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a b s t r a c t 

Buyers have easier access to a variety of products with the rise of multi-channel distribution strategies 

and the increase in new product introductions. On the other hand, firms experience greater pressure in 

offering the correct product variety given that the manufacturing infrastructure often imposes physical 

and financial constraints in attaining variety. This study examines a firm’s optimal assortment planning 

problem under an exogenous demand model, where each customer has a predetermined preference for 

each product from a potential set. Proportional demand substitutions are allowed from out-of-assortment 

products to those available. We show that the problem is NP-complete. We also show that an optimal as- 

sortment is composed of some number of the highest margin products, if one product having a higher 

margin than another implies that the former product has a lower demand rate than the latter. The firm’s 

assortment capacity is fully utilized at the optimum if the customers’ substitution ratio does not exceed 

a particular threshold. We also introduce several approximate assortment policies that can be easily im- 

plemented, and test these policies through extensive numerical analyses. The results reveal that some of 

the policies can provide less than a 1% profit gap with an optimal solution for a 20-product set. The pol- 

icy’s performance highly depends on the firm’s assortment capacity-to-product set size ratio. Moreover, 

we provide performance bounds for two of these well-performing approximate policies. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

When the Ford Motor Company revealed a newly revised Ford 

usion sedan in March 2018, they also announced that they stan- 

ardized many features of the vehicle—for example, Ford’s Co- 

ilot360 driver-assist technology—while leaving only a few addi- 

ional options ( Ford, 2018 ). The company states that this strategy 

ubstantially decreased the number of orderable configurations for 

he Ford Fusion, from approximately 20 0 0 to 36. By decreasing 

hese configurations, they decreased their manufacturing complex- 

ty with the aim to reduce costs. 

In parallel to the reduced number of configurations per 

odel, the number of car models produced in each plant 

lso significantly decreased with a similar incentive of ob- 

aining a leaner production plant operating at lower costs. 
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houdhary, Hasija, and Netessine (2018) report that between 1998 

nd 2006, the number of models produced in assembly plants 

y three major U.S. automobile manufacturers—Chrysler, Ford, and 

eneral Motors—is decreasing. For example, while Ford manufac- 

ured up to nine models per plant in 1998, the maximum number 

f models per plant decreased to three in 2006. The authors note 

hat each plant should reach a particular level of variety to balance 

he demand satisfaction benefits and excessive set-up costs. 

One critical decision for the automotive industry involves as- 

igning models and their subsequent configurations to production 

lants. These assignments are determined by tooling and capac- 

ty investment decisions that must be made between one to three 

ears before production begins. Further, this may require substan- 

ial investment, such as funds for a new assembly line, additional 

ooling, or employee training ( Jordan & Graves, 1995 ). The problem 

f assigning products to automobile production plants is a strategic 

ssortment-planning problem that does not often consider inven- 

ory. 

Generally, the firm’s limited assortment, or set of products of- 

ered at any time, should be carefully set consistent with the firm’s 

https://doi.org/10.1016/j.ejor.2021.02.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
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trategy. Assortment planning is the process of deciding (i) the 

umber of categories, called the breadth ; (ii) the number of prod- 

cts in each category, called the depth ; and (iii) the correspond- 

ng inventory levels for each product to be offered at any time. An 

ssortment of a certain size involves its relevant operational com- 

lexities and costs as well as customer sales potential. Further, as- 

ortment planning aims to offer an optimal variety of products to 

ustomers to maximize the total profit from sales relative to the 

iven costs and limitations of this variety. 

Briesch, Chintagunta, and Fox (2009) report that customers’ 

rand choice decisions can be more sensitive to assortments than 

o prices. Further, firms must attempt to implement periodical 

ssortment planning to consider customers’ changing preferences 

ver time, seasons, and the launch of new products on the market 

 Kök, Fisher, & Vaidyanathan, 2015 ). The assortment-planning de- 

ision is complex due to several trade-offs between having a rich 

ersus limited assortment. From the customer’s perspective, on the 

ne hand, a rich and variable assortment draws higher customer 

raffic ( Timonina-Farkas, Katsifou, & Seifert, 2020 ). For example, ex- 

anding an assortment in a retail setting can decrease consumers’ 

earch even with unprofitable products, consequently increasing 

rofit ( Cachon, Terwiesch, & Xu, 2005 ). On the other hand, a nar-

ow assortment can make customers’ decision easier thus increas- 

ng the probability of purchase ( de Vries-van Ketel, 2006; Mantrala 

t al., 2009 ). Moreover, Boatwright and Nunes (2001) reveal that 

educing the assortment by up to 54% increases average sales by 

1%. 

From an operational perspective, firms may also experience 

pace and budget constraints regarding the variety offered. Each 

roduct requires substantial investment, such as funds for new as- 

embly lines, additional tooling, or employee training. For example, 

oyota Europe announced that they will invest 300 million euros 

n its plant in France to build a platform to enable the produc- 

ion of new Toyota models ( Toyota-Europe, 2018 ). After a prod- 

ct is included in the assortment, operational costs per product 

re incurred because of material handling and warehousing, as 

ell as merchandize presentation ( Smith & Agrawal, 20 0 0 ), record- 

eeping, and reordering. While it might be more challenging to 

ompute the fixed assortment costs per product, a constrained 

ssortment size often inevitably arises in practice. Subsequently, 

anufacturers are limited in the number of assembly lines they 

an place into service, and each line can only produce a few mod- 

ls. Each offered product involves handling, replenishment, and in- 

entory costs, as a certain quantity of inventory should be main- 

ained. All products in an assortment are intertwined through the 

otal available budget. If all products have symmetrical or similar 

pace and/or financial needs, then assortment constraints can be 

educed to a cardinality constraint. 

Given that the assortment size will be limited because of both 

emand and cost perspectives, firms should also consider the be- 

aviors of consumers faced with a limited variety. When customers 

isit a firm, they typically demand a specific product, and its un- 

vailability may lead them to consider either leaving the firm with- 

ut purchasing, or switching to another product. The act of switch- 

ng to an alternative product when the favored product is unavail- 

ble is known as substitution ( Shin, Park, Lee, & Benton, 2015 ). This

an occur when either a shortage exists in the product’s inven- 

ory, called stockout-based substitution , or the product is not offered 

ithin the assortment, called assortment-based substitution . Corsten 

nd Gruen (2004) report that almost half of customers may tend 

o switch to different products when their favorite is unavailable. 

ustomers’ substitution-behavior effects can also further compli- 

ate firms’ assortment choices. A survey of U.S. vehicle dealers in- 

icated that 15–30% of customers switched from the car they orig- 

nally sought to one available on the lot ( Stalk, Stephenson, & King, 

997 ). Further, Mahajan and van Ryzin (2001b) indicate that firms 
1121 
an stock relatively more quantities of popular products and rela- 

ively fewer unpopular ones under substitution than in the event in 

hich substitutions are not allowed; thus, inventory will be more 

venly spread across variants. 

This paper examines the optimal assortment of a manufacturing 

rm whose assortment size constrained by manufacturing infras- 

ructure requirements ( Hart & Rafiq, 2006 ) and that explicitly con- 

iders customers’ substitution behavior. It is studied as a strategic 

roblem, thus tactical level inventory and/or production capacity 

ecisions are not incorporated at assortment planning stage. The 

xistence of product substitution complicates the assortment plan- 

ing problem. We actually show that the problem is NP-complete, 

hich invalidates the use of simple “greedy” algorithms for opti- 

al solution. So, we aim to illustrate the properties of optimal as- 

ortments to understand the effects of substitution and capacity 

onstraints on the choice of assortment. 

We demonstrate that the optimal assortment contains most 

referred products, and that its capacity is always fully utilized if 

roducts have different customer preference rates but equal profit 

argins. When products also vary in their profit margins, the op- 

imal assortment cannot be obtained with a “greedy” algorithm. 

f all products can be sorted monotonically in increasing order of 

heir profit margins and decreasing order of their demand prob- 

bilities, the optimal assortment is composed of some number of 

ost dominant (profitable) products, which can be lower than the 

ssortment capacity. It is shown that by keeping a low profit mar- 

in, but high demand product out of the assortment, its demand 

an be directed to higher margin substitutes. 

If all products do not posit monotonic ordering of profit mar- 

ins and demand probabilities, some number of highly dominant 

roducts can omitted from the assortment under a high substitu- 

ion ratio, which increases the probability of retaining high-margin 

ubstitutes. It is proven that when the substitution ratio is smaller, 

t is more likely that the assortment capacity is fully utilized and 

n optimal assortment will be composed of the most profitable 

roducts. We introduce an upper limit on the substitution ratio 

elow which the assortment capacity of the firm is always fully 

tilized at optimality. Alternatively, when the assortment capacity 

s high, capacity utilization may decrease and the optimal assort- 

ent may include some less profitable products while excluding 

ome that are more profitable to direct customers to high-margin 

roducts in the assortment. We prove that the firm may take the 

isk of a shallower assortment and expect customers to substitute 

heir demands with those that are high-margin under a high sub- 

titution ratio. 

Next, our work benefits from obtained optimality properties 

o introduce seven heuristic assortment-planning algorithms, the 

omplexities of which vary according to their optimality properties 

nd differ in a range from simple sorting to complete profit com- 

utation. Our numerical analyses demonstrate that a firm should 

onsider the product set’s size, the assortment capacity, and com- 

utational capability when deciding not only whether to use a 

euristic policy, but also which to utilize. 

We contribute to strategic assortment-planning literature by 

nalyzing a generalized exogenous demand model with product- 

pecific demand rates and profit margins under assortment capac- 

ty. We analytically show how substitution ratio affects the prod- 

ct choice as well as the optimal assortment capacity utilization. 

oreover, the approximate algorithms we introduce are efficient in 

omputation and effective in obtaining nearly optimal assortments 

roved by their performance bounds. The assortment optimization 

roblem can also be formulated as a mixed-integer model, but 

he resulting problem can still be computationally very challeng- 

ng to solve ( Chung, Ahn, & Jasin, 2019 ) and would not provide

he insights on optimal assortments that we obtain in our current 

tudy. 
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We consider manufacturing firms’ strategic assortment deci- 

ions, thus excluding inventory decisions in assortment planning. 

he proposed methodologies are also applicable to other assort- 

ent problems without significant inventory concerns during the 

ssortment planning stage, such as when either the inventory 

anagement is relatively easier as with slow-moving goods or 

ll inventory is not carried on shelves, but in a depot with lim- 

ted shelf facings ( Kök et al., 2015 ). For example, Fisher and 

aidyanathan (2014) study the assortment-planning problem for 

low-moving products with no inventory concerns motivated by 

etailers who carry a fixed, often small inventory for each SKU. 

eldman and Topaloglu (2017) provide a detailed list of similar as- 

ortment problems independent of inventory decisions. 

While we primarily express our motivation using automobile 

anufacturers, the problem setting and results are largely gen- 

ralizable to other manufacturing industries where the inclusion 

f each product in a production assortment requires substantial 

nvestment. For example, Akçay and Tan (2008) state that small 

o medium-sized enterprises (SMEs), and textile manufacturers in 

articular, collect orders from large buyers and procure accordingly 

i.e., make-to-order firms). However, each SME specializes in the 

roduction of certain types of fabric and subsequently constructs 

heir assortments accordingly. Thus, each SME commits to produc- 

ng a limited number of varieties due to the significant assortment 

osts per product. Tan and Akçay (2014) provide the furniture in- 

ustry as an example, in which a manufacturer has a production 

atalog with a limited number of models, and each model may re- 

uire a specific expertise and tooling set-up. Thus, our model and 

nsights are also valid for manufacturers operating in these indus- 

ries. 

The remainder of this paper is organized as follows. In 

ection 2 , we review related studies in literature. In Section 3 , we

resent the problem and show that it is NP-Complete. We reveal 

he analytical properties of an optimal assortment in Section 4 . 

e provide numerical analysis results to further explain and il- 

ustrate the optimal assortment’s properties in Section 5 . Next, we 

ntroduce several approximate assortment policies that are easy to 

se and compare their performances with system parameters in 

ection 6 . Finally, Section 7 presents our final remarks by summa- 

izing our findings and obtained insights from the perspective of 

ubsequent research. 

. Literature review 

Assortment planning has two main inputs. One of them is 

ustomer-related, as assortment affects customer traffic and sales. 

he other is operations-related, as the assortment size determines 

any cost terms, such as handling, shelving, and replenishment, 

s discussed in Section 1 . Thus, both operations management and 

arketing researchers work on assortment planning. This section 

resents a brief survey of related literature. Extensive reviews of 

ssortment planning literature are provided by Pentico (2008) , 

antrala et al. (2009) , Misra (2010) , Chernev (2012) , and Kök et al.

2015) . It is also worth to note that studies incorporating strate- 

ic level supply chain concerns into assortment planning problems 

re still very scarce, where one of the contributions of this study 

tands in ( Umpfenbach, Dalkiran, Chinnam, & Murat, 2018a ). 

Assortment planning literature dates back to the 1950s, when 

adowski (1959) was likely the first to label the “assortment prob- 

em” ( Pentico, 2008 ). Past studies differ in terms of the model 

haracteristics considered, such as the consumer demand model, 

emand substitution pattern, the inclusion of inventory-level de- 

isions, and the consideration of assortment capacity. Mantrala 

t al. (2009) differentiate assortment studies according to resulting 

rade-offs in optimization by considering these characteristics sep- 

rate from the consumer, retailer, and environmental perspectives. 
1122 
able 1 lists the most related past work to the current study by 

ategorizing according to demand model, whether inventory deci- 

ion is included, whether assortment capacity is used, substitution 

odel, and solution methodology utilized. Besides, main contribu- 

ion of each study to the literature is noted in the table. 

Bernstein, Kök, and Xie (2015) categorize earlier work accord- 

ng to the customer choice model used—such as the multinomial 

ogit (MNL) and exogenous demand models—which greatly affect 

he other problem characteristics that can be modeled, such as the 

ubstitution type. Chung et al. (2019) state that estimating con- 

umer behavior precisely is one of the most challenging issues 

n assortment problems and more realistic and detailed models 

acrifice from the tractability of the problem solution. The MNL 

odel is one of the most commonly used customer behavior mod- 

ls in assortment problems given its robust practical estimations, 

s noted by van Ryzin and Mahajan (1999) , Mahajan and van Ryzin 

2001a) , and Cachon and Kök (2007) . This utility-based model eas- 

ly incorporates pricing into a customer demand model. Further, 

he MNL model assumes that each customer visiting a store as- 

ociates a utility with each product that can be decomposed into 

wo parts: deterministic and random components. This assumes 

hat customers deciding from a discrete set of products are utility- 

aximizing individuals. However, two primary criticisms exist re- 

arding the MNL model. First, the independence from irrelevant al- 

ernatives (IIA) property states that a customer’s ratio of choice 

robabilities for two products is independent of other available 

hoices in the overall set. Therefore, omitting a product from the 

odel will change the parameter estimates of all the remaining 

tems at the same relative rate, which cannot always be correct. 

onetheless, this is commonly applied in the market research, eco- 

omics, and logistics fields, among others. A second criticism of 

he MNL model involves its restricted modeling of substitutions. 

In an exogenous demand model, the demand for each product 

s specified ex-ante for all possible products, and thus, does not 

epend on a selected assortment ( Smith & Agrawal, 20 0 0 ). More-

ver, customers’ substitution behaviors are predefined independent 

f the choice of assortment set. When a customer’s most favored 

roduct is unavailable—either due to stock-out conditions or it has 

een omitted from the assortment—this demand is substituted by 

he customer’s second-favorite product, which is not necessarily 

ithin the available assortment, with a predetermined probabil- 

ty. The number of substitutions can be fixed at a certain number, 

r it can continue until an available product can be reached. Ex- 

genous demand models are heavily used in the literature, espe- 

ially in studies that involve real life applications. Important ex- 

mples include Kök and Fisher (2007) , Fisher and Vaidyanathan 

2014) and Bernales, Guan, Natarajan, Gimenez, and Tajes (2017) . 

he exogenous demand model has more degrees of freedom and 

rovides more flexibility in modeling substitution behavior ( Kök 

t al., 2015 ). A recent work by Chung et al. (2019) show that using

xogenous demand models in assortment planning do not lead to 

ignificant shortfall in revenue when compared to using the ex- 

ct choice models such as mixtures of MNLs and are shown to 

pproximate any random utility model with a desired level of ac- 

uracy ( McFadden & Train, 20 0 0 ). The exogenous demand model’s 

rimary shortcoming is its lack of an underlying consumer behav- 

or model defining demand rates, which consequently requires sig- 

ificant data collected for an application. 

Gallego, Ratliff, and Shebalov (2014) introduced the generalized 

ttraction model (GAM) as a customer demand model, which is a 

eneralized model that may be reduced to the MNL or exogenous 

emand models in special cases. The MNL model ignores the con- 

umer search option when the first choice is unavailable, and this 

ields to the overestimation of recaptured demand. In contrast, the 

xogenous demand model ignores the switching option from di- 

ect demand, subsequently yielding an underestimation of overall 
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Table 1 

Overview of the most related past studies. 

Authors Demand Solution Main 

model (1) Capacity Substitution (2) method (3) contribution 

Our work Exogenous � Assortment Optimal & Approximate Explicit relationship between substitution and optimal 

assortment 

Aouad et al. (2018) Choice Assortment Approximate Approximability bounds under a general choice model 

Baloch and Gzara (2020) Empirical � Both MIO Assortment, inventory and substitution policies for kiosks 

with real data 

Bernstein et al. (2015) MNL Stock-out Optimal & Approximate Customized assortments based on available inventory 

Besbes and Saure (2016) MNL � Assortment Optimal Joint assortment and price competitions under the MNL 

model 

Blanchet et al. (2016) Choice Assortment Approximate Computationally tractable approach to choice model 

Cachon et al. (2005) MNL Assortment Optimal Accounting consumer search in assortment planning 

Cachon and Kök (2007) MNL Assortment Optimal& Approximate Competing retailers for basket shopping consumers 

Chung et al. (2019) Exogenous � Assortment MIO Approximation to any random-utility choice model 

Dèsir et al. (2020) Choice � Assortment Approximate Approximation for constrained problems under choice 

model 

Fadıloglu et al. (2010) Exogenous Assortment Optimal Optimization model with minimal data requirement 

Feldman and Topaloglu 

(2015a) 

MNL � Assortment Optimal & Approximate Tractable solutions under constrained nested logit model 

Feldman and Topaloglu 

(2015b) 

Mix MNL Assortment Approximate Upper bound on the optimal solution for mixed MNL 

model 

Feldman and Topaloglu 

(2017) 

Choice Assortment Optimal & LP LP to obtain the optimal solution with Markov chain 

choice model 

Feldman et al. (2019) Choice Assortment Approximate Customer choice model with a limit on customer 

substitutions 

Fisher and Vaidyanathan 

(2014) 

Exogenous � Assortment Approximate Real example for parameter estimation and heuristic 

application 

Gallego and Topaloglu 

(2014) 

Nested � Assortment LP & Approximate Cardinality and space constraints with the nested logit 

model 

Golrezaei et al. (2014) Choice � - Approximate Algorithms for real-time personalized assortments 

Goyal et al. (2016) Choice � Both Approximate Algorithm with provable performance under dynamic 

substitution 

Honhon et al. (2012) Choice Assortment Optimal Practically motivated special cases of assortment 

Jagabathula (2014) Choice � Assortment Approximate Local search heuristic 

Jagabathula and 

Rusmevichientong (2017) 

Choice Assortment Optimal& Approximate Nonparametric approach for joint assortment and price 

optimization 

Kök and Fisher (2007) Exogenous � Both Iterative Approximate Practical assortment planning approach 

Mahajan and van Ryzin 

(2001b) 

Utility Both Optimal& Gradient Efficient computational approach using gradients 

Nip et al. (2017) Choice Assortment Optimal & MIO Seller can recommend products for substitution 

Rusmevichientong et al. 

(2009) 

Nested � Assortment Approximate Approximation for capacitated nested logit choice model 

Rusmevichientong et al. 

(2010) 

MNL � Assortment Optimal Capacitated problem both in static and dynamic settings 

Smith and Agrawal (2000) Exogenous � Both Lagrange relaxation Demand substitution and customer service level for all 

items 

Ş en et al. (2018) Mix MNL � Assortment MIO Conic quadratic MIO to solve large size capacitated 

problems 

van Ryzin and Mahajan 

(1999) 

MNL Assortment Optimal Theoretical insights on joint assortment and inventory 

problem 

Wang (2012) MNL � Assortment Optimal Capacitated assortment and price optimization under the 

MNL model 

Wang (2013) GAM � Assortment Optimal & Approximate Optimal assortment under GAM 

Yücel et al. (2009) Exogenous � Both MIO Practical and flexible model 

Acronyms: (1) Choice: Consumer choice model, Nested: Nested logit choice model (2) Assortment: Assortment-based, Stock-out: Stock-out-based, Both: Both assortment and 

stock-out based (2) MIO: Mixed Integer Optimization, LP: Linear Program, Optimal: Optimality Characterization 
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emand. In addition to the direct attraction values, this demand 

odel also considers switching attraction values. 

Some recent work has used a ranking-based consumer choice 

odel to represent consumer preferences such that each customer 

as a ranking of the potential product. Golrezaei, Nazerzadeh, 

nd Rusmevichientong (2014) propose approximate policies that 

se real-time inventory information to offer personalized assort- 

ents for arriving customers. Jagabathula and Rusmevichientong 

2017) incorporate price thresholds for each customer in addition 

o general preference lists, and propose an approximation algo- 

ithm to jointly determine an assortment set and product prices. 

onhon, Jonnalagedda, and Pan (2012) use a ranking-based con- 

umer choice model. For the special case of one-way substitutions, 

hey obtain optimality properties to offer an efficient optimization 

lgorithm. Aouad, Farias, Levi, and Segev (2018) prove the com- 
1123 
lexity of an assortment optimization when customers’ choices are 

odeled through arbitrary ranking-based preference lists, but also 

emonstrate that the widely studied revenue-ordered assortments 

chieve the best possible approximation performance. Feldman, 

aul, and Topaloglu (2019) note that even when customers’ pref- 

rence lists are incredibly limited, the assortment problem is NP- 

ard for which they develop an approximation algorithm. 

To model customers’ multiple substitution attempts, Blanchet, 

allego, and Goyal (2016) propose an iterative Markov search 

odel where the substitution probability is indicated as a tran- 

ition probability in a Markov chain. In this model, a customer 

ontinues searching until she finds a preferred product or decides 

o leave the system with no-purchase. The proposed model ap- 

roximates the true choice model well and is a good approxi- 

ation of existing choice models, including logit and exogenous 
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emand models. They introduce a polynomial-time algorithm 

o solve the corresponding assortment problem. Feldman and 

opaloglu (2017) introduce a linear-programming-based solution 

or an assortment problem with a similar Markov chain choice 

odel. Nip, Wang, and Wang (2017) study a Markov chain choice 

odel with single transition, where the seller controls the set of 

roducts to recommend for this transition. They show that the 

roblem is generally NP-Hard, so they provide polynomial time al- 

orithms for special cases, such as each product can only transit to 

ne other product. Dèsir, Goyal, Segev, and Chun (2020) study an 

onstrained assortment problem under Markov chain choice model 

nd introduce an approximation algorithm with a provable worst- 

ase gap. 

The current studies that use general demand choice or Markov 

hain choice either derive efficient algorithms under specific para- 

etric structures, or propose approximate solutions with certain 

erformance bounds ( Jagabathula, 2014 ). On the other hand, we 

im to obtain the structural properties of optimal assortments to 

nderstand their dynamics and also use these results to intro- 

uce easily implementable assortment-planning policies. Moreover, 

e explicitly study the substitution effect on assortment planning, 

hich to our knowledge would be extremely challenging with a 

ore generalized demand choice model ( Chung et al., 2019 ). 

This study uses an exogenous demand model to explicitly cap- 

ure customer demand substitutions. We also consider assortment 

apacities, which are relatively limited compared to non-capacity 

odels. Assortment planning studies that do not consider assort- 

ent capacity solve for the trade-off between the extra revenue 

rought by including each product in the assortment and the prod- 

ct’s additional operational cost. In this category, van Ryzin and 

ahajan ’s (1999) seminal paper considers all product variants as 

aving an identical retail price and unit cost, and assortment-based 

ubstitutions are allowed. They reveal that the optimal assortment 

onsists of a certain number of the most popular products, or those 

ith the highest demand rates. 

Literature less often studies assortment planning problems that 

onsider constraints on the assortment capacity, such as the num- 

er of products, space consumption, and substitution ratio. Smith 

nd Agrawal (20 0 0) use an exogenous demand model to observe 

he effects of substitution in deciding inventory levels subject to 

esource constraints; they consider either unequal product profit 

argins or demand rates, but not both. Through illustrative exam- 

les, they reveal that substitution reduces the optimal number of 

tems to stock under fixed costs. Even if fixed costs are neglected, 

t is not always optimal to offer all items in the assortment when 

tems have different profit margins. 

Kök and Fisher (2007) study an assortment-planning problem 

or which they first present a procedure to estimate the substi- 

ution and demand parameters using sales summary data, then 

evelop an iterative heuristic to discover the assortment’s struc- 

ural properties, such as deciding the priority order of the products 

n the assortment. For each product subcategory, each product’s 

umber of facings is determined subject to shelf-space constraints. 

adıloglu, Karasan, and Pınar (2010) provide an optimization model 

o eliminate some SKUs from the shelf to prevent product pol- 

ution. The demand substitution from out-of-assortment products 

s defined by exogenously establishing a substitution ratio, as in 

ur model, as well as the relative weight of sales for each SKU. 

usmevichientong, Shen, and Shmoys (2010) study MNL demand 

or an assortment problem with a cardinality constraint; they solve 

or the optimal assortment using a static model in which customer 

references are known. Goyal, Levi, and Segev (2016) study an as- 

ortment problem under dynamic substitution, stochastic demand, 

nd a total inventory capacity. After illustrating that the problem 

s NP-hard, they provide an efficient algorithm with near-optimal 

erformance guarantees. 
1124 
Wang (2012) studies a joint-assortment and price-optimization 

roblem under a cardinality constraint and MNL demand. This 

tudy proves that an optimal assortment’s size equals the capac- 

ty when prices are jointly determined with the assortment. When 

rices are set ex-ante, some low-margin products can be set out of 

he assortment to direct customers to those high-margin products. 

ang (2013) studies a cardinality-constrained assortment problem 

ith a GAM and fixed prices. The study provides an efficient algo- 

ithm to discover the optimal assortment in polynomial time for 

 static problem, and to establish a time threshold structure for a 

ynamic problem. Baloch and Gzara (2020) investigate the assort- 

ent and stocking decisions of medications at pharmacy kiosks, 

hich are limited by stocking capacity. They develop several differ- 

nt mixed integer optimization models that use sales data. Besbes 

nd Saure (2016) analyze retailers’ joint assortment and price com- 

etitions under the MNL model. They reveal that the optimal as- 

ortment has a nested structure to allow the products to be simply 

anked by quality values and costs; further, the optimal assortment 

ncludes the top products in the ranking to fully utilize the capac- 

ty. 

Rusmevichientong, Shen, and Shmoys (2009) address an as- 

ortment problem under the nested logit choice model, formu- 

ated as an integer-programming problem involving a sum of ra- 

ios that reduces to a knapsack problem. The authors provide a 

olynomial time approximation for the optimization problem with 

 budget constraint. Gallego and Topaloglu (2014) also use the 

ested logit model with cardinality and space constraints for each 

est. They indicate that the optimal assortment under cardinality 

onstraints can be obtained through a linear program, but under 

pace constraints the problem is NP-hard. Feldman and Topaloglu 

2015a) also study a similar problem, but they impose a com- 

on capacity constraint on all nests. Another variant of the MNL 

odel is the mixed MNL model, in which customers are grouped 

nto multiple segments, each of which has a separate MNL model. 

eldman and Topaloglu (2015b) and Ş en, Atamturk, and Kamin- 

ky (2018) consider constrained assortment optimization under 

his model. Ş en et al. (2018) introduce a conic quadratic mixed- 

nteger formulation to optimally solve relatively large size prob- 

ems. Feldman and Topaloglu (2015a) present an efficient algorithm 

o compute the optimal assortment for the cardinality constrained 

ase and approximation under the general capacity constraint. 

. Assortment planning model 

We model the assortment-planning problem of a manufactur- 

ng firm that needs to determine its limited product portfolio due 

o significant investment limitations, which is ultimately treated as 

 cardinality constraint. Each product in the possible set has a pre- 

etermined customer preference and a profit margin. The goal is to 

elect the right products to be offered in the assortment to maxi- 

ize the firm’s total profit from sales relative to the capacity limi- 

ation. 

The set of all potential products is N. Without loss of general- 

ty, the total demand of the firm is reduced to a unit. The prob- 

bility of demand coming for a specific product in N is known 

s customer preference and is independent of the offered assort- 

ent. Literature notes this demand pattern as the exogenous de- 

and model ( Smith & Agrawal, 20 0 0; Yücel, Karaesmen, Salman, 

 Türkay, 2009 ). Each product i has a certain probability of be- 

ng the first choice of a visiting customer, denoted as αi , such that 

 < αi ≤ 1 and 

∑ 

i ∈ N 
αi = 1 . 

If an arriving customer’s favorite product i is in the firm’s as- 

ortment, he or she will pay r i to purchase it. If the firm does not

ffer product i, then the customer may substitute another prod- 

ct with probability θ ≤ 1 . The substitution from an unavailable 
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Table 2 

Notation Used in Modeling. 

Parameters 

N The set of all possible products 

C The firm’s assortment capacity 

αi Probability that product i is a customer’s first choice, 

i ∈ N
r i Profit margin per unit product i, i ∈ N
θ Substitution ratio if a customer cannot find her first 

choice 

δi j Substitution probability for product i with product j, 

δii = 0 and i ∈ N
Variables 

S The firm’s assortment set 
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p
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t
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{

roduct to another product, regardless of whether it is in the as- 

ortment, can occur in different ways: randomly, or to any other 

roduct with the same probability; adjacent, or to neighboring 

roducts according to some attributes; or proportionally according 

o the demand rates of other products in the potential set N ( Kök 

t al., 2015 ). Here, we define proportional or “market share-based”

ubstitutions ( Karabati, Tan, & Ozturk, 2009; Smith & Agrawal, 

0 0 0 ). If the customer decides to substitute his first choice with

 second one, the probability that the customer substitutes prod- 

ct i with product j is 

i j = 

( α j 

1 − αi 

)
here δxx = 0. If the second-favorite product j is in the assortment, 

hen the customer’s demand is satisfied; otherwise, the customer 

eaves the system without any purchase. 

Kök and Fisher (2007) provide a detailed discussion on how 

o estimate initial customer demand for each product αi and the 

ssortment-based substitution ratio θ in an exogenous demand 

odel using sales data. Briefly, at a store that operates with al- 

ost hundred percent service level and offers an assortment that 

s smaller than the potential set, demand rates are estimated from 

he past sales, which may include substitutions as well. The de- 

and rates without substitutions can be estimated from sales data 

f a similar store that carries a full assortment. If the demand rates 

t the store with less than full assortment are higher than those in 

ull assortment store, it can be concluded that the substitution ra- 

io is positive and substitution ratio can be estimated by regression 

odel. 

As this paper does not consider inventory decisions, stock-out- 

ased substitutions—also called dynamic substitutions—are out- 

ide of this paper’s scope. Consequently, the term “substitution”

efers to assortment-based substitution. Other assortment studies 

n literature have also considered this form of demand substitu- 

ion, also known as static substitution, such as works by Besbes 

nd Saure (2016) , Kök and Fisher (2007) , Yücel et al. (2009) , and

mpfenbach, Dalkiran, Chinnam, and Murat (2018b) . We implic- 

tly assume that any demand for the products existing in the as- 

ortment can be satisfied. We primarily allow for at most one 

ubstitution attempt due to analytical tractability, which does not 

ignificantly contribute to the model because it is possible to ap- 

roximate multiple substitution behaviors with a single substitu- 

ion by increasing the substitution ratio ( Karabati et al., 2009; Kök, 

003; Kök & Fisher, 2007; Smith & Agrawal, 2000 ). 

The firm’s objective is to maximize its total expected system 

rofit �(. ) by selecting the best assortment set S subject to the 

apacity constraint C. The quantity of products in the assortment 

s denoted by | S| , where | X| is the cardinality of a set X . Subse-

uently, the assortment-planning problem is noted as follows: 

max �(S) = 

∑ 

i ∈ S 

(
αi r i + θ

∑ 

j / ∈ S 
α j δ ji r i 

)
(1) 

s.t., | S| ≤ C 

he profit function is composed of the expected profit from the 

rm’s direct sales of customers’ first-choice demands and the ex- 

ected profit from substituting the first-choice products for the 

roducts in the firm’s assortment. Table 2 summarizes the nota- 

ion used for modeling. 

We first show that the profit of a given assortment problem can 

e expressed as follows. 

(S) = 

∑ 

i ∈ S 

( 

αi r i + θ
∑ 

i / ∈ S 
α j 

αi 

1 − α j 

r i 

) 

= 

∑ 

i ∈ S 
αi r i 

( 

1 + θ
∑ 

j / ∈ S 
γ j 

) 

, 

(2) 

here γ j = α j / (1 − α j ) . 
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We now show that the problem is NP-Complete even when 

here is no cardinality constraint. We first state the decision ver- 

ion of the problem. Given a set of products N, product profit mar- 

ins r i , i ∈ N, purchase probabilities αi , i ∈ N and substitution ratio 

, is there an assortment whose profit is larger than or equal to 

? We state this problem formally as Capacitated Strategic As- 

ortment Planning Under Explicit Demand Substitution . 

heorem 1. CAPACITATED STRATEGIC ASSORTMENT PLANNING UNDER EX- 

LICIT DEMAND SUBSTITUTION is NP-Complete. 

Using (2) , the problem given in (1) can be formulated as a 

ixed integer program (MIP) as follows. 

max 
x i ∈{ 0 , 1 } 

� = 

(
M − θ

| N| ∑ 

j=1 

γ j x j 

) | N| ∑ 

i =1 

αi r i x i (3) 

s.t., 

| N| ∑ 

i =1 

x i ≤ C (4) 

here 

 = 1 + θ
| N| ∑ 

i =1 

γi . 

 

Note that the MIP given above is a mixed integer quadratic pro- 

ram (MIQP) as the objective function in (3) is in quadratic form. 

ince the problem is NP-complete, it is not possible reformulate 

he problem as a linear program as is done by Davis, Gallego, and 

opaloglu (2013) for the assortment problem under an MNL model 

nd a cardinality constraint where they linearize a fractional ob- 

ective function and relax the integrality constraints as the matrix 

or the cardinality constraint is totally unimodular. 

. Properties of optimal assortments 

In Section 3 , we proved that assortment problem we study 

s NP-complete. So, this section aims to obtain structural proper- 

ies optimal assortment. We first analyze the assortment-planning 

roblem under symmetric product profit margins ( r i = r), in which 

roducts only differ in their customer demand rates αi as noted 

y Cachon et al. (2005) and Alptekinoglu and Grasas (2014) . Sym- 

etrical profit margins result that the firm’s optimal assortment 

ncludes a set of its most popular products. Thus, the optimal 

ssortment is denoted as the popular (assortment) set P . Further, 

he popular assortment is the set of products in descending or- 

er according to their purchase probabilities ( Kök & Xu, 2011 ). The 

ost popular product i , which has the largest αi , is indexed by 

 = 1; accordingly, the remaining products are sorted in descend- 

ng order of αi . The popular set also includes a null set, or P =
{} , { 1 } , { 1 , 2 } , ., { 1 , 2 , ., N}} . The finding is stated as Theorem 2 . 
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heorem 2. When all products have equal profit margins r i = r, for 

 ∈ N, the optimal assortment of the firm (i) is in the popular set and

ii) fully utilizes the capacity C. 

According to Theorem 2 , the firm will fully utilize its assort- 

ent capacity at the optimality and include only its most popular 

roducts. Wang (2012) demonstrates that the assortment capacity 

ill be fully used when prices are endogenous. We can illustrate 

hat when profit margins are exogenously set at the same value, 

he assortment capacity is also fully utilized, as no incentive ex- 

sts to direct customers from one product to another by excluding 

ome products from the assortment. As a result of Theorem 2 , the 

ptimal assortment can be easily obtained by including C number 

f products with the highest demand probability. 

In a more general setting, in which products may differ in both 

heir demand probabilities αi and profit margins r i , it is crucial to 

onsider the expected profitability of each product, defined by αi r i , 

hich is also called the profit rate . Let the product indices be set 

uch that αx r x ≥ αy r y , for all x ≤ y, and x, y ∈ N. Product x is called

ominant over product y . Let a (i ) denote the index of the product

ith the i th -largest demand rate, such that αa (1) ≥ αa (2) . . . ≥ αa (N) . 

emma 1 explains the priority order of products as a function of 

emand rates and profit margins. 

emma 1. Product x has always a higher priority than a less domi- 

ant product y ( x ≤ y ) to be in the optimal assortment 

(i) if αx ≤ αy (where r x ≥ r y will also hold trivially); 

(ii) or when αx > αy , if θ does not exceed the threshold level ˆ θxy , 

such that 

ˆ θxy = 

(αx r x − αy r y )(1 − αx )(1 − αy 

(αx − αy ) 
C−1 ∑ 

i =1 

αi r i − αx αy (r x − r y ) − (αx r x − αy r y )((1 − αx 

If product x is dominant over y —or αx r x ≥ αy r y —three cases are 

ossible regarding their profit margins and demand rates. Case 

i): αx ≤ αy and r x ≥ r y . As the profit margin r x and the profit 

ate αx r x of product x are both higher, x is more preferable for 

he assortment. It is advantageous for the firm to keep product 

 with a lower demand rate in the assortment, because product 

 has a higher demand rate, but a lower margin can be set out 

f the assortment and its demand can be directed to product x 

hrough substitution. Here, this aims to satisfy the demand for a 

ow-margin item by offering a higher margin substitute although 

ustomers express less preference for the high-margin product. 

Case (ii): αx > αy and r x ≤ r y . When the demand rate of prod- 

ct x is higher than that of product y, x is always the priority if

he substitution ratio θ does not exceed a threshold limit. If the θ
urpasses this threshold, product y might be preferred as it has a 

igher margin despite its lower demand rate. The firm may bene- 

t more from directing customers to higher-margin products when 

he θ is higher. 

Case (iii): αx > αy and r x ≥ r y . This is the most compelling case 

ut of the three. Although product x has a higher margin as well as 

igher popularity—which directly leads to the dominance of x over 

, it is still not guaranteed that x has a higher priority than y to

e in the optimal assortment. This result can be illustrated by the 

ollowing example: Let | N| = 4 with α1 = 0 . 4 , α2 = 0 . 3 , α3 = 0 . 2 ,

4 = 0 . 1 , r 1 = 5 . 1 , r 2 = 6 , r 3 = 5 , r 4 = 9 , θ = 0 . 9 , and C = 3 . For

his problem setting, the firm’s optimal assortment is S = { 2 , 3 , 4 } ,
ith a total expected profit of �(S) = 5 . 92 . Thus, product 1, which

as a higher margin and demand rate than product 3, is out of 

he optimal assortment and product 3 is in. When the problem 

s solved with θ = 0 . 8 by keeping everything else the same, the 

rm’s optimal assortment is S = { 1 , 2 , 4 } , where product 1 is added
1126 
αy ) 
| N| ∑ 

i = C+1 

αa (i ) 

1 −αa (i ) 
− αx αy ) 

. (5) 

nto the assortment by removing product 3. This result can be ex- 

lained by the higher demand rate of product 1 than product 3, 

hich also results in a higher substitution potential to other high- 

argin available products, such as products 2 and 4, when prod- 

ct 1 is out of assortment. When the θ is high enough, a highly 

opular product that also has a high margin can be set out of the 

ssortment to benefit from the product’s popularity to direct cus- 

omers to other products with even higher margins. Li (2007) notes 

 similar behavior, but explains that the situation occurs due to 

igh overage costs and the high demand variability among the 

igh-margin and high-demand rate products, where substitution is 

ot allowed. However, our model strategically encourages substitu- 

ions under customers’ high substitution probabilities. 

Note that the limit on the substitution ratio (5) is a suffi- 

ient condition, but not necessary; regarding the above example, 

13 = 0 . 63 . Thus, for any θ ≤ θ13 = 0 . 63 , product 1 is always pre-

erred over product 3 in the optimal assortment. However, and as 

reviously reported, the optimal assortment is S = { 1 , 2 , 4 } when

= 0 . 8 . Thus, product 1 is preferable to product 3, even if the θ
urpasses the threshold θ13 . Benefiting from Lemma 1 , the optimal 

ssortment is characterized in Theorem 3 . 

heorem 3. 

i) If all products satisfy the relationships r x � r y and αx � αy for x �
y, then the optimal assortment is composed of some number of the 

most dominant products. 

ii) Otherwise, it is more probable for the optimal assortment to in- 

clude only some number of the most dominant products, when the 

θ and/or capacity C are smaller. 

Theorem 3 i states that if all products can be sorted—such that 

or each product pair in the possible set N, a dominant product has 

 lower demand rate, and thus, a higher margin due to the defini- 

ion of dominance—then the optimal assortment can be obtained 

y selecting a certain number of the most dominant products. Con- 

equently, an optimal assortment can be obtained by a “greedy”

lgorithm, by adding one product to the assortment at every iter- 

tion until | S| = C and searching for a positive improvement in the 

otal profit at each iteration. 

Theorem 3 ii illuminates the substitution ratio and assortment 

apacity’s effects on the optimal assortment’s structure. When θ is 

igh, an incentive exists to exclude some highly dominant products 

rom the assortment. When the statement is evaluated together 

ith Lemma 1 , it can be concluded that a dominant product with a 

igher demand rate can be omitted from the assortment to benefit 

rom its demand rate to direct the customer to other higher-profit 

argin products. Similarly, the assortment can contain more prod- 

cts under a higher assortment capacity, which increases the prob- 

bility of keeping high-margin substitutes for out-of-assortment 

roducts in the assortment. Thus, the optimal assortment may no 

onger be in the dominant set. 

The proof of Theorem 3 ii regarding the effect of assortment 

apacity C also provides an additional insight; the proof is based 

n the result that as the capacity C increases, the marginal bene- 

t of adding product x over product y decreases, which may pass 

hrough zero only once from positive to negative. This implies that 

nce it is more profitable to include product y over x, for y ≥ x in

he dominance order, it is never optimal to replace product y with 

 in the optimal assortment as the assortment has increased. This 

esult is important in developing successful “greedy” heuristic al- 

orithms. 
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Table 3 

Example of an Optimal Assortment for αi = { 0 . 27 , 0 . 21 , 0 . 19 , 0 . 16 , 0 . 13 } , and r = (20 , 15 , 10 , 10 , 9) . 
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While it is revealed that the assortment capacity is fully uti- 

ized when all product margins are identical, this might not be the 

ase when products also differ in their profit margins. This is be- 

ause customers are directed to high-margin products by excluding 

ow-margin products from the assortment. Theorem 4 proves that 

he firm may take a risk in making the assortment more shallow 

nd expecting customers to substitute their demands with high- 

argin products under a high substitution ratio. It also introduces 

n upper limit on the substitution ratio, below which the assort- 

ent capacity will always be fully utilized at optimality. 

heorem 4. 

i) The firm’s assortment capacity is always fully utilized in an opti- 

mal solution if θ does not exceed the threshold level ˆ θc , such that 

ˆ θc = min 

x ∈ N 

{ 

ˆ θx = 

−r x 

r x 
| N| ∑ 

i = C+1 

αa (i ) 

1 −αa (i ) 
− 1 

1 −αx 

C−1 ∑ 

i =1 

αi r i 

| ˆ θx > 0 

} 

. 

ii) Capacity utilization is non-increasing in θ and C. 

Note that ˆ θc is a sufficiency condition, but not necessary; thus, 

f the substitution ratio is small enough, the number of itera- 

ions to obtain the optimal solution is the capacity-combination 

f the size of the set of all products, which is 

(| N| 
C 

)
. So, un-

er Theorem 4 i, the number of iterations is unimodal in C. When 

he capacity limit C is equal to �| N| / 2 � , the number of iterations

equired reaches the highest level. If the conditions defined by 

heorems 3 i and 4 i simultaneously hold, the result is straight- 

orward: the optimal assortment is composed first C of the most 

ominant products. 

To given an idea about how obtained optimality properties de- 

rease the computational complexity, for a product set with | N| = 

0 and a capacity limit of 15, it is possible to decrease the num- 

er of candidate assortments by 99.99%—from 1,042,380 to 16 if all 

roducts can be monotonically sorted according to profit margins 

nd demand probabilities as stated by Theorem 3 i. The knowledge 

f full utilization of capacity at optimality leads to a 98.5% reduc- 

ion in the number of candidate assortments, to 15,504. If all prod- 

cts satisfy the dominance rule and θ does not exceed the thresh- 

ld level ˆ θc , then the optimal set is exactly composed of the 15 

ost dominant products. 

We further expand Theorems 3 and 4 with a numerical exam- 

le. Table 3 reports the optimal assortment sets for a problem run 

ith different values of the assortment capacity C and substitution 

atio θ . The result indicates how the θ and C affect the assortment 

et’s dominance and capacity utilization. 

Table 3 shows that with an increase in θ, the capacity utiliza- 

ion rate decreases and the inclusion of less-dominant products in- 

reases, indicated by (1) and (4), respectively. Moreover, as C in- 

reases, the capacity utilization rate decreases and the inclusion 

f less-dominant products increases, indicated by (2) and (3), re- 

pectively. Note that all positive and negative changes are stated in 

oose terms. 
1127 
. Computational insights on optimal assortments 

This section investigates the optimal assortments’ sensitivity to 

he changes in three parameters: the substitution ratio θ, the vari- 

nce of product demand rates VAR( α), and the variance of prod- 

ct profit margins VAR( r). The product set’s size is | N | = 10 for 

he numerical tests in this section. For each sensitivity analysis, we 

se 8 different levels of the parameter under test and observe the 

hanges in the optimal solutions’ properties. 

We generated the problem instances in three steps. Following 

re the generation steps of the substitution rate sensitivity analy- 

is problem instances. Generation of product demand rate variance 

nd profit margin problems follow the same steps. 

Step 1: Generate 10 different problem instances. Set the substi- 

tution rate of all problems equal to the first level (the lowest 

level tested for θ= 0.07). Set all other parameters randomly 

according to the distribution specified in Table 4 . Scale all 

αi values such that 
∑ 

i ∈ N αi = 1. These problems constitute 

problem set 1. 

Step 2: Take problem set 1 and increase the substitution rate 

of all problems to the next level. Do not change any other 

parameter value. 

Step 3: Repeat step 2 until the substitution level reaches its 8th 

level (the highest level tested for θ= 0.97). 

We solve the same problem sets for five different values of the 

ssortment capacity C = { 3 , 5 , 7 , 9 , 10 } . Therefore, for each parame-

er’s sensitivity analysis we solve a total of 10 ∗8 ∗5 = 400 individual

roblem instances. All problem instances are solved with complete 

numeration. 

Tables 5 , 6 , and 7 report the optimal assortment solution’s re- 

pective sensitivities to the substitution rate θ ; the variance in 

rofit margins, denoted by VAR( r); and the variance in demand 

ates of all potential products in the set N, denoted by VAR( α). 

hese tables report for each problem set, the assortment capacity 

, the value of the parameter tested, and the average performance 

easures in the optimal solution, or specifically: the average ca- 

acity utilization C , the average percentage of profit from direct 

ales to the total profit DS% , the average percentage of profit from 

he substituted demand sales in the total profit SS% , and the av- 

rage percentage of change in the total profit relative to the first 

roblem set ��1 % . For a problem set s, ��1 % is computed using 

6) , where p is the problem instance number, s is the problem set 

umber, and �sp is the total expected system profit for the prob- 

em instance p of the problem set s . 

�1 % = 

∑ 

p=1 ... 10 
�sp −�1 p 

�1 p 
× 100 

10 

∀ s ∈ 1 . . . 8 . (6) 

Table 5 indicates that as the θ increases, the capacity utilization 

ecreases, which confirms Theorem 4 . Moreover, Theorem 3 states 

hat when the θ is larger, the optimal assortment is more likely 

o include a non-dominant set of products. Consequently, as θ in- 

reases for a fixed C, there might be fewer number of products 
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Table 4 

Distributions of Randomly Generated Parameters 0 < αi ≤ 1 and 
∑ 

i ∈ N αi = 1 for i = ∈ N. 

r i U(1,10) θ U(0, 1) αi U(0, 1) 

Table 5 

The Optimal Assortments’ Sensitivity to θ . | N | = 10 . 

C θ C DS% SS% ��1 % θ C DS% SS% ��1 % 

3 0.07 3.0 95.98 4.02 0.00 0.60 3.0 72.46 27.54 32.42 

5 5.0 98.03 1.97 0.00 5.0 81.37 18.63 18.51 

7 7.0 99.22 0.78 0.00 6.7 85.92 14.08 10.65 

9 9.0 99.77 0.23 0.00 7.5 87.26 12.74 6.19 

10 10.0 100.00 0.00 0.00 7.5 87.26 12.74 5.41 

3 0. 20 3.0 88.83 11.17 8.04 0.73 3.0 67.65 32.35 40.60 

5 5.0 93.73 6.27 4.11 4.9 76.20 23.80 23.74 

7 7.0 97.38 2.62 1.58 6.6 80.82 19.18 14.57 

9 9.0 99.07 0.93 0.49 7.2 82.10 17.90 9.60 

10 9.8 99.66 0.34 0.04 7.2 82.10 17.90 8.79 

3 0. 33 3.0 82.53 17.47 16.15 0.87 3.0 63.91 36.09 48.90 

5 5.0 89.18 10.82 8.68 4.9 71.92 28.08 29.27 

7 7.0 93.03 6.97 3.99 6.6 77.28 22.72 18.63 

9 8.6 96.50 3.50 1.67 7.1 78.95 21.05 13.23 

10 8.8 96.84 3.16 0.95 7.1 78.95 21.05 12.40 

3 0. 47 3.0 77.16 22.84 24.29 0.97 3.0 61.37 38.63 55.12 

5 5.0 84.87 15.13 13.59 4.9 69.68 30.32 33.47 

7 6.7 88.66 11.34 7.16 6.5 73.90 26.10 21.87 

9 8.0 92.24 7.76 3.51 6.9 74.94 25.06 16.22 

10 8.0 92.24 7.76 2.75 6.9 74.94 25.06 15.37 

Table 6 

The Optimal Assortments’ Sensitivity to Product Margin Variances VAR (r) , where μ(r) = 6.5. | N | = 10 . 

C VAR (r) C DS% SS% ��1 % VAR (r) C DS% SS% ��1 % 

3 0.00 3.0 81.12 18.88 0.00 2.99 3.0 79.94 20.06 5.08 

5 5.0 89.55 10.45 0.00 5.0 87.02 12.98 4.45 

7 7.0 95.76 4.24 0.00 7.0 91.81 8.19 3.57 

9 9.0 99.42 0.58 0.00 8.6 93.45 6.55 2.40 

10 10.0 100.00 0.00 0.00 9.1 94.04 5.96 2.02 

3 0.19 3.0 80.96 19.04 0.72 4.68 3.0 78.61 21.39 7.73 

5 5.0 89.44 10.56 0.46 5.0 86.35 13.65 6.56 

7 7.0 95.52 4.48 0.40 6.9 89.47 10.53 5.28 

9 9.0 98.48 1.52 0.30 8.4 92.99 7.01 3.61 

10 9.8 98.96 1.04 0.24 8.8 93.16 6.84 3.14 

3 0.75 3.0 80.96 19.04 1.83 6.73 3.0 78.42 21.58 10.86 

5 5.0 89.10 10.90 1.46 5.0 85.18 14.82 9.03 

7 7.0 94.96 5.04 1.10 6.8 88.50 11.50 7.38 

9 8.8 97.56 2.44 0.74 8.1 89.84 10.16 5.08 

10 9.6 98.09 1.91 0.62 8.4 89.98 10.02 4.47 

3 1.68 3.0 80.90 19.10 3.22 9.17 3.0 78.14 21.86 14.47 

5 5.0 88.22 11.78 2.70 5.0 83.73 16.27 11.86 

7 7.0 93.12 6.88 2.10 6.8 88.50 11.50 9.55 

9 8.8 95.18 4.82 1.43 8.0 89.84 10.16 6.84 

10 9.4 95.36 4.64 1.15 8.3 89,97 10,03 6,11 
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n the optimal assortment where some less dominant products are 

ept, while more dominant products will be set outside. Thus, the 

atio of substitute sales to total profit would increase, as can be 

bserved in Table 5 . The increase in substitute sales leads to in- 

reased profit, as denoted by ��1 % . On the one hand, the increase 

n ��1 % is higher when C is smaller; a firm with a smaller ca- 

acity carries a smaller variety of products, although the average 

apacity utilization C rate is higher, as stated in Theorem 3 . There- 

ore, the higher θ would result in a higher benefit when the C is 

mall and the firm relies more on substitution sales. 

Table 6 illustrates the optimal solution’s sensitivity to all po- 

ential products’ variance in profit margins, denoted by VAR( r). 

nitially VAR( r) equals zero which means all products have equal 

rofit margins. VAR( r) gradually increases and the variance of 

roduct margins of all products in the set is equal to 9.17 in 

he last set. In order to increase the variance, for a product set 

f | N| = 10 , the profit margins of the first 5 products increased
1128 
hereas the profit margins of the last 5 products decreased grad- 

ally in a symmetrical manner while keeping the mean value con- 

tant at μ(r) = 6 . 5 level. 

The results indicate that as VAR( r) increases, the capacity uti- 

ization may decrease, and the rate of decrease is higher when the 

is larger. This is because low-margin items are omitted from the 

ssortment as the variance in products’ margins increases, which 

ill direct customers to higher-margin products and increase the 

ubstitute sales percentage, regardless of whether the substitution 

ate changes. The total profit also increases, as now it is easier to 

ifferentiate the higher-margin products and keep them in the as- 

ortment. Intuitively, the effect of VAR( r) on the increase in profit 

s smaller when the capacity is larger, as less of a need exists to 

ifferentiate products according to their margins when more prod- 

cts can be kept in the assortment. It is noteworthy that in some 

nstances the average profit increases with the increase in VAR( r), 

lthough the assortment set remains exactly the same. If the 
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Table 7 

The Optimal Assortments’ Sensitivity to Variances in Product Demand Rates VAR (α) , where μ(α) = 0.1. | N | = 10 . 

C VAR (α) C DS% SS% ��1 % VAR (α) C DS% SS% ��1 % 

3 0.00000 3.0 73.94 26.06 0.00 0.0014 3.0 75.90 24.10 10.64 

5 5.0 79.38 20.62 0.00 5.0 80.98 19.02 4.77 

7 6.8 85.00 15.00 0.00 6.8 85.93 14.07 2.41 

9 8.0 88.56 11.44 0.00 8.0 88.37 11.63 0.99 

10 8.3 88.83 11.17 0.00 8.3 88.55 11.45 0.91 

3 0.00009 3.0 74.03 25.97 0.62 0.0023 3.0 76.43 23.57 15.00 

5 5.0 79.63 20.37 0.39 5.0 81.91 18.09 6.73 

7 6.8 85.20 14.80 0.35 6.8 86.23 13.77 3.38 

9 8.0 88.48 11.52 0.15 8.0 88.29 11.71 1.40 

10 8.3 88.78 11.22 0.21 8.3 88.45 11.55 1.17 

3 0.00036 3.0 74.49 25.51 3.29 0.0033 3.0 77.59 22.41 19.83 

5 5.0 80.12 19.88 1.38 5.0 82.81 17.19 8.95 

7 6.8 85.41 14.59 0.83 6.7 86.14 13.86 4.52 

9 8.0 88.40 11.60 0.34 7.9 87.92 12.08 1.83 

10 8.3 88.72 11.28 0.44 8.2 88.06 11.94 1.44 

3 0.00081 3.0 74.91 25.09 6.63 0.0044 3.0 78.13 21.87 24.90 

5 5.0 80.61 19.39 3.02 5.0 83.51 16.49 11.27 

7 6.8 85.72 14.28 1.57 6.7 86.63 13.37 5.71 

9 8.0 88.29 11.71 0.61 8.0 88.49 11.51 2.34 

10 8.3 88.64 11.36 0.67 8.3 88.49 11,51 1,72 
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ptimal solution already includes the products with the highest 

argins, increasing the variance in margins increases both direct 

nd substitute sales profits. 

Table 7 illustrates the optimal solution’s sensitivity to the vari- 

nce in demand rates of all potential products, denoted by VAR( α). 

he VAR( α) is increased by dividing the product set into two 

roups and increasing the demand rates of the products in one 

roup while decreasing the demand rates in the other group. Note 

hat as all products’ total demand rate always equals one by defini- 

ion, then μ(α) = 0.1. The results indicate a negligible change in ca- 

acity utilization. Consistently, the average percentage distribution 

f profit from direct and substituted demand sales is almost mono- 

one in VAR( α). Alternatively, the average profit increases with the 

ncrease in variance in demand rates. The effect on profit is even 

ore significant in small-capacity settings ( C = 3, 5, and 7). In fact, 

he results are noteworthy compared to those sensitivity effects 

bserved in Tables 5 and 6 , in which an increase in total profit oc-

urred due to the higher substitution sales with narrower assort- 

ents. With the increase in VAR( α), we do not observe any shrink- 

ge in assortment size or increase in percentage of profit from sub- 

titute sales. The total profits increase because the demand rates 

f products in the assortment increase with an increase in VAR( α), 

nd thus, the outside products’ demand rates decrease, awarding 

igher direct sales. In contrast, if the demand rates of products 

n the assortment decrease, then the demand rates increase for 

he outside products, bringing higher profits from substitute sales. 

hus, even if the profit distribution is almost constant, the system 

enefits from higher sales through both higher direct sales and 

ubstitutions. As small-capacity problems have a larger product set 

eft out of their assortment list, they have more options to con- 

ider and can benefit more from variance changes than large ca- 

acity problems. Additionally, small-capacity problems’ profits are 

ess than that of large capacity problems; consequently, the same 

mount of profit increase leads to a larger percentage change in 

mall-capacity problems. 

. Approximate assortment policies 

Firms should make essentially two decisions during assortment 

lanning under capacity constraints: how much of the capacity to 

se and which products to include in the assortment set. The de- 

ision as to whether to use the complete capacity depends on the 

roduct substitution expectations. Section 5 demonstrates that as 

he substitution rate θ decreases, the number of products kept 
1129 
n the optimal solution also decreases. The decision regarding the 

roducts to include in the assortment set depends on several fac- 

ors, such as the substitution rate θ and individual demand proba- 

ilities and profit margins of the products in the set of all potential 

roducts N. It is noted that the optimal assortment can be deter- 

ined by including all of these parameters, and a closed-form so- 

ution to the optimal assortment does not seem to exist. Nonethe- 

ess, a firm might prefer to use a quicker, rational solution in which 

ll the potential products in N are sorted in a specific order accord- 

ng to a predefined policy and include some of the highest-order 

roducts in the assortment set S, with the objective of increasing 

he total profit �. 

Therefore, we introduce seven different policies to sort the po- 

ential products and select some of them according to this order to 

e included in the assortment. These policies are based on two de- 

isions: how to arrange the products and how many of these prod- 

cts can be included in the assortment set. These policies can be 

lassified in two sets: policies that use all available capacity C, de- 

oted by “Full-Cap,” and policies that use the capacity selectively, 

enoted by “Select-Cap.” Three policies belong to the first group 

nd four policies belong to the second; the following explains each 

olicy and its rationale. 

Policies that use the firm’s full capacity provide valuable in- 

ormation when the firm’s capacity is less than the size of the 

et of potential products. These policies sort the products using 

 given rule and individually insert the products in the given or- 

er until the capacity is full. The first two policies Max αi r i | Full- 

apand Max (1 − αi ) r i | Full-Cap are relatively easier to implement, 

nd specifically, they can be useful when it is hard to predict the 

ubstitution rate θ, which primarily determines how much of the 

apacity should be utilized. 

Max αi r i | Full-Cap Sort the products in descending order of 

αi r i , or from most dominant to least. Multiplying the profit 

margin and demand rate denotes a product’s expected prof- 

itability. This policy sorts the products by the descending 

order of their expected profitability, and includes the most 

profitable until the capacity is full. 

Max (1 − αi ) r i | Full-Cap Sort the products in descending order 

of (1 − αi ) r i and include the highest C of them in the assort- 

ment set. When product substitution is non-negligible, it can 

be profitable to leave a product with a high demand rate and 

low margin out of the firm’s assortment. Thus, the customer 

demand for this product will be partially distributed among 
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the other products in the assortment set that can bring the 

firm higher profits. 

Max P r ior ity | Full-Cap Sort the products by descending priority, 

where a product’s priority is defined as the total number of 

products it has priority over. A product has priority over an- 

other product if one of the conditions in Lemma 1 is satis- 

fied. This policy counts the number of products each product 

has priority over, and individually includes the products in 

the assortment set by checking if this inclusion violates any 

priority order. A product is ineligible for inclusion if another 

product with priority over this product has not yet been in- 

cluded. In each step, policy checks if the product with the 

highest priority in the assortment set is eligible for inclu- 

sion. If the eligibility condition is satisfied, the product is 

added to the assortment until the assortment capacity is 

full. 

As the optimal assortment may include fewer number of prod- 

cts than the assortment capacity, we next introduce policies that 

o not enforce full capacity usage. These policies individually add 

roducts to the assortment set sequentially while checking the to- 

al profit. The total expected profit for the current solution and the 

xpected profit after adding the candidate product are computed 

efore adding the product into the assortment set, and the prod- 

ct is added if the total profit improves. Otherwise, the next candi- 

ate product is considered for inclusion in the assortment set. For 

ase of implementation, no reversing iteration occurs; specifically, 

 product added into the assortment set is not taken out in further 

terations. 

The first three policies, Max αi r i | Select-Cap, 

ax (1 − αi ) r i | Select-Cap, and Max P r ior ity | Select-Cap use the 

ame sorting rules as the policies in the first group as previ- 

usly defined. They include products in the assortment set added 

ndividually from the sorted list if an addition improves the 

otal profit and available capacity exists. Thus, the policy stops 

ncluding more products in the assortment if either none of the 

ut-of-assortment products positively improves profits or the 

ssortment capacity is full. We then introduce a fourth selective 

olicy, Max �| Select-Cap, which facilitates dynamic ordering and 

election. 

Max �| Select-Cap Sort the products in descending order of 

he expected profits at each iteration. This policy at each itera- 

ion evaluates all products outside the assortment set as a can- 

idate. It computes the expected profit resulting from including 

ach of these candidate products to the current assortment indi- 

idually, and selects the one that results in the highest positive 

xpected profit improvement. Product inclusion continues until ei- 

her no product is left, which positively increases profit, or there is 

o available capacity. 

Firms can execute these policies as follows: If the firm has the 

omputation capability to compute the total profit in (1) and the 

nowledge or a reliable prediction about the substitution rate θ, 

hen the policies can be executed as previously described. How- 

ver, if the firm cannot compute total profit, then the policies 

ax αi r i | Select-Cap and Max (1 − αi ) r i | Select-Cap can still be exe- 

uted through in-time monitoring of the total profit. The firm can 

rder the products in the set as described in one of these policies, 

nclude a product in its assortment list, and wait for one period; 

t the end of the period, the firm can then check if this inclu- 

ion improved total profit. If total profit increased, the firm can 

dd the next product from the ordered set and continue includ- 

ng one more product in each period. If the total profit decreases 

t any point in time, the firm can remove the last added prod- 

ct and include the following product in the out-of-assortment set 

n its assortment set. The firm can continue adding products as 

ong as capacity is available and the total profit increases. In-time 
1130 
onitoring of total profit and period-by-period product selection 

s applicable for systems that keep no inventory and produce in a 

ake-to-order setting. 

We next test these policies’ performances and compare them 

o each other and with the optimal solution under various prob- 

em settings. Section 6.1 tests these policies’ performances with 

ifferent product set sizes and assortment capacities and also pro- 

ide performance bounds for the two best performing policies. 

ection 6.2 investigates these policies’ sensitivities to changes in 

he substitution rate θ, variance in customer demand rate αi , and 

ariance in profit margins r i . The optimal solution in all problem 

ets is obtained through total enumeration for precision. 

.1. Policy performances 

This section compares the approximate policies’ performances 

nder different assortment capacities C and product set sizes | N| . 
or this purpose, we generated 100 problems with randomly gen- 

rated parameters for | N| ∈ { 6 , 10 , 15 , 18 , 20 } . All parameters are

enerated using the distributions given in Table 4 . Further, each set 

f 100 problems generated with the product set size | N| is solved 

eparately for C = { 3 , 4 , . . . , | N|} . We obtain the optimal assortment

nd assortment solutions for a problem instance through each of 

he approximate policies as previously introduced. The percentage 

f decrease in profit from using an approximate policy over the 

ptimal solution ��% is obtained, and the average percentage of 

ecrease in profit for an | N| − C pair is reported by calculating over 

00 problem instances, denoted as ��% . 

Figs. 1 and 2 illustrate ��% by using approximate policies 

or product set sizes 6, 10, 15, and 20, respectively. These fig- 

res plot both selective- and full-capacity policies using solid and 

ashed lines, respectively. These figures indicate that selective ca- 

acity policies perform better than their full-capacity counter- 

arts for all | N| , and the performance gap increases with the 

ncrease in capacity. This is consistent with Theorem 4 , which 

tates that capacity utilization tends to decrease with the in- 

rease in C in the optimal solution; thus, selective policies closely 

ollow the optimal solution. All full-capacity heuristics result in 

he same percentage profit gap when | N| = C, as all these poli- 

ies include all products in their final assortment solution. Max 

| Select-Cappolicy performs the best for almost all | N| − C values. 

ax (1 − αi ) r i | Select-Capis the poorest-performing heuristic policy, 

ut its performance substantially improves when | N| approaches C. 

he Max P r ior ity | Select-Capheuristic does not perform well when 

apacity is small relative to | N| . 
Table 8 reports more results on the performances of approxi- 

ate policies with selective capacity by displaying the average per- 

entage of decrease in profit from the optimal solution ��% , max- 

mum percentage profit decrease Max ��(%) , and the number of 

nstances for which the approximate and optimal solutions coin- 

ide, called # hits, within the set of 100 problem instances tested 

or each | N| − C pair. 

Table 8 demonstrates that Max �| Select-Cap policy outper- 

orms the other policies in most cases. Moreover, the Max 

i r i | Select-Cap policy performs much better, and especially as the 

roduct set N is broader in terms of both the lower average 

nd maximum profit gaps. It is also noteworthy that when | N| 
s large, the average profit gap is still less than %1 even if the 

umber of hits is low, or almost %50. As the Max αi r i | Select- 

ap policy includes products in descending order of their ex- 

ected product profitability and the products omitted from the as- 

ortment have relatively lower profitability, a difference in the fi- 

al assortment occurs compared to the optimal solution due to 

hese lower-profitability products, which results in a quite low to- 

al expected profit difference. Alternatively, the two other poli- 

ies Max (1 − α ) r | Select-Cap and Max P r ior ity | Select-Cap do not 
i i 
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Fig. 1. Average profit gap ��% versus the assortment capacity for all heuristics when | N| = 6 and | N| = 10 . 

Fig. 2. Average profit gap ��% versus the assortment capacity for all heuristics when | N| = 15 and | N| = 20 . 

Table 8 

Selective Capacity Policies’ Performance for Different | N | − C Pairs. 

N C Max � Max αi r i Max Pr ior ity Max (1 − αi ) r i 

Max # Max # Max # Max # 

��% ��% hits ��% ��% hits ��% ��% hits ��% ��% hits 

6 3 0.00 0.00 100 1.07 19.60 76 1.19 27.58 81 12.23 71.23 36 

5 0.00 0.47 99 0.54 12.36 80 0.70 48.21 88 1.27 24.43 77 

6 0.00 0.00 100 0.39 12.36 85 0.36 26.58 93 0.00 0.00 100 

10 3 0.00 0.00 100 0.37 10.26 87 17.16 77.44 38 24.30 82.15 7 

5 0.00 0.02 99 0.84 7.80 62 0.54 12.57 76 10.65 41.41 13 

7 0.00 0.00 100 0.55 5.69 63 0.19 3.15 79 3.09 21.55 33 

9 0.02 2.17 98 0.30 4.35 76 0.06 2.27 84 0.43 5.88 75 

10 0.02 2.17 98 0.28 4.35 82 0.06 2.27 88 0.00 0.24 99 

15 3 0.00 0.00 100 0.16 3.78 86 22.55 78.54 25 35.79 88.54 3 

5 0.00 0.04 99 0.45 6.62 65 6.69 45.62 45 19.70 63.12 5 

7 0.00 0.00 100 0.93 8.37 61 0.39 4.84 77 11.65 50.60 6 

9 0.00 0.00 100 1.03 6.48 36 0.25 2.78 65 5.28 23.61 15 

13 0.00 0.00 99 0.42 5.45 54 0.06 1.00 81 0.37 4.23 72 

15 0.00 0.00 99 0.28 2.99 68 0.02 0.58 85 0.00 0.00 100 

18 3 0.00 0.00 100 0.02 0.88 96 26.80 72.96 14 33.82 85.87 2 

7 0.00 0.00 100 0.58 4.54 56 2.76 38.87 56 15.71 42.52 1 

11 0.00 0.01 99 0.73 6.31 42 0.14 2.13 72 6.19 31.84 5 

15 0.00 0.00 100 0.32 3.23 49 0.06 1.37 77 1.07 9.63 52 

17 0.00 0.00 100 0.21 3.16 61 0.03 0.62 83 0.22 3.15 79 

18 0.00 0.00 100 0.18 3.16 72 0.02 0.62 91 0.00 0.00 100 

20 3 0.00 0.00 100 0.08 1.88 89 29.32 69.50 12 36.48 85.34 1 

7 0.00 0.00 100 0.38 2.68 59 3.64 29.72 44 17.60 41.08 1 

11 0.00 0.02 98 0.62 4.04 45 0.17 1.73 73 6.92 24.21 1 

15 0.00 0.41 99 0.37 3.12 46 0.08 1.13 69 1.62 11.89 34 

17 0.00 0.41 98 0.25 2.87 58 0.05 1.02 78 0.44 5.75 65 

20 0.00 0.41 98 0.16 2.87 76 0.03 1.45 91 0.00 0.00 100 

1131 
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Table 9 

Selective Capacity Policies’ Sensitivity to θ . | N | = 10 . 

θ C Max � Max αi × r i Max Pr ior ity Max (1 − αi ) × r i 

Max # Max # Max # Max # 

��% ��% hits ��% ��% hits ��% ��% hits ��% ��% hits 

0.07 3 0.00 0.00 10 0.05 0.54 9 7.65 21.92 5 31.45 77.80 1 

5 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 17.59 44.04 1 

7 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 9.69 19.93 0 

9 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 0.75 4.24 6 

10 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 

0.33 3 0.00 0.00 10 0.48 4.20 7 7.52 19.22 5 28.69 74.93 1 

5 0.00 0.00 10 0.29 1.58 7 0.14 0.91 7 12.91 38.24 2 

7 0.00 0.00 10 0.43 1.28 5 0.31 1.28 6 4.84 13.10 3 

9 0.00 0.00 10 0.10 1.05 9 0.00 0.00 10 0.00 0.00 10 

10 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 

0.60 3 0.00 0.00 10 0.87 6.79 7 11.62 51.02 4 26.63 72.65 1 

5 0.00 0.00 10 0.55 2.72 6 0.22 2.03 8 9.81 33.32 2 

7 0.00 0.00 10 1.07 5.05 7 0.00 0.00 10 2.54 6.87 4 

9 0.00 0.00 10 0.31 1.59 7 0.00 0.00 10 0.00 0.00 10 

10 0.00 0.00 10 0.31 1.59 7 0.00 0.00 10 0.00 0.00 10 

0.87 3 0.00 0.00 10 1.30 8.71 5 14.45 50.44 4 25.12 70.79 1 

5 0.05 0.48 9 1.29 5.08 4 0.66 2.99 6 7.51 29.09 3 

7 0.00 0.00 10 0.47 3.06 7 0.03 0.32 9 1.13 4.12 5 

9 0.00 0.00 10 0.32 2.98 8 0.00 0.00 10 0.02 0.24 9 

10 0.00 0.00 10 0.32 2.98 8 0.13 1.33 9 0.02 0.24 9 

0.97 3 0.00 0.00 10 1.47 9.31 5 14.41 50.25 4 24.67 70.18 1 

5 0.11 1.10 9 1.63 5.88 4 0.58 2.92 7 6.84 27.65 3 

7 0.00 0.00 10 0.83 4.23 4 0.18 1.29 6 0.79 3.22 6 

9 0.00 0.00 10 0.71 4.44 6 0.12 0.90 8 0.04 0.42 9 

10 0.00 0.00 10 0.71 4.44 6 0.12 0.90 8 0.04 0.42 9 

Table 10 

Selective Capacity Policies’ Sensitivity to the Product Margin Variance VAR (r) , where μ(r) = 6.5. | N | = 10 . 

VAR (r) C Max � Max αi × r i Max Pr ior ity Max (1 − αi ) × r i 

Max # Max # Max # Max # 

��% ��% hits ��% ��% hits ��% ��% hits ��% ��% hits 

0.00 3 0.00 0.00 10 0.00 0.00 10 15.90 59.74 5 78.28 88.58 0 

5 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 58.90 68.28 0 

7 0.00 0.00 10 0.00 0.00 10 0.31 3.08 9 34.60 51.37 0 

9 0.00 0.00 10 0.00 0.00 10 0.17 1.14 8 8.80 21.20 0 

10 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 

0.75 3 0.00 0.00 10 0.00 0.00 10 7.62 34.87 5 52.11 71.70 0 

5 0.00 0.00 10 0.18 1.36 8 0.36 2.29 8 26.71 55.08 0 

7 0.00 0.00 10 0.16 1.04 7 0.25 1.90 7 14.63 34.35 0 

9 0.00 0.00 10 0.07 0.43 7 0.51 2.17 5 6.23 19.09 1 

10 0.00 0.00 10 0.06 0.43 8 0.17 1.12 8 0.09 0.93 9 

2.99 3 0.00 0.00 10 0.21 1.07 8 6.44 24.46 5 39.10 67.13 0 

5 0.05 0.48 9 0.64 3.38 6 0.30 1.47 7 16.61 40.36 0 

7 0.15 1.55 9 0.75 2.41 6 0.52 2.12 7 5.75 17.92 2 

9 0.21 2.10 9 0.61 3.40 5 0.79 3.40 4 0.47 3.43 6 

10 0.21 2.10 9 0.42 2.10 7 0.64 2.39 6 0.00 0.02 9 

4.68 3 0.00 0.00 10 1.07 3.08 6 8.04 28.12 3 32.36 60.75 0 

5 0.00 0.00 10 1.14 6.01 7 0.81 2.60 6 11.88 37.33 0 

7 0.01 0.10 8 0.96 4.58 7 0.70 4.30 5 4.53 16.57 4 

9 0.00 0.00 10 0.93 5.28 7 0.34 2.52 5 0.31 2.72 6 

10 0.00 0.00 10 0.75 3.79 8 0.12 0.51 6 0.02 0.20 9 

9.17 3 0.00 0.00 10 1.59 8.77 7 11.79 36.89 4 24.16 58.53 0 

5 0.00 0.00 10 1.03 5.95 7 0.21 1.66 8 9.02 31.08 3 

7 0.00 0.00 10 1.30 7.34 8 0.12 1.08 8 2.54 13.86 4 

9 0.00 0.00 10 0.81 5.46 8 0.01 0.13 9 0.14 1.29 8 

10 0.00 0.00 10 0.81 5.46 8 0.01 0.13 9 0.01 0.13 9 
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xhibit a monotonous performance in | N| , but can be said to per-

orm better as C/ | N| is higher, which is clearly observed in Fig. 3 ;

his figure illustrates selective capacity heuristics’ performances for 

ifferent capacity-to-product set size ratios C/ | N| . 
One exception is that the Max (1 − αi ) r i | Select-Cap policy per- 

orms extremely well when | N| = C, and even in some cases better 

han Max �| Select-Cap. As explained at the beginning of Section 6 , 

 firm must compute its total expected profit from adding each 

andidate product at each iteration to use Max �| Select-Cap pol- 

cy, but the other approximate policies can be used by period-by- 
1132 
eriod profit monitoring. Therefore, when | N| = C, it is more ef- 

cient to use Max (1 − αi ) r i | Select-Cap policy; otherwise, the firm 

an select either the Max P r ior ity | Select-Cap or Max αi r i | Select-

ap policies according to its capacity. Fig. 3 shows that apart from 

he extreme performance of Max �| Select-Cap, if the capacity-to- 

roduct set size ratio is less than the 0.5 level, the Max αi r i | Select-

ap policy performs well. When C/ | N| surpasses 0.5, the firm 

hould prefer the Max P r ior ity | Select-Cap policy. 

Relying on superior performance of Max �| Select-Cap and 

elatively well performance of Max αi r i | Select-Cap heuristics in 
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Table 11 

Selective Capacity Policies’ Sensitivity to the Product Demand Rate Variance VAR (α) , where μ(α) = 0 . 1 . | N | = 10 . 

VAR (α) C Max � Max αi × r i Max Pr ior ity Max (1 − αi ) × r i 

Max # Max # Max # Max # 

��% ��% hits ��% ��% hits ��% ��% hits ��% ��% hits 

0 3 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 

5 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 

7 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 

9 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 

10 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 0.00 0.00 10 

0.0014 3 0.00 0.00 10 0.55 3.75 8 18.73 54.09 4 11.50 34.80 1 

5 0.00 0.00 10 0.38 2.01 7 0.55 3.71 7 3.56 12.68 4 

7 0.00 0.00 10 0.27 1.70 6 0.01 0.09 9 2.74 9.25 4 

9 0.00 0.00 10 0.17 1.70 9 0.00 0.00 10 0.36 2.40 8 

10 0.00 0.00 10 0.17 1.70 9 0.00 0.00 10 0.00 0.00 10 

0.0023 3 0.00 0.00 10 0.19 1.29 8 19.97 59.25 4 19.18 43.34 1 

5 0.00 0.00 10 0.82 6.14 7 0.64 4.32 7 4.97 16.67 3 

7 0.00 0.00 10 0.68 4.18 6 0.38 3.72 7 3.90 13.00 4 

9 0.00 0.00 10 0.26 2.03 8 0.05 0.54 9 0.58 3.27 8 

10 0.00 0.00 10 0.26 2.03 8 0.05 0.54 9 0.00 0.00 10 

0.0033 3 0.00 0.00 10 0.00 0.00 10 19.60 65.43 5 23.58 51.48 1 

5 0.00 0.00 10 0.73 4.67 7 0.41 2.49 8 6.55 20.35 3 

7 0.00 0.00 10 0.55 2.40 6 0.23 2.23 8 4.95 16.74 4 

9 0.00 0.00 10 0.36 2.40 7 0.03 0.25 8 0.79 4.10 8 

10 0.00 0.00 10 0.27 2.40 8 0.03 0.25 8 0.00 0.00 10 

0.0044 3 0.00 0.00 10 0.22 2.21 9 17.31 63.41 4 27.81 59.29 1 

5 0.00 0.00 10 0.40 3.23 7 0.06 0.59 9 10.33 26.53 2 

7 0.00 0.00 10 0.62 3.34 6 0.01 0.09 9 5.98 20.33 4 

9 0.00 0.00 10 0.28 2.79 9 0.00 0.00 10 1.07 5.07 7 

10 0.00 0.00 10 0.28 2.79 9 0.00 0.00 10 0.00 0.00 10 

Fig. 3. The average profit gap ��% versus the capacity rate C/ | N| for selective ca- 

pacity heuristics. 
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umerical results, next we theoretically prove their worst case per- 

ormances. In order to develop a performance guarantee for the 

reedy heuristic Max �| Select-Cap , we first show that the set 

unction � is submodular. Remember that for any set �, a set 

unction f is submodular if f (S ∪ { j} ) − f (S) ≥ f (T ∪ { j} ) − f (T )

or any S ⊂ � and T ⊂ � with S ⊂ T and j ∈ � \ T . 
emma 2. The set function � is submodular. 

We next show the conditions under which the set function �

s non-decreasing. 

emma 3. The set function � is non-decreasing if 

j r j + θ

( 

α j r j 
∑ 

i / ∈ S∪{ j} 
γi − γ j 

∑ 

i ∈ S 
αi r i 

) 

≥ 0 , for all S ⊂ N and j ∈ N \ S. 

(7) 

Note that the first term in the parenthesis in (7) is large 

hereas the second term is small for small S and therefore the 
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ntire expression in the parenthesis is likely to be positive. When 

he set S is large, it is possible that the expression in the paren- 

hesis is negative. Lemma 3 shows that the set function � (profit 

unction) is monotone non-decreasing in the assortment as long as 

is sufficiently small to satisfy 

≤ α j r j 

γ j 

∑ 

i ∈ S αi r i − α j r j 
∑ 

i / ∈ S∪{ j} γi 

. (8) 

sing the results in Lemmas 2 and 3 , we are now ready show 

he performance bound on the Max �| Select-Cap , i.e., the greedy 

euristic. Theorem 5 is simply using the result in Nemhauser, 

olsey, and Fisher (1978) , which shows that under a cardinality 

onstraint, a greedy heuristic produces a solution that is at least 

 − ((C − 1) /C) C times the optimal value where C is the maximum 

ardinality allowed. 

heorem 5. If � is non-decreasing, Max �| Select-Cap heuristic has 

erformance guarantee of 

 −
(

C − 1 

C 

)C 

. 

Note that a lower bound for the performance guarantee in 

heorem 5 is 1 − 1 /e ≈ 0 . 632 which is the limit of the guarantee

s C goes to infinity. 

Next, we prove the performance bound for Max αi r i | Select-Cap , 

hich is shown to perform quite well in numerical analyses. 

heorem 6. The Max αi r i | Select-Cap heuristic has performance 

uarantee of 

r min (θ r min + r max ) 

r max (θ r max + r min ) 

here r min = min j∈ N r j and r max = max j∈ N r j . 

.2. Sensitivity of approximate policies 

As heuristic selective capacity policies dominate their full- 

apacity counterparts in terms of performance, this section investi- 

ates the selective capacity policies’ sensitivities to the changes in 
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he substitution rate θ, and variances in the demand rates VAR( α) 

nd profit margins VAR( r) of all potential products in the set N. 

he policies’ sensitivities are tested using the same problem sets 

s described in Section 5 , but the results are only reported for 

 N| = 10 . 

Table 9 demonstrates that Max �| Select-Cap policy continues 

o outperform for various θ values. The Max αi r i | Select-Cap and 

ax P r ior ity | Select-Cap perform better when the θ is smaller, 

hile the Max αi r i | Select-Cap policy performs relatively better 

ith higher θ values. An improvement in performance for Max 

1 − αi ) r i | Select-Cap is expected because it becomes more bene- 

cial to include high-margin and low-demand items in the assort- 

ent set when the substitution rate increases. As the substitution 

ate is high, the omitted products’ high demand rates contribute to 

ubstitute products’ sales. As Max (1 − αi ) r i | Select-Cap policy se- 

ects the high-margin, low-demand items, it starts to perform well, 

ven at mid-capacity levels. 

Table 10 exhibits the policy performances relative to the 

hanges in product margin variances. The results reveal that an 

ncrease in product margin variances improves the performance 

f Max (1 − αi ) r i | Select-Cap . As this variance increases, Max 

 r ior ity | Select-Cap performs more poorly than Max αi r i | Select- 

ap in most cases, even with a relatively large capacity. 

Table 11 indicates that with an increase in demand rate 

ariances, the Max P r ior ity | Select-Cap again outperforms Max 

i r i | Select-Cap in large-capacity cases. 

. Concluding remarks 

This paper examines the strategic assortment optimization 

roblem of a firm. It is a strategic level decision, because man- 

facturing infrastructure investment is based on the assortment 

elected. Our proposed methodology is also applicable to other 

roblem settings without significant inventory concerns during the 

ssortment optimization stage. We consider the cardinality con- 

traint on the assortment and customer demand is defined with 

n exogenous demand model, where each customer has a prede- 

ermined preference for each product from the potential set. Pro- 

ortional demand substitutions are also considered to explain cus- 

omer behavior for the out of assortment products. 

The analytical study of the proposed model shows that the 

rm’s optimal assortment is composed of the most popular prod- 

cts and fully utilizes the assortment capacity when all products 

ave symmetric profit margins. So, the optimal assortment can be 

asily obtained by including the products with the highest de- 

and probability to fill the capacity. When products have asym- 

etric profit margins, it is necessary to examine each product’s 

xpected profitability. If all products can be sorted monotonically 

n increasing order of their profit margins and decreasing order of 

heir demand probabilities, the optimal assortment is composed of 

ome number of most dominant (profitable) products. The ratio- 

ale behind this optimality property is to keep a low profit mar- 

in, but high demand products out of the assortment, so that their 

emands can be directed to higher margin substitutes. Knowing 

hat the optimal assortment is composed of some number of the 

ost dominant products, it is possible to significantly decrease the 

umber of possible assortments compared to full enumeration. If 

ll products do not posit monotonic ordering of profit margins and 

emand probabilities, some number of highly dominant products 

an omitted from the assortment under a high substitution ratio, 

hich increases the probability of retaining high-margin substi- 

utes. 

Capacity is not always fully utilized when profit margins are 

symmetrical; it is better to exclude some high-demand and low- 

argin products from the assortment to direct customers to higher 

argin products. We prove a threshold value on the substitution 
1134 
atio, below which the capacity is always fully utilized at optimal- 

ty. This can lead to an additional reduction in the number of pos- 

ible assortments to find the optimal solution, despite a closed- 

orm solution to the optimal assortment does not seem to exist. To 

urther simplify assortment planning in practice to obtain a quick 

nd rational solution, seven different heuristic algorithms are de- 

ned by relying on the optimality properties obtained in this study 

nd compared to optimal solution. Among these heuristics, the 

reedy policy, which adds the product among all remaining can- 

idate products with the highest positive expected profit improve- 

ent to the current assortment, performs the best. This policy re- 

ults in an assortment solution with a less than 1% average profit 

ap of the optimal solution for a possible product set size of 20. It 

s also demonstrated that policies that add products to the assort- 

ent selectively perform better than those that enforce assortment 

apacity usage to the limit. 

This study contributes to assortment optimization literature by 

emonstrating properties of optimal assortment in a generalized 

odel where both demand rates and profit margins can be prod- 

ct specific and demand substitutions among products are explic- 

tly allowed. The current study can also be further detailed and 

xtended. Specifically, one compelling but challenging extension 

ould involve endogenously deciding production capacities for the 

roducts to be included in the optimal assortment. This is partic- 

larly difficult because both capacity-and assortment-based substi- 

utions should be considered; however, it would be valuable to ob- 

erve how the resulting assortments’ characteristics could change 

nder a more comprehensive future approach. 
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ppendix A. Proofs of Lemmas/Theorems 

roof of Theorem 1. Clearly, the problem is in NP, since one can 

ompute the profit of a given assortment and verify whether it 

s larger than or equal to H or not in polynomial time. We will 

how that an instance of the Subset Sum problem can be trans- 

ormed to an equivalent strategic assortment planning problem un- 

er explicit demand substitution. The Subset Sum is a known NP- 

omplete problem ( Garey & Johnson, 1979 ) and can be stated as 

ollows. Given a finite set N, size s j ∈ Z + for each j ∈ N, and a pos-

tive integer B, is there a subset S ⊆ N such that 
∑ 

j∈ S s j = B ? 

We first show that the profit of a given assortment problem can 

e expressed as follows. 

 

i ∈ S 

( 

αi r i + θ
∑ 

i / ∈ S 
α j 

αi 

1 − α j 

r i 

) 

= 

∑ 

i ∈ S 
αi r i 

( 

1 + θ
∑ 

j / ∈ S 
γ j 

) 

, 

here γ j = α j / (1 − α j ) . The profit can be then expressed as 

 ∑ 

i ∈ S 
αi r i 

) ( 

1 + θ
∑ 

i ∈ N 
γi − θ

∑ 

i ∈ S 
γi 

) 

. (9) 

Assume that 
∑ 

i ∈ N s i is even. Now consider the assortment op- 

imization problem with the following parameters 

= 1 , αi = 

s i 
s i + K 

, r i = 

s i + K 

K 

, 

here K is a sufficiently large even integer which ensures 
 

i ∈ N αi ≤ 1 (One can always find K that is strictly smaller than 

https://doi.org/10.13039/501100004410
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i ∈ N s i ). The decision problem is whether there is any assortment 

 ⊆ N with a profit that is larger than or equal to 

 = 

1 

4 K 

2 

( 

K + 

∑ 

i ∈ N 
s i 

) 2 

. 

The profit in (9) can be written as 

f 

( ∑ 

i ∈ S 
s i 

) 

= 

1 

K 

2 

( ∑ 

i ∈ S 
s i 

) ( 

K + 

∑ 

i ∈ N 
s i −

∑ 

i ∈ S 
s i 

) 

he function f is concave and obtains its maximum at 

1 

2 

( 

K + 

∑ 

i ∈ N 
s i 

) 

eading to optimum value 

1 

K 

2 

( 

K + 

∑ 

i ∈ N 
s i 

) 2 

. 

ut this is only achievable if there is a subset S where 

 

i ∈ S 
s i = 

1 

2 

( 

K + 

∑ 

i ∈ N 
s i 

) 

. 

ence the assortment problem has a solution with profit that is 

arger than or equal to H = 

1 
4 K 2 

(
K + 

∑ 

i ∈ N s i 
)2 

if and only if the 

ubset Sum problem with 

 = 

1 

2 

( 

K + 

∑ 

i ∈ N 
s i 

) 

as an affirmative answer. Since Subset Sum is NP-Complete so is 

apacitated Strategic Assortment Planning Under Explicit De- 

and Substitution . �

roof of Theorem 2. (i) Consider adding either product x or y to 

n existing assortment S, such that αx � αy . Let ϑ x (S) denote the 

arginal benefit of adding product x to an existing assortment S, 

ssuming that | S| ≤ C − 1 , or specifically, the assortment capacity is 

ot exceeded by adding product x . The increase in profit is denoted 

y adding x as follows: 

 x (S) = �(S ∪ { x } ) − �(S) = r αx + r θ
∑ 

i / ∈ S∪{ x } 
αi δix − r θ

∑ 

i ∈ S 
αx δxi . 

ext, we consider adding product y to assortment S. 

 y (S) = �(S ∪ { y } ) − �(S) = r αy + r θ
∑ 

i / ∈ S∪{ y } 
αi δiy − r θ

∑ 

i ∈ S 
αy δyi . 

hen we replace δik with its open form 

αk 
1 −αi 

, the difference be- 

ween the two alternative assortments’ marginal profits is obtained 

s follows: 

 x (S) − ϑ y (S) 

= r(αx − αy ) + rθ
[ 
αx 

∑ 

i / ∈ S∪{ x } 

αi 

1 − αi 

− αy 

∑ 

i / ∈ S∪{ y } 

αi 

1 − αi 

−
∑ 

i ∈ S 
αi 

( αx 

1 − αx 
− αy 

1 − αy 

)] 

= r(αx − αy ) + rθ
[ ∑ 

i / ∈ S∪{ x,y } 

αi (αx − αy ) 

1 − αi 

− αx αy (αx − αy ) 

(1 − αx )(1 − αy ) 

−
∑ 

i ∈ S 

αi (αx − αy ) 

(1 − αx )(1 − αy ) 

] 
1135 
= r(αx − αy ) 
[ 

1 − θ (αx αy + 

∑ 

i ∈ S αi ) 

(1 − αx )(1 − αy ) 
+ θ

∑ 

i / ∈ S∪{ x,y } 

αi 

1 − αi 

] 
. (10) 

onsider the first and second terms inside the square brackets in 

10) . We can demonstrate that 

1 ≥ θ (αx αy + 

∑ 

i ∈ S αi ) 

(1 − αx )(1 − αy ) 

1 − αx − αy + αx αy ≥ θ (αx αy + 

∑ 

i ∈ S 
αi ) 

1 − αx − αy − θ
∑ 

i ∈ S 
αi ≥ (θ − 1) αx αy (11) 

s 1 − αx − αy ≥
∑ 

i ∈ S αi holds by definition, and given that θ ≤
, the left-hand side of (11) is non-negative, while the right-hand 

ide is non-positive. Thus, (11) is always satisfied, and the sum of 

he terms inside the square brackets in (10) is non-negative. Con- 

equently, it is never better to include y rather than x for αx � αy .

ence, a single firm’s optimal assortment exists in the popular set 

hen all products have the same profit margin. 

(ii) Consider the marginal benefit of adding product x to an ex- 

sting assortment S. After replacing δik with its open form 

αk 
1 −αi 

, 

x (S) is rearranged as follows: 

 x (S) = r αx + r αx θ
∑ 

i / ∈ S∪{ x } 

αi 

1 − αi 

− r θ
αx 

1 − αx 

∑ 

i ∈ S 
αi 

= rαx 

(
1 + θ

∑ 

i / ∈ S∪{ x } 

αi 

1 − αi 

− θ
1 

1 − αx 

∑ 

i ∈ S 
αi 

)
. (12) 

onsider the first and third terms inside the parentheses in (12) . 

e can demonstrate that 

 ≥ θ
1 

1 − αx 

∑ 

i ∈ S 
αi 

 ≥ αx + θ
∑ 

i ∈ S 
αi . 

he result holds given that θ ≤ 1, 
∑ 

i ∈ N αi = 1, and S ∪ { x } ⊆ N. Thus,

t is always profitable to add a product to the assortment as long as 

apacity is available. Hence, capacity is fully utilized at the optimal 

ssortment when all products have the same profit margin. �

roof of Lemma 1. (i) Consider adding product x to an existing 

ssortment S. The marginal profit of adding x is as follows; recall 

hat ϑ x (S) denotes the marginal benefit of adding product x to an 

xisting assortment S assuming that | S| ≤ C − 1 , or that the assort- 

ent capacity is not exceeded by adding product x : 

 x (S) = αx r x + r x θ
∑ 

i / ∈ S∪{ x } 
αi δix − θ

∑ 

i ∈ S 
αx δxi r i . 

ow we consider adding product y to the existing assortment S. 

 y (S) = αy r y + r y θ
∑ 

i / ∈ S∪{ y } 
αi δiy − θ

∑ 

i ∈ S 
αy δyi r i . 

hen we replace δik with its open form—and after some 

earrangement—the difference in the two alternative assortments’ 

arginal profits is noted as follows: 

 x (S) − ϑ y (S) 

= (αx r x − αy r y ) + θ (αx r x − αy r y ) 
∑ 

i / ∈ S∪{ x,y } 

αi 

1 − αi 

+ θ
(

αy 

(1 − αy ) 

∑ 

i ∈ S∪{ x } 
αi r i −

αx 

(1 − αx ) 

∑ 

i ∈ S∪{ y } 
αi r i 

)

= (αx r x − αy r y ) + θ (αx r x − αy r y ) 
∑ 

i / ∈ S∪{ x,y } 

αi 

1 − αi 

+ θ
(
αx αy 

( r x 

(1 − αy ) 
− r y 

(1 − αx ) 

)
+ 

∑ 

i ∈ S 
αi r i ( 

αy 

(1 − αy ) 
− αx 

(1 − αx ) 
) 
)

(13) 
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n (13) , the first term is the profit difference from direct customer 

emands, the second term occurs due to the substitution from out- 

f-assortment products, and the last term is the profit difference 

etween the substitution from product y to other existing prod- 

cts and the substitution from x to others. The first and second 

erms in (13) are non-negative, as indicated by the dominance of 

 over y, or αx r x ≥ αy r y . Within the third term, the second part

s non-negative, because αy ≥ αx and (1 − αy ) ≤ (1 − αx ) . Regard- 

ng the first part within the third term, as r x αx ≥ r y αy and αx ≤ αy 

y definition, it follows that (1 − αy ) ≤ (1 − αx ) and r x ≥ r y . Then

t is easy to see that r x / (1 − αy ) ≥ r y / (1 − αx ) . This proves that the

hird term in (13) is also non-negative. Thus, the expected marginal 

rofit from adding product x to an existing assortment rather than 

 is non-negative under the given conditions. 

(ii) Reconsider the difference in marginal benefits of adding 

roduct x and y to an existing assortment S stated by (13) . (13) can

e rearranged as follows: 

 x (S) − ϑ y (S) 

= (αx r x − αy r y ) + θ (αx r x − αy r y ) 
∑ 

i / ∈ S∪{ x,y } 

αi 

1 − αi 

−θ

(αx − αy ) 
∑ 

i ∈ S 
αi r i 

(1 − αx )(1 − αy ) 
+ θ

αx αy (r x (1 − αx ) − r y (1 − αy )) 

(1 − αx )(1 − αy ) 
. (14) 

nder the condition that r x αx ≥ r y αy and αx > αy , (14) decreases 

ith a decrease in the second term and an increase in the third 

erm. In the second term, the summation is over i / ∈ S ∪ { x, y } and

n the third term, the summation is over i ∈ S. So, when the set

 / ∈ S ∪ { x, y } gets smaller, the set i ∈ S is expanded. For a given x

nd y, ϑ x (S) − ϑ y (S) obtains its minimum value when the current 

et S contains maximum number of products, so i / ∈ S ∪ { x, y } gets

t smallest size. By definition, ϑ i (S) denotes the marginal benefit of 

dding product i to an existing assortment S, so it should hold that 

 S| ≤ C − 1 . Then, when | S| = C − 1 , set i / ∈ S ∪ { x, y } is minimized

nd the set i ∈ S is maximized. Recall that a (i ) denotes the index

f the product with the i th largest product preference, such that 

a (1) ≥ αa (2) . . . ≥ αa (N) . Subsequently, 
∑ 

i / ∈ S∪{ x,y } 
αi 

1 −αi 
has a mini- 

um value of 
∑ | N| 

i = C+1 

αa (i ) 

1 −αa (i ) 
. Moreover, 

∑ 

i ∈ S αi r i obtains its maxi- 

um value when the most dominant products are in S, such that 
 

i ∈ S αi r i = 

∑ | C−1 | 
i =1 

αi r i . Thus, we can state that 

 x (S) − ϑ y (S) 

≥ ( αx r x − αy r y ) 

( 

1 + θ
| N| ∑ 

i = C+1 

αa (i ) 

1 − αa (i ) 

) 

−θ
(αx − αy ) 

∑ | C−1 | 
i =1 

αi r i − αx αy (r x (1 − αx ) − r y (1 − αy )) 

(1 − αx )(1 − αy ) 
. 

or this minimum marginal profit difference to be non-negative, it 

hould hold that 

≤ (αx r x − αy r y )(1 − αx )(1 − αy )

(αx − αy ) 
∑ | C−1 | 

i =1 
αi r i − αx αy (r x − r y ) − (αx r x − αy r y )((1 − αx )

hich is called 

ˆ θxy . �

roof of Theorem 3. 

(i) This directly follows from Lemma 1 i. 

(ii) Consider the equation ϑ x (S) − ϑ y (S) in (14) . We know that 

the sum of first two terms is always non-negative by defi- 

nition, and the last term is a linear function of θ . Thus, if 

the last term with a minus sign in front is positive, and the 

total is positive, (14) linearly decreases in θ, which can pass 

through zero from positive to negative a maximum of once. 

Consequently, there is no chance that (14) can switch from 
1136 
αy ) 
∑ | N| 

i = C+1 

αa (i ) 

1 −αa (i ) 
− αx αy ) 

, 

negative to positive as the θ increases. Next, we first note 

that if r x ≥ r y and αx ≤ αy do not simultaneously hold, then 

either r x ≥ r y and αx ≥ αy or r x ≤ r y and αx ≥ αy from the 

definition of the dominance relationship between x and y 

for x ≤ y . Thus, let αx ≥ αy ; as | S| increases while the second 

(always non-negative) term decreases, the third term with 

a minus sign in front increases. Thus, (14) decreases over- 

all. As the capacity C increases, | S| can increase, and thus, 

the marginal benefit of adding product x over product y de- 

creases, which may pass through zero only once, from posi- 

tive to negative. �

roof of Theorem 4. (i) Consider the change in profit by adding 

ne more product, such as x, to an existing assortment set S: 

 x (S) = αx r x + r x θ
∑ 

i / ∈ S∪{ x } 
αi δix − θ

∑ 

i ∈ S 
αx δxi r i 

= αx r x + αx r x θ
∑ 

i / ∈ S∪{ x } 

αi 

1 − αi 

− θ
αx 

1 − αx 

∑ 

i ∈ S 
αi r i 

= αx 

[ 
r x + θ

(
r x 

∑ 

i / ∈ S∪{ x } 

αi 

1 − αi 

− 1 

1 − αx 

∑ 

i ∈ S 
αi r i 

)] 
. (15) 

et the value of θ, which makes ϑ x (S) = 0 , be called θSx , such

hat 

Sx = 

( −r x 

r x 
∑ 

i / ∈ S∪{ x } 
αi 

1 −αi 
− 1 

1 −αx 

∑ 

i ∈ S αi r i 

)
. 

or θ ≤ θSx , adding product x to the current assortment S is not 

armful, and thus, product x can be added. If θSx ≤ 0 , then prod- 

ct x is profitable if included in the assortment independent of 

he θ . If θSx > 0 , over all possible S sets, θSx obtains its smallest 

alue for the minimum value of 
∑ 

i / ∈ S∪{ x } 
αi 

1 −αi 
and maximum value 

f 
∑ 

i ∈ S αi r i . Given a capacity of C, the minimum set of i / ∈ S ∪ { x }
s obtained when | S| = C − 1 . Recall that a (i ) denotes the index

f the product with the i th -largest product preference, such that 

a (1) ≥ αa (2) . . . ≥ αa (N) . Subsequently, 
∑ 

i / ∈ S∪{ x } 
αi 

1 −αi 
has the mini- 

um value of 
∑ | N| 

i = C+1 

αa (i ) 

1 −αa (i ) 
. Moreover, 

∑ 

i ∈ S αi r i has a maximum 

alue when | S| = C − 1 of 
∑ C−1 

i =1 αi r i , such that α1 r 1 ≥ α2 r 2 . . . ≥
N r N by definition. As a result, θSx achieves its minimum non- 

egative value as denoted by ˆ θx , such that 

ˆ 
x = max 

{ 

0 , 
−r x 

r x 
∑ | N| 

i = C+1 

αa (i ) 

1 −αa (i ) 
− 1 

1 −αx 

∑ C 
i =1 αi r i 

} 

. 

mong all non-zero ˆ θx , the minimum value of ˆ θx over all x is 

enoted by ˆ θc , which is the critical substitution level to add any 

roduct i , or i ∈ N. If θ ≤ ˆ θc , it is always profitable to add a prod-

ct to any given assortment as long as the capacity limit is not 

xceeded. Further, ˆ θc can be formally defined as 

ˆ 
c = min 

x ∈ N 

{ 

ˆ θx | ˆ θx > 0 

} 

= min 

x ∈ N 

{ 

ˆ θx > 0 | ˆ θx = 

−r x 

r x 
∑ | N| 

i = C+1 

αa (i ) 

1 −αa (i ) 
− 1 

1 −αx 

∑ C−1 
i =1 αi r i 

} 

. 

n the one hand, (ii) if θ > 

ˆ θc , it is possible that (15) can be nega-

ive if the equation in parentheses is negative. If this is the case, as 

increases the δx (S) decreases, which may lead to the capacity’s 

nderutilization. On the other hand, for a fixed θ, if the term in 
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arentheses in (15) decreases, δx (S) also decreases. This may occur 

s the set of i / ∈ S ∪ { x } decreases, which may be the result of an

ncrease in capacity C. �

roof of Lemma 2. First note that 

�(S) = 

( ∑ 

i ∈ S 
αi r i 

) ( 

1 + θ
∑ 

i ∈ S 
γi 

) 

(S ∪ { j} ) = 

( ∑ 

i ∈ S 
αi r i + α j r j 

) ( 

1 + θ
∑ 

i ∈ S 
γi − θγ j 

) 

eading to 

(S ∪ { j} ) − �(S) = −
( ∑ 

i ∈ S 
αi r i 

) 

θ γ j + α j r j 

( 

1 + θ
∑ 

i / ∈ S 
γi 

) 

− α j r j θ γ j . 

imilarly, we have 

(T ∪ { j} ) − �(T ) = −
( ∑ 

i ∈ T 
αi r i 

) 

θ γ j + α j r j 

( 

1 + θ
∑ 

i / ∈ T 
γi 

) 

− α j r j θ γ j . 

hen, 

�(S ∪ { j} ) − �(S) − (�(T ∪ { j} ) − �(T )) 

= 

( ∑ 

i ∈ T 
αi r i −

∑ 

i ∈ S 
αi r i 

) 

θγ j + α j r j θ

( ∑ 

i / ∈ S 
γi −

∑ 

i / ∈ T 
γi 

) 

. 

ince S ⊂ T , and γ j > 0 , α j > 0 , r j > 0 for all j, the expression

bove is strictly larger than 0, which leads to the desired result. �

roof of Lemma 3. Note that 

(S ∪ { j} ) − �(S) = −
( ∑ 

i ∈ S 
αi r i 

) 

θ γ j + α j r j 

( 

1 + θ
∑ 

i / ∈ S 
γi 

) 

− α j r j θ γ j . 

implifying the expression and ensuring that it is non-negative 

ives the desired result. �

roof of Theorem 6. Consider the case of two products with C = 

 . Assume r 1 α1 > r 2 α2 , but r 2 > r 1 . The heuristic Max αi r i | Select-

ap will select product 1 as its assortment. Resulting profit is 

 1 α1 + θ r 1 α2 . 

n the other hand an assortment with product 2 has the following 

rofit 

 2 α2 + θ r 2 α1 . 

he assortment with product 2 has a larger profit and is optimal if 

nd only if 

≥ r 1 α1 − r 2 α2 

r 2 α1 − r 1 α2 

. 

he performance of the Max αi r i | Select-Cap heuristic is then 

r 1 α1 + θ r 1 α2 

r 2 α2 + θ r 2 α1 

= 

(
r 1 
r 2 

)(
α1 + θα2 

α2 + θα1 

)
. 

he second term in the right hand side is increasing in α1 and 

ecreasing in α2 . However we have the conditions r 1 α1 > r 2 α2 and 

1 + α2 ≤ 1 . Under these restrictions the second term obtains its 

inimum at 

r 1 θ + r 2 
r 2 θ + r 1 

. 

sing this we obtain the performance bound 

r 1 (θ r 1 + r 2 ) 

r 2 (θ r 2 + r 1 ) 
. 

eneralizing this for more than two products leads to the desired 
esult. �
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