm’s objective is to maximize its total expected system
profit TT1(.) by selecting the best assortment set S subject to the
capacity constraint C. The quantity of products in the assortment
is denoted by |S|, where |X]| is the cardinality of a set X. Subse-
quently, the assortment-planning problem is noted as follows:

maxT1(S) =) <ozl-ri +6 Zaﬁjiﬁ)

ieS j¢s

(1)

S| <C

The profit function is composed of the expected profit from the
firm’s direct sales of customers’ first-choice demands and the ex-
pected profit from substituting the first-choice products for the
products in the firm’s assortment. Table 2 summarizes the nota-
tion used for modeling.

We first show that the profit of a given assortment problem can
be expressed as follows.

nE) =) larn+6) a;

icS i¢S

s.t.,

i
1—0lj

Ti

:Za,-r,v 1+92yj ,

ieS jeS
(2)

where y; = a;/(1 —«j).
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Table 2
Notation Used in Modeling.
Parameters
N The set of all possible products
C The firm's assortment capacity
o Probability that product i is a customer’s first choice,
ieN
Ti Profit margin per unit product i, i e N
0 Substitution ratio if a customer cannot find her first
choice
8ij Substitution probability for product i with product j,
Sii =0andieN
Variables
S The firm’s assortment set

We now show that the problem is NP-Complete even when
there is no cardinality constraint. We first state the decision ver-
sion of the problem. Given a set of products N, product profit mar-
gins r;, i € N, purchase probabilities «;, i € N and substitution ratio
6, is there an assortment whose profit is larger than or equal to
H? We state this problem formally as CAPACITATED STRATEGIC As-
SORTMENT PLANNING UNDER EXPLICIT DEMAND SUBSTITUTION.

Theorem 1. CAPACITATED STRATEGIC ASSORTMENT PLANNING UNDER EX-
PLICIT DEMAND SUBSTITUTION is NP-Complete.

Using (2), the problem given in (1) can be formulated as a
mixed integer program (MIP) as follows.

IN| IN|
x,rll{g)l(} I1= (M - 9 Z ]/ij) Zairixi (3)
Jj=1 i=1
IN|
sty x<C (4)
i=1
where
IN|
i=1

Note that the MIP given above is a mixed integer quadratic pro-
gram (MIQP) as the objective function in (3) is in quadratic form.
Since the problem is NP-complete, it is not possible reformulate
the problem as a linear program as is done by Davis, Gallego, and
Topaloglu (2013) for the assortment problem under an MNL model
and a cardinality constraint where they linearize a fractional ob-
jective function and relax the integrality constraints as the matrix
for the cardinality constraint is totally unimodular.

4. Properties of optimal assortments

In Section 3, we proved that assortment problem we study
is NP-complete. So, this section aims to obtain structural proper-
ties optimal assortment. We first analyze the assortment-planning
problem under symmetric product profit margins (r; = r), in which
products only differ in their customer demand rates «; as noted
by Cachon et al. (2005) and Alptekinoglu and Grasas (2014). Sym-
metrical profit margins result that the firm’s optimal assortment
includes a set of its most popular products. Thus, the optimal
assortment is denoted as the popular (assortment) set P. Further,
the popular assortment is the set of products in descending or-
der according to their purchase probabilities (Kok & Xu, 2011). The
most popular product i, which has the largest «;, is indexed by
i=1; accordingly, the remaining products are sorted in descend-
ing order of «;. The popular set also includes a null set, or P =
{{}. {1}, {1,2},.,{1, 2, ., N}}. The finding is stated as Theorem 2.
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Theorem 2. When all products have equal profit margins r; =r, for
i € N, the optimal assortment of the firm (i) is in the popular set and
(ii) fully utilizes the capacity C.

According to Theorem 2, the firm will fully utilize its assort-
ment capacity at the optimality and include only its most popular
products. Wang (2012) demonstrates that the assortment capacity
will be fully used when prices are endogenous. We can illustrate
that when profit margins are exogenously set at the same value,
the assortment capacity is also fully utilized, as no incentive ex-
ists to direct customers from one product to another by excluding
some products from the assortment. As a result of Theorem 2, the
optimal assortment can be easily obtained by including C number
of products with the highest demand probability.

In a more general setting, in which products may differ in both
their demand probabilities ¢; and profit margins r;, it is crucial to
consider the expected profitability of each product, defined by «;r;,
which is also called the profit rate. Let the product indices be set
such that ayry > ayry, for all x <y, and x,y € N. Product x is called
dominant over product y. Let a(i) denote the index of the product
with the it"-largest demand rate, such that g1y = 0g(2) - - - = Og(n)-
Lemma 1 explains the priority order of products as a function of
demand rates and profit margins.

Lemma 1. Product x has always a higher priority than a less domi-
nant product y (x < y) to be in the optimal assortment

(ii) or when ax > ay, if 6 does not exceed the threshold level éxy,
such that

(i) if ax < oy (where 1y = 1y will also hold trivially);

(otxTx — Olyry)(‘1 —ox)(1 - ay)
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into the assortment by removing product 3. This result can be ex-
plained by the higher demand rate of product 1 than product 3,
which also results in a higher substitution potential to other high-
margin available products, such as products 2 and 4, when prod-
uct 1 is out of assortment. When the 6 is high enough, a highly
popular product that also has a high margin can be set out of the
assortment to benefit from the product’s popularity to direct cus-
tomers to other products with even higher margins. Li (2007) notes
a similar behavior, but explains that the situation occurs due to
high overage costs and the high demand variability among the
high-margin and high-demand rate products, where substitution is
not allowed. However, our model strategically encourages substitu-
tions under customers’ high substitution probabilities.

Note that the limit on the substitution ratio (5) is a suffi-
cient condition, but not necessary; regarding the above example,
613 = 0.63. Thus, for any 6 < 613 = 0.63, product 1 is always pre-
ferred over product 3 in the optimal assortment. However, and as
previously reported, the optimal assortment is S = {1, 2,4} when
6 = 0.8. Thus, product 1 is preferable to product 3, even if the
surpasses the threshold 6;3. Benefiting from Lemma 1, the optimal
assortment is characterized in Theorem 3.

Theorem 3.

(i) If all products satisfy the relationships ry > 1y and oy < oty for x <
y, then the optimal assortment is composed of some number of the
most dominant products.

(ii) Otherwise, it is more probable for the optimal assortment to in-
clude only some number of the most dominant products, when the
6 _and/or capacity C are smaller.

By =

(5)

c-1 IN|
o
(ox —aty) 3 oty — ooty (Ty — 1y) — (Qaly — oy1y) (1 — ) (1 —ay) > 1_2;)(” — Oix0ty)
i=1

If product x is dominant over y—or oxrx > ayry—three cases are
possible regarding their profit margins and demand rates. Case
(i): ax <ay and 1y >1y. As the profit margin ry and the profit
rate axry of product x are both higher, x is more preferable for
the assortment. It is advantageous for the firm to keep product
x with a lower demand rate in the assortment, because product
y has a higher demand rate, but a lower margin can be set out
of the assortment and its demand can be directed to product x
through substitution. Here, this aims to satisfy the demand for a
low-margin item by offering a higher margin substitute although
customers express less preference for the high-margin product.

Case (ii): ax > ay and rx < ry. When the demand rate of prod-
uct x is higher than that of product y, x is always the priority if
the substitution ratio 6 does not exceed a threshold limit. If the 6
surpasses this threshold, product y might be preferred as it has a
higher margin despite its lower demand rate. The firm may bene-
fit more from directing customers to higher-margin products when
the 6 is higher.

Case (iii): ax > oy and 1y > ry. This is the most compelling case
out of the three. Although product x has a higher margin as well as
higher popularity—which directly leads to the dominance of x over
y, it is still not guaranteed that x has a higher priority than y to
be in the optimal assortment. This result can be illustrated by the
following example: Let |[N| =4 with oy =04, oy =0.3, a3 =0.2,
o4=01,1r=51,1r=61r3=5r1,=9, 6=09, and C=3. For
this problem setting, the firm’s optimal assortment is S = {2, 3, 4},
with a total expected profit of IT1(S) = 5.92. Thus, product 1, which
has a higher margin and demand rate than product 3, is out of
the optimal assortment and product 3 is in. When the problem
is solved with 6 = 0.8 by keeping everything else the same, the
firm’s optimal assortment is S = {1, 2, 4}, where product 1 is added

1126

i=C+1

Theorem 3i states that if all products can be sorted—such that
for each product pair in the possible set N, a dominant product has
a lower demand rate, and thus, a higher margin due to the defini-
tion of dominance—then the optimal assortment can be obtained
by selecting a certain number of the most dominant products. Con-
sequently, an optimal assortment can be obtained by a “greedy”
algorithm, by adding one product to the assortment at every iter-
ation until |S| = C and searching for a positive improvement in the
total profit at each iteration.

Theorem 3ii illuminates the substitution ratio and assortment
capacity’s effects on the optimal assortment’s structure. When 6 is
high, an incentive exists to exclude some highly dominant products
from the assortment. When the statement is evaluated together
with Lemma 1, it can be concluded that a dominant product with a
higher demand rate can be omitted from the assortment to benefit
from its demand rate to direct the customer to other higher-profit
margin products. Similarly, the assortment can contain more prod-
ucts under a higher assortment capacity, which increases the prob-
ability of keeping high-margin substitutes for out-of-assortment
products in the assortment. Thus, the optimal assortment may no
longer be in the dominant set.

The proof of Theorem 3ii regarding the effect of assortment
capacity C also provides an additional insight; the proof is based
on the result that as the capacity C increases, the marginal bene-
fit of adding product x over product y decreases, which may pass
through zero only once from positive to negative. This implies that
once it is more profitable to include product y over x, for y > x in
the dominance order, it is never optimal to replace product y with
x in the optimal assortment as the assortment has increased. This
result is important in developing successful “greedy” heuristic al-
gorithms.
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Table 3
Example of an Optimal Assortment for «; = {0.27,0.21,0.19, 0.16,0.13}, and r = (20, 15, 10, 10, 9).
c/e 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

1 {1} {1} {1} 1} {1} {1} {1} {1} {1} @ 1}
2 {1,2} {1,2} {1,2} {1,2} {1,2} {1,2} {1,2} {1,2} {1,2} {1,2}
3 {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} {1,2,3} @ {1,2,3} {1,2,3}}—>f1,2,4} {1,2,4}
4 {1,2,3,4}| {1,2,3,4} {1234} {1,234} {1,2,3,4} {1234} |{L23,4} {1,234} @(1,2,4} {1,2,4}
5 {1,2,3,4,5}{1,2,3,4,5}{1,2,3,4,5}{1,2,3,4,5}{1,2,3,4,5}{{1,2,3,4,5} {1,2,3,4}| {1,2,3,4} {1,2,4} {1,2,4}

While it is revealed that the assortment capacity is fully uti-
lized when all product margins are identical, this might not be the
case when products also differ in their profit margins. This is be-
cause customers are directed to high-margin products by excluding
low-margin products from the assortment. Theorem 4 proves that
the firm may take a risk in making the assortment more shallow
and expecting customers to substitute their demands with high-
margin products under a high substitution ratio. It also introduces
an upper limit on the substitution ratio, below which the assort-
ment capacity will always be fully utilized at optimality.

Theorem 4.

(i) The firm's assortment capacity is always fully utilized in an opti-
mal solution if 6 does not exceed the threshold level 6., such that

~ . N —T, N
chmm{exz X |9x>0}.
xeN IN|
x Y.
i=C+1
(ii) Capacity utilization is non-increasing in 6 and C.

C-1

1
- T 21 T
i=

Qg (i)
]*au(i)

Note that &, is a sufficiency condition, but not necessary; thus,
if the substitution ratio is small enough, the number of itera-
tions to obtain the optimal solution is the capacity-combination

. S N
of the size of the set of all products, which is |C| . So, un-

der Theorem 4i, the number of iterations is unimodal in C. When
the capacity limit C is equal to [|N|/2], the number of iterations
required reaches the highest level. If the conditions defined by
Theorems 3i and 4 i simultaneously hold, the result is straight-
forward: the optimal assortment is composed first C of the most
dominant products.

To given an idea about how obtained optimality properties de-
crease the computational complexity, for a product set with [N| =
20 and a capacity limit of 15, it is possible to decrease the num-
ber of candidate assortments by 99.99%—from 1,042,380 to 16 if all
products can be monotonically sorted according to profit margins
and demand probabilities as stated by Theorem 3i. The knowledge
of full utilization of capacity at optimality leads to a 98.5% reduc-
tion in the number of candidate assortments, to 15,504. If all prod-
ucts satisfy the dominance rule and € does not exceed the thresh-
old level &, then the optimal set is exactly composed of the 15
most dominant products.

We further expand Theorems 3 and 4 with a numerical exam-
ple. Table 3 reports the optimal assortment sets for a problem run
with different values of the assortment capacity C and substitution
ratio 6. The result indicates how the 6 and C affect the assortment
set’s dominance and capacity utilization.

Table 3 shows that with an increase in 6, the capacity utiliza-
tion rate decreases and the inclusion of less-dominant products in-
creases, indicated by (1) and (4), respectively. Moreover, as C in-
creases, the capacity utilization rate decreases and the inclusion
of less-dominant products increases, indicated by (2) and (3), re-
spectively. Note that all positive and negative changes are stated in
loose terms.

®
5. Computational insights on optimal assortments

This section investigates the optimal assortments’ sensitivity to
the changes in three parameters: the substitution ratio 0, the vari-
ance of product demand rates VAR(«), and the variance of prod-
uct profit margins VAR(r). The product set’s size is |N| =10 for
the numerical tests in this section. For each sensitivity analysis, we
use 8 different levels of the parameter under test and observe the
changes in the optimal solutions’ properties.

We generated the problem instances in three steps. Following
are the generation steps of the substitution rate sensitivity analy-
sis problem instances. Generation of product demand rate variance
and profit margin problems follow the same steps.

Step 1: Generate 10 different problem instances. Set the substi-
tution rate of all problems equal to the first level (the lowest
level tested for 6=0.07). Set all other parameters randomly
according to the distribution specified in Table 4. Scale all
a; values such that Y ; yo; = 1. These problems constitute
problem set 1.

Step 2: Take problem set 1 and increase the substitution rate
of all problems to the next level. Do not change any other
parameter value.

Step 3: Repeat step 2 until the substitution level reaches its 8th
level (the highest level tested for 6=0.97).

We solve the same problem sets for five different values of the
assortment capacity C = {3, 5, 7,9, 10}. Therefore, for each parame-
ter’s sensitivity analysis we solve a total of 10*8*5 = 400 individual
problem instances. All problem instances are solved with complete
enumeration.

Tables 5, 6, and 7 report the optimal assortment solution’s re-
spective sensitivities to the substitution rate 6; the variance in
profit margins, denoted by VAR(r); and the variance in demand
rates of all potential products in the set N, denoted by VAR(w).
These tables report for each problem set, the assortment capacity
C, the value of the parameter tested, and the average performance
measures in the optimal solution, or specifically: the average ca-
pacity utilization C, the average percentage of profit from direct
sales to the total profit DS%, the average percentage of profit from
the substituted demand sales in the total profit SS%, and the av-
erage percentage of change in the total profit relative to the first
problem set AIT'%. For a problem set s, AIT'% is computed using
(6), where p is the problem instance number, s is the problem set
number, and Isp is the total expected system profit for the prob-
lem instance p of the problem set s.

M-Iy,
Yoot 10 o x 100

10 (6)

Table 5 indicates that as the 6 increases, the capacity utilization
decreases, which confirms Theorem 4. Moreover, Theorem 3 states
that when the 6 is larger, the optimal assortment is more likely
to include a non-dominant set of products. Consequently, as 0 in-
creases for a fixed C, there might be fewer number of products

ATI% = Vsel...8.
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Table 4

Distributions of Randomly Generated Parameters 0 < o; <1 and ), yo; =1 for i =e N.
T U(1,10) 0 u(o, 1) o u(o, 1)

Table 5

The Optimal Assortments’ Sensitivity to 6. |[N| = 10.
c 0 c DS% S5% ATT% 4 C DS% SS% ATT'%
3 0.07 3.0 95.98 4.02 0.00 0.60 3.0 72.46 27.54 3242
5 5.0 98.03 1.97 0.00 5.0 81.37 18.63 18.51
7 7.0 99.22 0.78 0.00 6.7 85.92 14.08 10.65
9 9.0 99.77 0.23 0.00 7.5 87.26 12.74 6.19
10 10.0 100.00 0.00 0.00 7.5 87.26 12.74 5.41
3 0. 20 3.0 88.83 11.17 8.04 0.73 3.0 67.65 32.35 40.60
5 5.0 93.73 6.27 411 4.9 76.20 23.80 23.74
7 7.0 97.38 2.62 1.58 6.6 80.82 19.18 14.57
9 9.0 99.07 0.93 0.49 7.2 82.10 17.90 9.60
10 9.8 99.66 0.34 0.04 7.2 82.10 17.90 8.79
3 0.33 3.0 82.53 17.47 16.15 0.87 3.0 63.91 36.09 48.90
5 5.0 89.18 10.82 8.68 4.9 71.92 28.08 29.27
7 7.0 93.03 6.97 3.99 6.6 77.28 22.72 18.63
9 8.6 96.50 3.50 1.67 7.1 78.95 21.05 13.23
10 8.8 96.84 3.16 0.95 7.1 78.95 21.05 12.40
3 0. 47 3.0 77.16 22.84 24.29 0.97 3.0 61.37 38.63 55.12
5 5.0 84.87 15.13 13.59 49 69.68 30.32 33.47
7 6.7 88.66 11.34 7.16 6.5 73.90 26.10 21.87
9 8.0 92.24 7.76 3.51 6.9 74.94 25.06 16.22
10 8.0 92.24 7.76 2.75 6.9 74.94 25.06 15.37

Table 6

The Optimal Assortments’ Sensitivity to Product Margin Variances VAR(r), where (. (r) =6.5. [N| = 10.
C VAR(r) C DS% S5% ATT% VAR(r) C DS% S5% ATI%
3 0.00 3.0 81.12 18.88 0.00 2.99 3.0 79.94 20.06 5.08
5 5.0 89.55 10.45 0.00 5.0 87.02 12.98 4.45
7 7.0 95.76 4.24 0.00 7.0 91.81 8.19 3.57
9 9.0 99.42 0.58 0.00 8.6 93.45 6.55 2.40
10 10.0 100.00 0.00 0.00 9.1 94.04 5.96 2.02
3 0.19 3.0 80.96 19.04 0.72 4.68 3.0 78.61 21.39 7.73
5 5.0 89.44 10.56 0.46 5.0 86.35 13.65 6.56
7 7.0 95.52 4.48 0.40 6.9 89.47 10.53 5.28
9 9.0 98.48 1.52 0.30 8.4 92.99 7.01 3.61
10 9.8 98.96 1.04 0.24 8.8 93.16 6.84 3.14
3 0.75 3.0 80.96 19.04 1.83 6.73 3.0 78.42 21.58 10.86
5 5.0 89.10 10.90 1.46 5.0 85.18 14.82 9.03
7 7.0 94.96 5.04 1.10 6.8 88.50 11.50 7.38
9 8.8 97.56 244 0.74 8.1 89.84 10.16 5.08
10 9.6 98.09 1.91 0.62 8.4 89.98 10.02 4.47
3 1.68 3.0 80.90 19.10 3.22 9.17 3.0 78.14 21.86 14.47
5 5.0 88.22 11.78 2.70 5.0 83.73 16.27 11.86
7 7.0 93.12 6.88 2.10 6.8 88.50 11.50 9.55
9 8.8 95.18 4.82 143 8.0 89.84 10.16 6.84
10 9.4 95.36 4.64 1.15 8.3 89,97 10,03 6,11

in the optimal assortment where some less dominant products are
kept, while more dominant products will be set outside. Thus, the
ratio of substitute sales to total profit would increase, as can be
observed in Table 5. The increase in substitute sales leads to in-
creased profit, as denoted by ATT!%. On the one hand, the increase
in ATI'% is higher when C is smaller; a firm with a smaller ca-
pacity carries a smaller variety of products, although the average
capacity utilization C rate is higher, as stated in Theorem 3. There-
fore, the higher 6 would result in a higher benefit when the C is
small and the firm relies more on substitution sales.

Table 6 illustrates the optimal solution’s sensitivity to all po-
tential products’ variance in profit margins, denoted by VAR(r).
Initially VAR(r) equals zero which means all products have equal
profit margins. VAR(r) gradually increases and the variance of
product margins of all products in the set is equal to 9.17 in
the last set. In order to increase the variance, for a product set
of |[N| =10, the profit margins of the first 5 products increased
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whereas the profit margins of the last 5 products decreased grad-
ually in a symmetrical manner while keeping the mean value con-
stant at u(r) = 6.5 level.

The results indicate that as VAR(r) increases, the capacity uti-
lization may decrease, and the rate of decrease is higher when the
C is larger. This is because low-margin items are omitted from the
assortment as the variance in products’ margins increases, which
will direct customers to higher-margin products and increase the
substitute sales percentage, regardless of whether the substitution
rate changes. The total profit also increases, as now it is easier to
differentiate the higher-margin products and keep them in the as-
sortment. Intuitively, the effect of VAR(r) on the increase in profit
is smaller when the capacity is larger, as less of a need exists to
differentiate products according to their margins when more prod-
ucts can be kept in the assortment. It is noteworthy that in some
instances the average profit increases with the increase in VAR(r),
although the assortment set remains exactly the same. If the
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Table 7
The Optimal Assortments’ Sensitivity to Variances in Product Demand Rates VAR(«), where p (o) =0.1. |[N| = 10.
C VAR(x) C DS% S5% ATI'% VAR(x) C DS% S5% ATI'%
3 0.00000 3.0 73.94 26.06 0.00 0.0014 3.0 75.90 24.10 10.64
5 5.0 79.38 20.62 0.00 5.0 80.98 19.02 4.77
7 6.8 85.00 15.00 0.00 6.8 85.93 14.07 241
9 8.0 88.56 11.44 0.00 8.0 88.37 11.63 0.99
10 8.3 88.83 11.17 0.00 8.3 88.55 11.45 0.91
3 0.00009 3.0 74.03 25.97 0.62 0.0023 3.0 76.43 23.57 15.00
5 5.0 79.63 20.37 0.39 5.0 81.91 18.09 6.73
7 6.8 85.20 14.80 0.35 6.8 86.23 13.77 3.38
9 8.0 88.48 11.52 0.15 8.0 88.29 11.71 1.40
10 8.3 88.78 11.22 0.21 8.3 88.45 11.55 1.17
3 0.00036 3.0 74.49 25.51 3.29 0.0033 3.0 77.59 2241 19.83
5 5.0 80.12 19.88 1.38 5.0 82.81 17.19 8.95
7 6.8 85.41 14.59 0.83 6.7 86.14 13.86 4.52
9 8.0 88.40 11.60 0.34 7.9 87.92 12.08 1.83
10 8.3 88.72 11.28 0.44 8.2 88.06 11.94 1.44
3 0.00081 3.0 74.91 25.09 6.63 0.0044 3.0 78.13 21.87 24.90
5 5.0 80.61 19.39 3.02 5.0 83.51 16.49 11.27
7 6.8 85.72 14.28 1.57 6.7 86.63 13.37 5.71
9 8.0 88.29 11.71 0.61 8.0 88.49 11.51 2.34
10 8.3 88.64 11.36 0.67 8.3 88.49 11,51 1,72

optimal solution already includes the products with the highest
margins, increasing the variance in margins increases both direct
and substitute sales profits.

Table 7 illustrates the optimal solution’s sensitivity to the vari-
ance in demand rates of all potential products, denoted by VAR(«).
The VAR(w) is increased by dividing the product set into two
groups and increasing the demand rates of the products in one
group while decreasing the demand rates in the other group. Note
that as all products’ total demand rate always equals one by defini-
tion, then (o) =0.1. The results indicate a negligible change in ca-
pacity utilization. Consistently, the average percentage distribution
of profit from direct and substituted demand sales is almost mono-
tone in VAR(«). Alternatively, the average profit increases with the
increase in variance in demand rates. The effect on profit is even
more significant in small-capacity settings (C = 3, 5, and 7). In fact,
the results are noteworthy compared to those sensitivity effects
observed in Tables 5 and 6, in which an increase in total profit oc-
curred due to the higher substitution sales with narrower assort-
ments. With the increase in VAR(«), we do not observe any shrink-
age in assortment size or increase in percentage of profit from sub-
stitute sales. The total profits increase because the demand rates
of products in the assortment increase with an increase in VAR(«),
and thus, the outside products’ demand rates decrease, awarding
higher direct sales. In contrast, if the demand rates of products
in the assortment decrease, then the demand rates increase for
the outside products, bringing higher profits from substitute sales.
Thus, even if the profit distribution is almost constant, the system
benefits from higher sales through both higher direct sales and
substitutions. As small-capacity problems have a larger product set
left out of their assortment list, they have more options to con-
sider and can benefit more from variance changes than large ca-
pacity problems. Additionally, small-capacity problems’ profits are
less than that of large capacity problems; consequently, the same
amount of profit increase leads to a larger percentage change in
small-capacity problems.

6. Approximate assortment policies

Firms should make essentially two decisions during assortment
planning under capacity constraints: how much of the capacity to
use and which products to include in the assortment set. The de-
cision as to whether to use the complete capacity depends on the
product substitution expectations. Section 5 demonstrates that as
the substitution rate € decreases, the number of products kept
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in the optimal solution also decreases. The decision regarding the
products to include in the assortment set depends on several fac-
tors, such as the substitution rate & and individual demand proba-
bilities and profit margins of the products in the set of all potential
products N. It is noted that the optimal assortment can be deter-
mined by including all of these parameters, and a closed-form so-
lution to the optimal assortment does not seem to exist. Nonethe-
less, a firm might prefer to use a quicker, rational solution in which
all the potential products in N are sorted in a specific order accord-
ing to a predefined policy and include some of the highest-order
products in the assortment set S, with the objective of increasing
the total profit IT.

Therefore, we introduce seven different policies to sort the po-
tential products and select some of them according to this order to
be included in the assortment. These policies are based on two de-
cisions: how to arrange the products and how many of these prod-
ucts can be included in the assortment set. These policies can be
classified in two sets: policies that use all available capacity C, de-
noted by “Full-Cap,” and policies that use the capacity selectively,
denoted by “Select-Cap.” Three policies belong to the first group
and four policies belong to the second; the following explains each
policy and its rationale.

Policies that use the firm’'s full capacity provide valuable in-
formation when the firm’s capacity is less than the size of the
set of potential products. These policies sort the products using
a given rule and individually insert the products in the given or-
der until the capacity is full. The first two policies Max a;r;|Full-
Capand Max(1 — «;)r;|Full-Cap are relatively easier to implement,
and specifically, they can be useful when it is hard to predict the
substitution rate 6, which primarily determines how much of the
capacity should be utilized.

Max o;r;| Full-Cap Sort the products in descending order of
o;r;, or from most dominant to least. Multiplying the profit
margin and demand rate denotes a product’s expected prof-
itability. This policy sorts the products by the descending
order of their expected profitability, and includes the most
profitable until the capacity is full.

Max (1 — o;)r;|Full-Cap Sort the products in descending order
of (1 — e;)r; and include the highest C of them in the assort-
ment set. When product substitution is non-negligible, it can
be profitable to leave a product with a high demand rate and
low margin out of the firm’s assortment. Thus, the customer
demand for this product will be partially distributed among
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the other products in the assortment set that can bring the
firm higher profits.

Max Priority|Full-Cap Sort the products by descending priority,
where a product’s priority is defined as the total number of
products it has priority over. A product has priority over an-
other product if one of the conditions in Lemma 1 is satis-
fied. This policy counts the number of products each product
has priority over, and individually includes the products in
the assortment set by checking if this inclusion violates any
priority order. A product is ineligible for inclusion if another
product with priority over this product has not yet been in-
cluded. In each step, policy checks if the product with the
highest priority in the assortment set is eligible for inclu-
sion. If the eligibility condition is satisfied, the product is
added to the assortment until the assortment capacity is
full.

As the optimal assortment may include fewer number of prod-
ucts than the assortment capacity, we next introduce policies that
do not enforce full capacity usage. These policies individually add
products to the assortment set sequentially while checking the to-
tal profit. The total expected profit for the current solution and the
expected profit after adding the candidate product are computed
before adding the product into the assortment set, and the prod-
uct is added if the total profit improves. Otherwise, the next candi-
date product is considered for inclusion in the assortment set. For
ease of implementation, no reversing iteration occurs; specifically,
a product added into the assortment set is not taken out in further
iterations.

The first three policies, Max o;ri|Select-Cap,
Max (1 — «;)r;|Select-Cap, and Max Priority|Select-Cap use the
same sorting rules as the policies in the first group as previ-
ously defined. They include products in the assortment set added
individually from the sorted list if an addition improves the
total profit and available capacity exists. Thus, the policy stops
including more products in the assortment if either none of the
out-of-assortment products positively improves profits or the
assortment capacity is full. We then introduce a fourth selective
policy, Max IT|Select-Cap, which facilitates dynamic ordering and
selection.

Max IT|Select-Cap Sort the products in descending order of
the expected profits at each iteration. This policy at each itera-
tion evaluates all products outside the assortment set as a can-
didate. It computes the expected profit resulting from including
each of these candidate products to the current assortment indi-
vidually, and selects the one that results in the highest positive
expected profit improvement. Product inclusion continues until ei-
ther no product is left, which positively increases profit, or there is
no available capacity.

Firms can execute these policies as follows: If the firm has the
computation capability to compute the total profit in (1) and the
knowledge or a reliable prediction about the substitution rate 6,
then the policies can be executed as previously described. How-
ever, if the firm cannot compute total profit, then the policies
Maxa;ri|Select-Cap and Max(1 — a;)r;|Select-Cap can still be exe-
cuted through in-time monitoring of the total profit. The firm can
order the products in the set as described in one of these policies,
include a product in its assortment list, and wait for one period;
at the end of the period, the firm can then check if this inclu-
sion improved total profit. If total profit increased, the firm can
add the next product from the ordered set and continue includ-
ing one more product in each period. If the total profit decreases
at any point in time, the firm can remove the last added prod-
uct and include the following product in the out-of-assortment set
in its assortment set. The firm can continue adding products as
long as capacity is available and the total profit increases. In-time
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monitoring of total profit and period-by-period product selection
is applicable for systems that keep no inventory and produce in a
make-to-order setting.

We next test these policies’ performances and compare them
to each other and with the optimal solution under various prob-
lem settings. Section 6.1 tests these policies’ performances with
different product set sizes and assortment capacities and also pro-
vide performance bounds for the two best performing policies.
Section 6.2 investigates these policies’ sensitivities to changes in
the substitution rate 6, variance in customer demand rate ¢;, and
variance in profit margins r;. The optimal solution in all problem
sets is obtained through total enumeration for precision.

6.1. Policy performances

This section compares the approximate policies’ performances
under different assortment capacities C and product set sizes |N|.
For this purpose, we generated 100 problems with randomly gen-
erated parameters for |N| e {6, 10, 15, 18, 20}. All parameters are
generated using the distributions given in Table 4. Further, each set
of 100 problems generated with the product set size |N| is solved
separately for C = {3, 4, ..., |[N|}. We obtain the optimal assortment
and assortment solutions for a problem instance through each of
the approximate policies as previously introduced. The percentage
of decrease in profit from using an approximate policy over the
optimal solution ATI% is obtained, and the average percentage of
decrease in profit for an |[N| — C pair is reported by calculating over
100 problem instances, denoted as AIl%.

Figs. 1 and 2 illustrate ATII% by using approximate policies
for product set sizes 6, 10, 15, and 20, respectively. These fig-
ures plot both selective- and full-capacity policies using solid and
dashed lines, respectively. These figures indicate that selective ca-
pacity policies perform better than their full-capacity counter-
parts for all |N|, and the performance gap increases with the
increase in capacity. This is consistent with Theorem 4, which
states that capacity utilization tends to decrease with the in-
crease in C in the optimal solution; thus, selective policies closely
follow the optimal solution. All full-capacity heuristics result in
the same percentage profit gap when |[N| = C, as all these poli-
cies include all products in their final assortment solution. Max
IT|Select-Cappolicy performs the best for almost all [N| — C values.
Max (1 — «;)r;|Select-Capis the poorest-performing heuristic policy,
but its performance substantially improves when |N| approaches C.
The Max Priority|Select-Capheuristic does not perform well when
capacity is small relative to |N]|.

Table 8 reports more results on the performances of approxi-
mate policies with selective capacity by displaying the average per-
centage of decrease in profit from the optimal solution AIT%, max-
imum percentage profit decrease Max ATII(%), and the number of
instances for which the approximate and optimal solutions coin-
cide, called # hits, within the set of 100 problem instances tested
for each |N| — C pair.

Table 8 demonstrates that Max IT|Select-Cap policy outper-
forms the other policies in most cases. Moreover, the Max
«a;r;|Select-Cap policy performs much better, and especially as the
product set N is broader in terms of both the lower average
and maximum profit gaps. It is also noteworthy that when |N|
is large, the average profit gap is still less than %1 even if the
number of hits is low, or almost %50. As the Max q;r;|Select-
Cap policy includes products in descending order of their ex-
pected product profitability and the products omitted from the as-
sortment have relatively lower profitability, a difference in the fi-
nal assortment occurs compared to the optimal solution due to
these lower-profitability products, which results in a quite low to-
tal expected profit difference. Alternatively, the two other poli-
cies Max(1 — «;)r;|Select-Cap and Max Priority|Select-Cap do not
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Fig. 1. Average profit gap ATI% versus the assortment capacity for all heuristics when |N| = 6 and |N| = 10.
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Fig. 2. Average profit gap ATI% versus the assortment capacity for all heuristics when |[N| = 15 and |N| = 20.
Table 8
Selective Capacity Policies’ Performance for Different [N| — C Pairs.
N C Max I1 Max o;r; Max Priority Max (1 —a;)r;
Max # Max # Max # Max #
ATI% ATI% hits ATI% ATI% hits ATI% ATI% hits ATI% ATT% hits
6 3 0.00 0.00 100 1.07 19.60 76 1.19 27.58 81 12.23 71.23 36
5 0.00 0.47 99 0.54 12.36 80 0.70 48.21 88 1.27 2443 77
6 0.00 0.00 100 0.39 12.36 85 0.36 26.58 93 0.00 0.00 100
10 3 0.00 0.00 100 0.37 10.26 87 17.16 77.44 38 24.30 82.15 7
5 0.00 0.02 99 0.84 7.80 62 0.54 12.57 76 10.65 41.41 13
7 0.00 0.00 100 0.55 5.69 63 0.19 3.15 79 3.09 21.55 33
9 0.02 2.17 98 0.30 4.35 76 0.06 2.27 84 0.43 5.88 75
10 0.02 2.17 98 0.28 435 82 0.06 2.27 88 0.00 0.24 99
15 3 0.00 0.00 100 0.16 3.78 86 22.55 78.54 25 35.79 88.54 3
5 0.00 0.04 99 0.45 6.62 65 6.69 45.62 45 19.70 63.12 5
7 0.00 0.00 100 0.93 8.37 61 0.39 4.84 77 11.65 50.60 6
9 0.00 0.00 100 1.03 6.48 36 0.25 2.78 65 5.28 23.61 15
13 0.00 0.00 99 0.42 5.45 54 0.06 1.00 81 0.37 4.23 72
15 0.00 0.00 99 0.28 2.99 68 0.02 0.58 85 0.00 0.00 100
18 3 0.00 0.00 100 0.02 0.88 96 26.80 72.96 14 33.82 85.87 2
7 0.00 0.00 100 0.58 4.54 56 2.76 38.87 56 15.71 42.52 1
11 0.00 0.01 99 0.73 6.31 42 0.14 2.13 72 6.19 31.84 5
15 0.00 0.00 100 0.32 3.23 49 0.06 1.37 77 1.07 9.63 52
17 0.00 0.00 100 0.21 3.16 61 0.03 0.62 83 0.22 3.15 79
18 0.00 0.00 100 0.18 3.16 72 0.02 0.62 91 0.00 0.00 100
20 3 0.00 0.00 100 0.08 1.88 89 29.32 69.50 12 36.48 85.34 1
7 0.00 0.00 100 0.38 2.68 59 3.64 29.72 44 17.60 41.08 1
11 0.00 0.02 98 0.62 4.04 45 0.17 1.73 73 6.92 24.21 1
15 0.00 0.41 99 0.37 3.12 46 0.08 1.13 69 1.62 11.89 34
17 0.00 0.41 98 0.25 2.87 58 0.05 1.02 78 0.44 5.75 65
20 0.00 0.41 98 0.16 2.87 76 0.03 1.45 91 0.00 0.00 100
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Table 9
Selective Capacity Policies’ Sensitivity to 6. |[N| = 10.

European Journal of Operational Research 294 (2021) 1120-1138

% C Max I1 Max o; x I Max Priority Max (1 —q;) x1;
Max # Max # Max # Max #
ATI% ATI% hits ATI% ATI% hits ATI% ATl% hits ATI% ATl% hits

0.07 3 0.00 0.00 10 0.05 0.54 9 7.65 21.92 5 31.45 77.80 1
5 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 17.59 44.04 1
7 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 9.69 19.93 0
9 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 0.75 4.24 6

10 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10
0.33 3 0.00 0.00 10 0.48 4.20 7 7.52 19.22 5 28.69 74.93 1
5 0.00 0.00 10 0.29 1.58 7 0.14 0.91 7 12.91 38.24 2
7 0.00 0.00 10 0.43 1.28 5 0.31 1.28 6 4.84 13.10 3

9 0.00 0.00 10 0.10 1.05 9 0.00 0.00 10 0.00 0.00 10

10 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10
0.60 3 0.00 0.00 10 0.87 6.79 7 11.62 51.02 4 26.63 72.65 1
5 0.00 0.00 10 0.55 2.72 6 0.22 2.03 8 9.81 33.32 2
7 0.00 0.00 10 1.07 5.05 7 0.00 0.00 10 2.54 6.87 4

9 0.00 0.00 10 0.31 1.59 7 0.00 0.00 10 0.00 0.00 10

10 0.00 0.00 10 0.31 1.59 7 0.00 0.00 10 0.00 0.00 10
0.87 3 0.00 0.00 10 1.30 8.71 5 14.45 50.44 4 25.12 70.79 1
5 0.05 0.48 9 1.29 5.08 4 0.66 2.99 6 7.51 29.09 3
7 0.00 0.00 10 0.47 3.06 7 0.03 0.32 9 1.13 4.12 5
9 0.00 0.00 10 0.32 2.98 8 0.00 0.00 10 0.02 0.24 9
10 0.00 0.00 10 0.32 2.98 8 0.13 1.33 9 0.02 0.24 9
0.97 3 0.00 0.00 10 1.47 9.31 5 14.41 50.25 4 24.67 70.18 1
5 0.11 1.10 9 1.63 5.88 4 0.58 2.92 7 6.84 27.65 3
7 0.00 0.00 10 0.83 4.23 4 0.18 1.29 6 0.79 3.22 6
9 0.00 0.00 10 0.71 4.44 6 0.12 0.90 8 0.04 0.42 9
10 0.00 0.00 10 0.71 4.44 6 0.12 0.90 8 0.04 0.42 9

Table 10
Selective Capacity Policies’ Sensitivity to the Product Margin Variance VAR(r), where w(r) =6.5. |[N| = 10.
VAR(r) C Max I1 Max o x 13 Max Priority Max (1 —oy) x1;
Max # Max # Max # Max #
ATT% ATl% hits ATI% ATl% hits ATI% ATI% hits ATI% ATI% hits

0.00 3 0.00 0.00 10 0.00 0.00 10 15.90 59.74 5 78.28 88.58 0
5 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 58.90 68.28 0
7 0.00 0.00 10 0.00 0.00 10 0.31 3.08 9 34.60 51.37 0
9 0.00 0.00 10 0.00 0.00 10 0.17 1.14 8 8.80 21.20 0

10 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10
0.75 3 0.00 0.00 10 0.00 0.00 10 7.62 34.87 5 52.11 71.70 0
5 0.00 0.00 10 0.18 1.36 8 0.36 2.29 8 26.71 55.08 0
7 0.00 0.00 10 0.16 1.04 7 0.25 1.90 7 14.63 34.35 0
9 0.00 0.00 10 0.07 0.43 7 0.51 217 5 6.23 19.09 1
10 0.00 0.00 10 0.06 0.43 8 0.17 1.12 8 0.09 0.93 9
2.99 3 0.00 0.00 10 0.21 1.07 8 6.44 24.46 5 39.10 67.13 0
5 0.05 0.48 9 0.64 3.38 6 0.30 1.47 7 16.61 40.36 0
7 0.15 1.55 9 0.75 241 6 0.52 2.12 7 5.75 17.92 2
9 0.21 2.10 9 0.61 3.40 5 0.79 3.40 4 0.47 343 6
10 0.21 2.10 9 0.42 2.10 7 0.64 2.39 6 0.00 0.02 9
4.68 3 0.00 0.00 10 1.07 3.08 6 8.04 28.12 3 32.36 60.75 0
5 0.00 0.00 10 1.14 6.01 7 0.81 2.60 6 11.88 37.33 0
7 0.01 0.10 8 0.96 4,58 7 0.70 4.30 5 4,53 16.57 4
9 0.00 0.00 10 0.93 5.28 7 0.34 2.52 5 0.31 2.72 6
10 0.00 0.00 10 0.75 3.79 8 0.12 0.51 6 0.02 0.20 9
9.17 3 0.00 0.00 10 1.59 8.77 7 11.79 36.89 4 24.16 58.53 0
5 0.00 0.00 10 1.03 5.95 7 0.21 1.66 8 9.02 31.08 3
7 0.00 0.00 10 1.30 7.34 8 0.12 1.08 8 2.54 13.86 4
9 0.00 0.00 10 0.81 5.46 8 0.01 0.13 9 0.14 1.29 8
10 0.00 0.00 10 0.81 5.46 8 0.01 0.13 9 0.01 0.13 9

exhibit a monotonous performance in |N|, but can be said to per-
form better as C/|N| is higher, which is clearly observed in Fig. 3;
this figure illustrates selective capacity heuristics’ performances for
different capacity-to-product set size ratios C/|N|.

One exception is that the Max(1 — «;)r;|Select-Cap policy per-
forms extremely well when |N| = C, and even in some cases better
than Max IT|Select-Cap. As explained at the beginning of Section 6,
a firm must compute its total expected profit from adding each
candidate product at each iteration to use Max IT|Select-Cap pol-
icy, but the other approximate policies can be used by period-by-
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period profit monitoring. Therefore, when |[N| =C, it is more ef-
ficient to use Max(1 — «;)r;|Select-Cap policy; otherwise, the firm
can select either the Max Priority|Select-Cap or Max «;r;|Select-
Cap policies according to its capacity. Fig. 3 shows that apart from
the extreme performance of Max IT|Select-Cap, if the capacity-to-
product set size ratio is less than the 0.5 level, the Max «;r;|Select-
Cap policy performs well. When C/|N| surpasses 0.5, the firm
should prefer the Max Priority|Select-Cap policy.

Relying on superior performance of Max II|Select-Cap and
relatively well performance of Max o«;r;|Select-Cap heuristics in
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Table 11
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Selective Capacity Policies’ Sensitivity to the Product Demand Rate Variance VAR(«), where p (o) = 0.1. |[N| = 10.

VAR(x) C Max I1 Max o x 1; Max Priority Max (1 —¢;) x 13
Max # Max # Max # Max #
ATI% ATI% hits ATI% ATI% hits ATI% ATI% hits ATI% ATI% hits
0 3 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10
5 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10
7 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10
9 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10
10 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10
0.0014 3 0.00 0.00 10 0.55 3.75 8 18.73 54.09 4 11.50 34.80 1
5 0.00 0.00 10 0.38 2.01 7 0.55 3.71 7 3.56 12.68 4
7 0.00 0.00 10 0.27 1.70 6 0.01 0.09 9 2.74 9.25 4
9 0.00 0.00 10 0.17 1.70 9 0.00 0.00 10 0.36 2.40 8
10 0.00 0.00 10 0.17 1.70 9 0.00 0.00 10 0.00 0.00 10
0.0023 3 0.00 0.00 10 0.19 1.29 8 19.97 59.25 4 19.18 43.34 1
5 0.00 0.00 10 0.82 6.14 7 0.64 432 7 497 16.67 3
7 0.00 0.00 10 0.68 418 6 0.38 3.72 7 3.90 13.00 4
9 0.00 0.00 10 0.26 2.03 8 0.05 0.54 9 0.58 327 8
10 0.00 0.00 10 0.26 2.03 8 0.05 0.54 9 0.00 0.00 10
0.0033 3 0.00 0.00 10 0.00 0.00 10 19.60 65.43 5 23.58 51.48 1
5 0.00 0.00 10 0.73 4.67 7 0.41 2.49 8 6.55 20.35 3
7 0.00 0.00 10 0.55 2.40 6 0.23 2.23 8 495 16.74 4
9 0.00 0.00 10 0.36 2.40 7 0.03 0.25 8 0.79 4.10 8
10 0.00 0.00 10 0.27 2.40 8 0.03 0.25 8 0.00 0.00 10
0.0044 3 0.00 0.00 10 0.22 2.21 9 17.31 63.41 4 27.81 59.29 1
5 0.00 0.00 10 0.40 3.23 7 0.06 0.59 9 1033 26.53 2
7 0.00 0.00 10 0.62 3.34 6 0.01 0.09 9 5.98 2033 4
9 0.00 0.00 10 0.28 2.79 9 0.00 0.00 10 1.07 5.07 7
10 0.00 0.00 10 0.28 2.79 9 0.00 0.00 10 0.00 0.00 10
35 entire expression in the parenthesis is likely to be positive. When
. the set S is large, it is possible that the expression in the paren-
0 —+=Max I thesis is negative. Lemma 3 shows that the set function IT (profit
55 —e—Max ai*ri function) is monotone non-decreasing in the assortment as long as
Max Priority 6 is sufficiently small to satisfy
é.‘ 20 == Max (1-ai)*ri 9 < ajrj ) (8)
E s Vi Xies Qili = QT Y igsugj) Vi
<

v

(U . : : "
0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

C/IN|

Fig. 3. The average profit gap ATI% versus the capacity rate C/|N| for selective ca-
pacity heuristics.

AL SUED SEED Sumn Sumn 4

numerical results, next we theoretically prove their worst case per-
formances. In order to develop a performance guarantee for the
greedy heuristic Max IT|Select-Cap , we first show that the set
function IT is submodular. Remember that for any set €2, a set
function f is submodular if f(SU{j}) — f(S) > f(Tu{j}) — f(T)
forany Sc Qand Tc QwithScTand jeQ\T.

Lemma 2. The set function Il is submodular.

We next show the conditions under which the set function IT
is non-decreasing.

Lemma 3. The set function I1 is non-decreasing if

airj+0 oy Y vi—y;y i) >0, forallScNand jeN\S.
i#S0L) ies

(7)

Note that the first term in the parenthesis in (7) is large
whereas the second term is small for small S and therefore the
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Using the results in Lemmas 2 and 3, we are now ready show
the performance bound on the Max IT|Select-Cap , i.e., the greedy
heuristic. Theorem 5 is simply using the result in Nemhauser,
Wolsey, and Fisher (1978), which shows that under a cardinality
constraint, a greedy heuristic produces a solution that is at least
1— ((C—=1)/0) times the optimal value where C is the maximum
cardinality allowed.

Theorem 5. If I1 is non-decreasing, Max IT|Select-Cap heuristic has
performance guarantee of

C-1\¢
1- (7) .
C
Note that a lower bound for the performance guarantee in
Theorem 5 is 1 — 1/e ~ 0.632 which is the limit of the guarantee
as C goes to infinity.

Next, we prove the performance bound for Max «;r;|Select-Cap ,
which is shown to perform quite well in numerical analyses.

Theorem 6. The Max o;ri|Select-Cap heuristic has performance
guarantee of

T'min (9 Tmin + rmax)

Tmax (€ Tmax + Tmin)

where Ty, = minjey rj and rmax = Maxjen T}

6.2. Sensitivity of approximate policies
As heuristic selective capacity policies dominate their full-

capacity counterparts in terms of performance, this section investi-
gates the selective capacity policies’ sensitivities to the changes in
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the substitution rate €, and variances in the demand rates VAR(«)
and profit margins VAR(r) of all potential products in the set N.
The policies’ sensitivities are tested using the same problem sets
as described in Section 5, but the results are only reported for
IN| = 10.

Table 9 demonstrates that Max IT|Select-Cap policy continues
to outperform for various 6 values. The Max «;r;|Select-Cap and
Max Priority|Select-Cap perform better when the 6 is smaller,
while the Max «;rj|Select-Cap policy performs relatively better
with higher 6 values. An improvement in performance for Max
(1 — aj)r|Select-Cap is expected because it becomes more bene-
ficial to include high-margin and low-demand items in the assort-
ment set when the substitution rate increases. As the substitution
rate is high, the omitted products’ high demand rates contribute to
substitute products’ sales. As Max (1 — «;)r;|Select-Cap policy se-
lects the high-margin, low-demand items, it starts to perform well,
even at mid-capacity levels.

Table 10 exhibits the policy performances relative to the
changes in product margin variances. The results reveal that an
increase in product margin variances improves the performance
of Max (1 - «;)ri|Select-Cap . As this variance increases, Max
Priority|Select-Cap performs more poorly than Max «;r;|Select-
Cap in most cases, even with a relatively large capacity.

Table 11 indicates that with an increase in demand rate
variances, the Max Priority|Select-Cap again outperforms Max
a;r;|Select-Cap in large-capacity cases.

7. Concluding remarks

This paper examines the strategic assortment optimization
problem of a firm. It is a strategic level decision, because man-
ufacturing infrastructure investment is based on the assortment
selected. Our proposed methodology is also applicable to other
problem settings without significant inventory concerns during the
assortment optimization stage. We consider the cardinality con-
straint on the assortment and customer demand is defined with
an exogenous demand model, where each customer has a prede-
termined preference for each product from the potential set. Pro-
portional demand substitutions are also considered to explain cus-
tomer behavior for the out of assortment products.

The analytical study of the proposed model shows that the
firm’s optimal assortment is composed of the most popular prod-
ucts and fully utilizes the assortment capacity when all products
have symmetric profit margins. So, the optimal assortment can be
easily obtained by including the products with the highest de-
mand probability to fill the capacity. When products have asym-
metric profit margins, it is necessary to examine each product’s
expected profitability. If all products can be sorted monotonically
in increasing order of their profit margins and decreasing order of
their demand probabilities, the optimal assortment is composed of
some number of most dominant (profitable) products. The ratio-
nale behind this optimality property is to keep a low profit mar-
gin, but high demand products out of the assortment, so that their
demands can be directed to higher margin substitutes. Knowing
that the optimal assortment is composed of some number of the
most dominant products, it is possible to significantly decrease the
number of possible assortments compared to full enumeration. If
all products do not posit monotonic ordering of profit margins and
demand probabilities, some number of highly dominant products
can omitted from the assortment under a high substitution ratio,
which increases the probability of retaining high-margin substi-
tutes.

Capacity is not always fully utilized when profit margins are
asymmetrical; it is better to exclude some high-demand and low-
margin products from the assortment to direct customers to higher
margin products. We prove a threshold value on the substitution
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ratio, below which the capacity is always fully utilized at optimal-
ity. This can lead to an additional reduction in the number of pos-
sible assortments to find the optimal solution, despite a closed-
form solution to the optimal assortment does not seem to exist. To
further simplify assortment planning in practice to obtain a quick
and rational solution, seven different heuristic algorithms are de-
fined by relying on the optimality properties obtained in this study
and compared to optimal solution. Among these heuristics, the
greedy policy, which adds the product among all remaining can-
didate products with the highest positive expected profit improve-
ment to the current assortment, performs the best. This policy re-
sults in an assortment solution with a less than 1% average profit
gap of the optimal solution for a possible product set size of 20. It
is also demonstrated that policies that add products to the assort-
ment selectively perform better than those that enforce assortment
capacity usage to the limit.

This study contributes to assortment optimization literature by
demonstrating properties of optimal assortment in a generalized
model where both demand rates and profit margins can be prod-
uct specific and demand substitutions among products are explic-
itly allowed. The current study can also be further detailed and
extended. Specifically, one compelling but challenging extension
would involve endogenously deciding production capacities for the
products to be included in the optimal assortment. This is partic-
ularly difficult because both capacity-and assortment-based substi-
tutions should be considered; however, it would be valuable to ob-
serve how the resulting assortments’ characteristics could change
under a more comprehensive future approach.
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Appendix A. Proofs of Lemmas/Theorems

Proof of Theorem 1. Clearly, the problem is in NP, since one can
compute the profit of a given assortment and verify whether it
is larger than or equal to H or not in polynomial time. We will
show that an instance of the SUBSET Sum problem can be trans-
formed to an equivalent strategic assortment planning problem un-
der explicit demand substitution. The SUBSET SuM is a known NP-
complete problem (Garey & Johnson, 1979) and can be stated as
follows. Given a finite set N, size sj € Z* for each j e N, and a pos-
itive integer B, is there a subset S € N such that }°; ¢s; = B?

We first show that the profit of a given assortment problem can
be expressed as follows.

a
Z ol +9206j71 _’a‘ri = ZO{J’,’ 1+6 Z]/] s

ieS i¢S J ieS j¢s

where y; = @;/(1 — «;). The profit can be then expressed as

Dlar J[1+0 )Y vi-0> ¥

ieS ieN ieS

(9)

Assume that };_ys; is even. Now consider the assortment op-
timization problem with the following parameters

Si

_ _Si+1<
_S,'-i-K’

i= K

0=1,

@i

where K is a sufficiently large even integer which ensures
Yien@ <1 (One can always find K that is strictly smaller than
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Y icn Si)- The decision problem is whether there is any assortment
S C N with a profit that is larger than or equal to

2
1
H= W(IH—ZS,) )

ieN

The profit in (9) can be written as

The function f is concave and obtains its maximum at

1
5 (K + Z si)
ieN

leading to optimum value

2
1
w (K + Zs,-) )
ieN

But this is only achievable if there is a subset S where

> si= <K+ Zs,)
ieS ieN

Hence the assortment problem has a solution with profit that is

larger than or equal to H = ;W(I<+Zi€,\,si)2 if and only if the
SUBSET SUM problem with

1
=3 <1< + ZS’)
ieN

has an affirmative answer. Since SUBSET SuM is NP-Complete so is
CAPACITATED STRATEGIC ASSORTMENT PLANNING UNDER EXPLICIT DE-
MAND SUBSTITUTION. []

Proof of Theorem 2. (i) Consider adding either product x or y to
an existing assortment S, such that ax > ay. Let ¥x(S) denote the
marginal benefit of adding product x to an existing assortment S,
assuming that |S| < C — 1, or specifically, the assortment capacity is
not exceeded by adding product x. The increase in profit is denoted
by adding x as follows:

Dx(S) =TI(SU(x}) —TI(S) =rax +10 > iy —10 ) ctxbsi.
i¢Su{x) ieS

Next, we consider adding product y to assortment S.

By(S) =TS Uy} —TI(S) =ray +10 Y iy — 10 Y .
igSu{y} ieS

When we replace §; with its open form fi the difference be-

tween the two alternative assortments’ margmal profits is obtained
as follows:

Ux(S) — 0y(S)

:r(ax—ay)+r9[ax > ﬁ—ay Z

igsulx) ¢ i¢Sul } i
oy
_Z (1—oex 1—ay)]

ai(ax —ay)  axoy (o —ay)
=r(ax—ay) +10[ Y -
igSony) — 1 —ax)(1—ay)

3 (o —ay)
% (1-ax)( —ozy)]
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0 (otxoty + Y ies )
= - 1- ———= 40
r(le Oly)[ (1 — le)(l _ay) ,¢Suz{xy}

Consider the first and second terms inside the square brackets in
(10). We can demonstrate that
0 (ax0ty + s i)
(1-a)(1-ay)
1 —ay — oy + ooy > 0 (axary + Za,—)
ieS
T—ax—ay—0) ;> (6 - Daxay (1)
ieS

]. (10)

1>

As 1 —oayx—oy > > ;s holds by definition, and given that 6 <
1, the left-hand side of (11) is non-negative, while the right-hand
side is non-positive. Thus, (11) is always satisfied, and the sum of
the terms inside the square brackets in (10) is non-negative. Con-
sequently, it is never better to include y rather than x for ax > ay.
Hence, a single firm’s optimal assortment exists in the popular set
when all products have the same profit margin.

(ii) Consider the marginal benefit of adding product x to an ex-
isting assortment S. After replacing §;, with its open form %

o’
6x(S) is rearranged as follows:

9x(S) = ro + rod Z

igsux) ieS
1
:rax<1+9 3 1_% 91—7%2“’)' (12)
igSu{x} ieS

Consider the first and third terms inside the parentheses in (12).
We can demonstrate that

1>6 1 > e
1- X ies

1zax+6‘2a,-.
ieS

The result holds given that 6 < 1, >;_y @;=1, and SU {x} < N. Thus,
it is always profitable to add a product to the assortment as long as
capacity is available. Hence, capacity is fully utilized at the optimal
assortment when all products have the same profit margin. O

Proof of Lemma 1. (i) Consider adding product x to an existing
assortment S. The marginal profit of adding x is as follows; recall
that ¥4 (S) denotes the marginal benefit of adding product x to an
existing assortment S assuming that |S| < C— 1, or that the assort-
ment capacity is not exceeded by adding product x:

U (S) = axry + 110 Z a;bix — 0 Z QlxOyiTi.

i¢Su{x} ieS
Now we consider adding product y to the existing assortment S.
ﬂy S) = ayly + Ty9 Z Oli(s,‘y -6 Zozycsy,»ri.

igSuly} ieS

When we replace J; with its open form—and after some
rearrangement—the difference in the two alternative assortments’
marginal profits is noted as follows:

Ux(S) = 9y(5)

= (oxrx — ayry)+‘9(axrx ayry) Z

igSuU{x,y}
(e L T 2 r,)
O[y) ieSu{x} (] - X) ieSu{ y)

= (Qury — ayly) + 0 (axlx —ayry) >
igSuU{x,y}

Ty Iy Olx
+9<“*“y(<1—ay>’<1—ax>)+§ W=y ey - ) (13)

Oéi
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In (13), the first term is the profit difference from direct customer
demands, the second term occurs due to the substitution from out-
of-assortment products, and the last term is the profit difference
between the substitution from product y to other existing prod-
ucts and the substitution from x to others. The first and second
terms in (13) are non-negative, as indicated by the dominance of
X OVer y, or axry > ayty. Within the third term, the second part
is non-negative, because oy > oy and (1 —oay) < (1 — orx). Regard-
ing the first part within the third term, as rxax > ryay and oy < oy
by definition, it follows that (1 —oy) < (1 —ax) and ry > ry. Then
it is easy to see that ry/(1 —ay) > 1y/(1 — ). This proves that the
third term in (13) is also non-negative. Thus, the expected marginal
profit from adding product x to an existing assortment rather than
y is non-negative under the given conditions.

(ii) Reconsider the difference in marginal benefits of adding
product x and y to an existing assortment S stated by (13). (13) can
be rearranged as follows:

Ux(S) = 0y(S)

= (0xly — 0otyTy) + O (ol — ayTy) Z
igSu{x,y}

_al

—ay) >l

( ieS 905)(0{y(7’x(1 —Qy) — ry(1 - ay))
(1 —ax)(1 - Oly) (1 —oax)(1 - ay) '

Under the condition that ryax > ryay and oy > oy, (14) decreases
with a decrease in the second term and an increase in the third
term. In the second term, the summation is over i ¢ SU {x, y} and
in the third term, the summation is over i € S. So, when the set
i¢ SU{x,y} gets smaller, the set i € S is expanded. For a given x
and y, Ux(S) — ¥y(S) obtains its minimum value when the current
set S contains maximum number of products, so i ¢ SU {x,y} gets
it smallest size. By definition, ©#;(S) denotes the marginal benefit of
adding product i to an existing assortment S, so it should hold that
|S| <C—1. Then, when |S|=C—1, set i¢ SU{x,y} is minimized
and the set i € S is maximized. Recall that a(i) denotes the index
of the product with the it" largest product preference, such that

o; e .
Qg(1) = Q(2) - - - = Qg()- Subsequently, > gy ) 17—;1] has a mini-

IN| Ya(i) T ins i i
mum value of 7" 11 Tagg Moreover, );.go;r; obtains its maxi-

mum value when the most dominant products are in S, such that

(14)

Yieseirti = Y1 ar;. Thus, we can state that
D (S) — 1y(S)
IN| Qaiy
> (ourx —oyry) | 1+6 Z o
i=C+1
,9( — ) Zlc ”a‘r"faxay(rx(l o) —1y(1 *ay))

(1 —ax)(1- o5y)

For this minimum marginal profit difference to be non-negative, it
should hold that

(axrx — ayry) (1 — o) (1 — aty)

0 <
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negative to positive as the 6 increases. Next, we first note
that if ry > ry and ax < ay do not simultaneously hold, then
either rx > 1y, and oy > @y or ry <1y and ax >y from the
definition of the dominance relationship between x and y
for x < y. Thus, let ax > ay; as |S| increases while the second
(always non-negative) term decreases, the third term with
a minus sign in front increases. Thus, (14) decreases over-
all. As the capacity C increases, |S| can increase, and thus,
the marginal benefit of adding product x over product y de-
creases, which may pass through zero only once, from posi-
tive to negative. O

Proof of Theorem 4. (i) Consider the change in profit by adding
one more product, such as x, to an existing assortment set S:

l?x(S) = QixI'x + rx9 Z ot,»8,~x -0 ZO[X(SXI'TI'
i¢SU{x} ieS
= Ty + Ty Z — 05;
igSufx } ieS
:ax[rx—i—e(rx > 1_% l— Zoer,)] (15)
igSu{x
Let the value of 6, which makes ¥«(S) =0, be called 6s,, such
that
—,
QSX = ( - X )
T D igsuix) % - 1_]TX D ies il

For 0 < 6, adding product x to the current assortment S is not
harmful, and thus, product x can be added. If 65, <0, then prod-
uct x is profitable if included in the assortment independent of
the 0. If 05, > 0, over all possible S sets, 95x obtains its smallest
value for the minimum value of 3;.q,1y) 1o and maximum value
of Y ;.sar;. Given a capacity of C, the mmlmum set of i ¢ SU{x}
is obtained when |S| =C — 1. Recall that a(i) denotes the index
of the product with the itf-largest product preference, such that
Og(1) = Ug(2) - -+ = Ogqny- Subsequently, 3 q 4 % has the mini-

o,
mum value of Z!N‘CH 72}’)
Q

value when |S|=C—-1 of Zl 1 aify, such that aqry > apry... >
anry by definition. As a result, 0, achieves its minimum non-
negative value as denoted by 6, such that

i }

Among all non-zero éx, the minimum value of éx over all x is
denoted by 0., which is the critical substitution level to add any
product i, ori e N. If 0 < O, it is always profitable to add a prod-
uct to any given assortment as long as the capacity limit is not
exceeded. Further, 6. can be formally defined as

Moreover, Y ;.s;f; has a maximum

—Iy

Qq(i)
—Uq(i)

IN|
i=C+1 1

@ = max {O,
x>

(o

which is called yy. O

Proof of Theorem 3.

(i) This directly follows from Lemma 1i.

(ii) Consider the equation ¥x(S) — 9y(S) in (14). We know that
the sum of first two terms is always non-negative by defi-
nition, and the last term is a linear function of 6. Thus, if
the last term with a minus sign in front is positive, and the
total is positive, (14) linearly decreases in 6, which can pass
through zero from positive to negative a maximum of once.
Consequently, there is no chance that (14) can switch from

— ) Y et — ooty (e — 1) — (o — o) (1 =) (1 =) N
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INI Qi)

O‘a(i)

—axay)

- min{@x 16, > o}
xeN

_rx
Qg (i)
—Qq(i)

min{§x>0|§x= }
xeN Zl ]ar,

IN|
Tx Zi=C+1 T

On the one hand, (ii) if 0 > 6, it is possible that (15) can be nega-
tive if the equation in parentheses is negative. If this is the case, as
6 increases the §x(S) decreases, which may lead to the capacity’s
underutilization. On the other hand, for a fixed 6, if the term in
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parentheses in (15) decreases, dx(S) also decreases. This may occur
as the set of i ¢ SU{x} decreases, which may be the result of an
increase in capacity C. O

Proof of Lemma 2. First note that

) =D arn |[{1+60) %
ieS ieS
H(SU{]}): Zotiri+ocjrj 1+92]/i—0]/j
ieS ieS
leading to
EU{i}) -TIES) =~ Y air |0y +ari| 140> yi | —ajrfy;.
ieS i¢S
Similarly, we have
H(TU {]}) — H(T) = — Za,»ri 6 Vit ol 1+6 Z]/, —ajrjé? Vi

ieT i¢T

Then,
IS u {j}) - (S) — (TI(T U {j}) - TI(T))

_ P e N,
Doairi— Y air |0y +arf| Y vi— Y v

ieT ieS i¢S igT
Since ScT, and y; >0, a; >0, r;>0 for all j, the expression
above is strictly larger than 0, which leads to the desired result. O

Proof of Lemma 3. Note that

OEU{H -TES) =D am |0y +ari[ 140> v | —ajrf ;.
ieS i¢S

Simplifying the expression and ensuring that it is non-negative

gives the desired result. O

Proof of Theorem 6. Consider the case of two products with C =
1. Assume rjaq > ryap, but ry > ry. The heuristic Max o;r;|Select-
Cap will select product 1 as its assortment. Resulting profit is

roy + 91’10[2.
On the other hand an assortment with product 2 has the following
profit
0 + 91’20[1 .
The assortment with product 2 has a larger profit and is optimal if
and only if
0> ro — r2012.
01 — 110
The performance of the Max «;r;|Select-Cap heuristic is then

~( )( )

The second term in the right hand side is increasing in o« and
decreasing in «;. However we have the conditions rjc; > rpop and
o1 + o < 1. Under these restrictions the second term obtains its
minimum at

T 0+ 5}

Using this we obtain the performance bound
r(@ry +1)

101y +11)

Generalizing this for more than two products leads to the desired
result. O

roy + 91’10[2
0 + 9T20{1

o1 + 9(12
oy + 90[1

r
)
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