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Abstract

Kohn–Sham density functional theory is an ab initio framework for electronic structure calculation that offers a basis for
nonphenomenological multiscale approaches. In this work, higher-order finite element methods are applied in the context of this
theory, with a particular focus on the use of nonlocal pseudopotentials. Specifically, an accurate class of pseudopotentials which
are based on the generalized gradient approximation of the exchange–correlation functional with nonlinear core corrections are
targeted. To this end, the suitable weak formulation of the underlying nonlinear eigenvalue problem is derived and additionally
cast in a radial form. The weak forms are discretized through traditional Lagrange elements in addition to isogeometric analysis
based on B-splines in order to explore alternative means of achieving faster routes to the solution of the resulting generalized
eigenvalue problems with O(106–107) degrees of freedom. Numerical investigations on single atoms and larger molecules
validate the computational framework where stringent accuracy requirements are met through convergence at optimal rates.
c⃝ 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Multiscale analysis aims at a nonphenomenological understanding of macroscopic physics through fundamental
icroscopic modeling. Reaching across a hierarchy of scales within this endeavor, one arrives at the atomic level that

ltimately determines the mechanics of materials and interfaces. The interactions at this scale are solely governed
y the electronic structure and ab initio methods aim at its accurate calculation together with the corresponding

total energy that gives access to a broad range of properties [1]. A suitable electronic structure calculation method
also enables molecular dynamics without the need for empirical potentials [2], thereby offering the possibility of
developing predictive frameworks at the next scale towards the continuum [3].

The fundamental role of the electronic structure in this picture led to the development of a great variety of
computational frameworks that target nonperiodic systems such as molecules as well as periodic ones such as
crystals. Operating within the Born–Oppenheimer approximation where the nuclei are treated classically, it is now

E-mail address: temizer@bilkent.edu.tr.
https://doi.org/10.1016/j.cma.2021.114094
0045-7825/ c⃝ 2021 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2021.114094
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2021.114094&domain=pdf
mailto:temizer@bilkent.edu.tr
https://doi.org/10.1016/j.cma.2021.114094
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widely recognized that one suitable theoretical setting for such frameworks towards the prediction of the ground
state electronic structure is Kohn–Sham density functional theory [4]. This theory delivers the Kohn–Sham equation,
a nonlinear eigenvalue problem in the form of a second-order differential equation, that needs to be solved subject
to very stringent accuracy requirements for a large number of eigenpairs. Some of the earliest and most established
approaches to address this challenge introduce a basis, such as real-space methods based on Gaussian forms that are
mainly targeted for nonperiodic systems and reciprocal-space methods based on plane-waves for periodic systems.
Introducing a basis helps preserve the variational structure of density functional theory. However, these early
approaches had initial shortcomings which needed to be addressed for enabling large-scale applications. For instance,
Gaussian basis sets are not complete and therefore ground state energy cannot be systematically approached, thereby
rendering the identification of convergence difficult. On the other hand, plane-waves do offer systematic convergence
but cannot provide local resolution control, which is highly desirable for efficient molecular calculations. Despite
their perceived shortcomings, these methods remain highly competitive in their respective domains of competence
— see [5] for a recent review of various numerical methods. Nevertheless, because the scaling properties of plane-
waves are not favorable [6], real-space methods which can offer systematic convergence and are simultaneously
applicable to periodic or nonperiodic systems have become appealing [7]. Finite differences, wavelets and finite
elements offer three discretization choices towards this purpose [8]. The finite difference method does not introduce
a basis, is not variational and offers limited local refinement [9,10]. The wavelet basis delivers a variational approach
and also incorporates adaptive local refinement capability through multiple grids [11], leading to highly competitive
frameworks [12]. The finite element method (FEM) enables a greater degree of adaptive local refinement capability
through graded meshes, a feature that renders it particularly suitable for all-electron calculations with highly variable
solutions near atomic cores in addition to pseudopotential calculations where smoother solutions are expected. A
review of early works may be found in [13]. The present study will not attempt to simultaneously benefit from all
potential advantages of FEM or demonstrate competitiveness with alternative methods — see [14] for a recent set
of comparisons. In fact, highly effective real-space methods can be constructed through entirely different routes as
well [15]. Instead, the aim will be to expand upon the versatility of the underlying computational framework of
FEM by introducing novel theoretical ingredients while simultaneously exploring alternative discretizations.

Since the pioneering application [16] of FEM to Kohn–Sham density functional theory, significant advances have
een achieved in this numerical setting, culminating in highly effective computational frameworks [14,17]. Most
pproaches have predominantly been based on traditional finite element spaces based on hexahedra and tetrahedra.
n addition to linear or quadratic discretizations [18–23], the importance of higher-order elements towards achieving
igher convergence rates, and hence a greater degree of efficiency with respect to lower-order elements, have
merged within the past ten years [24–27]. All with the exception of [14], these studies invoke a very specific
orm for the exchange–correlation functional that is central to density functional theory, namely the local density
pproximation. Because this form remains limited in its predictive capability [28], exploring a class of improved
unctionals in the context of FEM will be one goal of this current study. Specifically, the implementation of the
eneralized gradient approximation [29] will be discussed and this implementation will be employed together with
class of nonlocal pseudopotentials [30] that are highly accurate [31].
The emphasis on higher-order finite element discretizations also highlights the need for exploring alternative

igher-order discretization spaces that potentially display additional advantages. The framework of isogeometric
nalysis [32] offers one such alternative. Although its structure differs from the traditional finite element framework
n some aspects, notably through the basis structure which is not defined at an element level, this approach will
resently be classified as a higher-order FEM based on its many commonalities with the traditional approach both
ith respect to its computational implementation as well as its mathematical analysis — see [33] for an early

urvey. One differentiating aspect of isogeometric analysis is the use of discretizations which offer higher-order
ontinuity across the whole domain, an aspect that is particularly suitable to the nature of the solution to the Kohn–
ham equation except at the atomic cores in an all-electron setting. The idea of employing at least C1-continuous
nite element discretizations to capture this smooth solution is not common but also not new [34] — see [35] for
review in a more general context. In fact, cubic Hermite splines have recently been successfully employed in

hallenging settings [36]. However, achieving similar discretizations at arbitrary orders of continuity is not trivial,
nd isogeometric discretizations have been instrumental in this respect. Initial efforts have focused on small material
ystems in nonperiodic [37–41] and periodic [39,42] settings. A nonperiodic framework that is suitable for larger

ystems has recently been presented in [43] which, as in earlier examples, followed the local density approximation
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for the exchange–correlation functional. Therefore, the second goal of this study is to carry out the investigations
based on the gradient-corrected functional in the context of higher-order finite element methods which span not
only traditional discretizations but also those that are based on isogeometric analysis. It is noted that isogeometric
discretizations also allow for local refinement [44–47] but these will not be employed in this work — see [48] for
a recent overview with a particular focus on hierarchical B-splines.

The effectiveness of FEM can be improved, in addition to higher-order discretizations with adaptivity, through
nrichment. Recently, enriched finite element formulations have been applied to all-electron [49] and nonlocal
seudopotential [50] solutions of the Kohn–Sham equation — see also [51,52] for closely related studies. Here,
he solutions to the standard all-electron radial formulation of the Kohn–Sham equation for an atom have
een employed in the generation of enrichment functions. For a nonlocal pseudopotential setting, it may be
ore advantageous to generate the enrichment functions from a suitable radial formulation of the Kohn–Sham

quation for an ion. It appears, however, that the formulation of the radial Kohn–Sham equation with nonlocal
seudopotentials is barely discussed in the literature [53] and FEM, which is particularly suitable to its solution,
as never been invoked as a solution approach. The third goal of this study is to fill this gap. It is noted that the
alidation of the three-dimensional FEM framework requires reference nonlocal pseudopotential solutions that can
e challenging to calculate even for a single atom if the accuracy sought is very high. The possibility to invoke the
eveloped framework in a radial setting through straightforward manipulations will also deliver extremely accurate
olutions which can be employed in single-atom test cases for the validation of three-dimensional finite element
mplementations.

In order to address the stated goals, the theoretical framework of Kohn–Sham density functional theory will
rst be outlined in Section 2. Next, in Section 3, the general formulation of nonlocal pseudopotentials will be
ummarized and the particular formulation to be employed which also complements the nonlinear core correction
ormulation will be stated. Here, the need for a radial formulation to extract the radial wavefunctions for this class of
seudopotentials will be highlighted. Section 4 will then discuss the Kohn–Sham equation and its three-dimensional
eak formulation in the context of the generalized gradient approximation for the exchange–correlation functional.
dditionally, a number of algorithmic aspects regarding computational efficiency will be highlighted and the total

nergy expression will be provided in its final form. The radial counterpart of this formulation, which corresponds to
n integrodifferential equation, will be derived in Section 5. Finally, numerical investigations of the computational
ramework will be presented in Section 6. Here, the ability of the radial formulation to deliver highly accurate
eference solutions will be demonstrated and some of these values are subsequently employed in three-dimensional
ingle-atom examples. The investigations will highlight the significant per-degree-of-freedom advantage of B-spline
iscretizations in comparison to traditional Lagrange discretizations. In all cases, the framework is validated through
he demonstration of optimal convergence rates and by comparing the converged values with external references.
he investigations are concluded with studies on comparatively large molecules such as cyclo[18]carbon and the
uckyball where the solution of generalized eigenvalue problems with O(106–107) degrees of freedom are needed.
n all cases, the ability of the overall framework to satisfy stringent accuracy requirements will be displayed.

. Kohn–Sham density functional theory

Consider a non-periodic material system consisting of M ions, with positions RA and ionic charges Z A (A ∈

1, 2, . . . ,M}) in an unbounded space. The position vector will be denoted by r , with r = |r| and r̂ = r/r , through
hich r A = r − RA is also introduced. The ionic charges represent the nuclear charges minus the number of core

lectrons, which are implicitly treated within the pseudopotential formulation. The presentation focuses on a system
ith N valence electrons that will be explicitly treated and are associated with a closed-shell atom or molecule
ut without consideration for spin. Fractional occupancy of its orbitals as well as distinction between spin-up and
pin-down configurations are readily incorporated into the theory [1,4]. This extension will be necessary in some
f the examples to be presented and will be pursued without a detailed discussion. Introducing generic variables
f, x, y}, the notation f [x] will be employed to indicate that f is a functional of x whereas f (y) will be employed

f f is a function of y and f [x](y) to make such dependencies explicit. Integration over all free coordinates will
e indicated by ⟨·⟩ and, in view of the real-space formulation pursued within the class of problems considered, all

uantities are admitted to be real from the outset. Atomic units are employed throughout this work.
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In Kohn–Sham density functional theory based on a nonlocal pseudopotential formulation [1,54], the ground

tate total energy of the material system is obtained from a functional E[ψ]:

E = Ts + EC + Exc + EN L . (2.1)

Here, the first contribution Ts is associated with the kinetic energy of a non-interacting reference system with
N particles. The choice of this reference system allows expressing the valence electron density ρ and Ts exactly
through a set ψ of orthonormal spatial orbitals ψi (r), with the sum running from 1 to N/2:

ρ(r) = 2
∑

iψ
2
i , Ts[ψ] = 2

∑
i ⟨ψi

(
−

1
2∇

2)ψi ⟩ . (2.2)

The second contribution to E is the total electrostatic energy EC of the material system. Following the approaches
discussed in [25,55,56], EC may be expressed as

EC [ρ] =
1
2 ⟨(ρ + b) vC ⟩ − Eself . (2.3)

Here, the ionic charge distribution is represented via b(r) =
∑M

A=1 βA(r) where βA(r) is a spherically symmetric
regularization of the point charge distribution −δ(r A)Z A such that it vanishes or rapidly decays to zero beyond a
localized ball around the ion. These distributions can be indirectly defined through a Poisson equation based on the
choice of a local part νA of the pseudopotential for each ion, thereby leading to an expression for the self-interaction
energy Eself as well:

−
1

4π∇
2νA = βA , Eself =

M∑
A=1

1
2 ⟨βA νA⟩ . (2.4)

The total external potential vext[b](r) =
∑M

A=1 νA helps define the total electrostatic potential vC = vH + vext
appearing within EC where the Hartree potential vH [ρ](r) as well as vC satisfy their respective Poisson equations:

−
1

4π∇
2vH = ρ , −

1
4π∇

2vC = ρ + b . (2.5)

The third contribution to E is the exchange–correlation energy Exc, which embodies complications associated
with electron–electron interactions that are not captured by the remaining terms and, in view of its universal yet
elusive dependence on ρ, requires modeling. The exchange–correlation functional is typically expressed through
εxc, the exchange–correlation energy per electron, via Exc[ρ] = ⟨ρ εxc⟩. Without pursuing an explicit decomposition
into exchange and correlation contributions, a fundamental choice is the local density approximation (LDA) that
is motivated by a uniform density distribution [4], leading to a dependence of εxc only on ρ. Deviations from
uniformity may be handled through an additional dependence on ∇ρ in the context of the generalized gradient
approximation (GGA), the next fundamental choice in a series of increasingly accurate exchange–correlation
functionals with respect to predictive capability. The formulation of this dependence is not unique [57]. Based
on a widely preferred choice that will be invoked in this work [29], the expression εxc(ρ, σ ) will be employed
where σ = |∇ρ|

2. The exchange–correlation functionals are presently implemented using Libxc [58]. Although
GGA capability has been reported in a recently released FEM-based software [14], the transition from LDA to
GGA requires additional steps that will be pursued in detail for the first time in a modern FEM framework to the
best knowledge of the author, which will be addressed in the following sections. An additional minor novelty will be
the employment of nonlinear core correction (NLCC) in combination with GGA. NLCC addresses potential errors
arising from the nonlinearity of the exchange–correlation functional during the unscreening step of pseudopotential
generation [59]. This error can be significant when the core and valence electron densities of an atom significantly
overlap and it may be further aggravated during the incorporation of spin [60]. In order to alleviate this error by
recapturing the neglected overlap in the context of the frozen core assumption, NLCC introduces a core density
ρc(r) in the evaluation of the exchange–correlation functional in the formulation, leading to the following general
expression

ρ = ρ + ρc , Exc[ρ] = ⟨ρ εxc(ρ, σ )⟩ (2.6)

where the total core charge is a sum of ionic contributions:

ρc(r) =

M∑
κA(r A) . (2.7)
A=1

4
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The ion-dependent contributions κA are explicitly provided, presently based on the partial core density formulation
introduced in [30] where Gaussian forms are employed.

The fourth contribution to E is the nonlocal pseudopotential energy EN L . The interaction of the valence electrons
with the frozen cores that are not explicitly accounted for in the pseudopotential formulation determines the local
and nonlocal contributions to the total energy [54]. The former is accounted for through the local parts νA of the
ionic pseudopotentials within EC . The latter is associated with the nonlocal parts ΛA of the ionic pseudopotentials:

vN L (r, r ′) =

M∑
A=1

ΛA(r A, r ′

A) , EN L = 2
∑

i ⟨ψi (r) vN L (r, r ′)ψi (r ′)⟩ . (2.8)

The nonlocal pseudopotential is understood to act on a function through integration over r ′.

3. Nonlocal pseudopotential formulation

Each nonlocal part can be expressed in a generic form that captures a range of widely employed nonlocal
pseudopotentials, with the subscript A denoting ion-dependent quantities which are specified as part of the
pseudopotential formulation. This form decomposes a nonlocal part into different angular momentum channels
Λl

A(r, r ′), indexed through the azimuthal quantum number l = 0, . . . , ℓA, and each channel is composed of
contributions associated with different magnetic quantum numbers m = −l, . . . , l:

ΛA(r, r ′) =

ℓA∑
l=0

Λl
A(r A, r ′

A) , Λl
A(r A, r ′

A) =

l∑
m=−l

Ylm(r̂ A)ωl
A(rA, r ′

A) Ylm(r̂ ′

A) . (3.1)

Here, Ylm are the spherical harmonics and ωl
A is a nonlocal radial function. The form of the nonlocal radial function

is the distinguishing feature of the nonlocal pseudopotential. Focusing on norm-conserving nonlocal pseudopoten-
tials [1], examples include: (i) the classical form that is semilocal by construction [61], (ii) its modification into
a numerically efficient separable nonlocal form through the Kleinman–Bylander transformation [62] or a direct
generation in such a form [63], (iii) a separable form where the nonlocal radial function is composed of multiple
projectors [64], instead of one as in earlier forms, either based on the generalized norm-conservation criteria [65]
or on a direct generation procedure towards such a form [66]. The last set of examples provides a general form
which may be stated through the generic diagonalized expression [64]

ωl
A(rA, r ′

A) =

kA∑
k=1

pl
Ak(rA) hl

Ak pl
Ak(r ′

A) . (3.2)

The radial functions pl
Ak , which vanish or rapidly decay to zero beyond a specified radius around each ion, and

the spherical harmonics together constitute the projectors λlm
Ak = pl

AkYlm which help express the nonlocal ionic
pseudopotential in its final form:

ΛA(r, r ′) =

ℓA∑
l=0

l∑
m=−l

kA∑
k=1

λlm
Ak(r A) hl

Ak λ
lm
Ak(r ′

A) =

PA∑
α=1

λAα(r A) h Aα λAα(r ′

A) . (3.3)

Overall, the constants {ℓA,kA, hl
Ak, PA} are ion-dependent. The latter equality has been introduced as a compact

reference to the separable nonlocal nature of the ionic pseudopotential.
The pseudopotential approach initiated in [66] is particularly interesting because it deviates from standard features

that are shared by the remaining examples. For instance, the nonlocal radial functions do not vanish beyond a
specified radius but rather rapidly decay to zero. Therefore, the resulting wave functions never match their all-
electron counterparts perfectly but instead rapidly approach them. More importantly, there is no direct recourse to an
atomic solution in the construction of this pseudopotential. Instead, the nonlocal radial functions are based on explicit
Gaussian forms, allowing convenient application to both real and reciprocal space calculations, the parameters of
which are subsequently optimized for accuracy and transferability. As such, features of the atomic behavior such as
radial wavefunctions are not accessible through the form of the pseudopotential without the formulation of an atomic
problem. In the radial case, this leads to a nonlinear eigenvalue problem that takes the form of an integrodifferential

equation, as first pointed out and solved in [53] and later also in [67]. However, despite its suitability and the elegant
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formulation it delivers, FEM has not been applied to the solution of this equation which, therefore, constitutes
another goal of this study.

The pseudopotential formulation in [66] was presented with both LDA and GGA parameter sets for selected
toms. The list of atoms was subsequently extended in [68] with LDA parameter sets which additionally incorporate
elativistic effects that can optionally be omitted by employing only the scalar parts of the formulation. Further
xtension to GGA parameter sets was also pursued in [69]. Finally, parameter sets with NLCC for the nonrelativistic
ormulation were presented in [30], which are to be employed in this work with the updates provided in [70], and
ave been shown to be highly accurate in comparison to all-electron predictions [31].

. Three-dimensional Kohn–Sham equation

.1. Weak form

For density functional theory in the all-electron setting, among all admissible ρ, the ground state density
minimizes E . In the Kohn–Sham formalism, this translates into a minimization over the spatial orbitals, a procedure
which remains the same in the transition to the nonlocal pseudopotential setting. When subject to the normalization
constraint ⟨ψ2

i ⟩ = 1 through a corresponding Lagrange multiplier ϵi which corresponds to the orbital energy,
inimization of (2.1) over ψi delivers the canonical Kohn–Sham equation with a nonlocal one-electron Hamiltonian:

(− 1
2∇

2
+ vC + vxc + vN L )ψi = ϵi ψi . (4.1)

lthough the construction of the weak form towards a FEM implementation follows the standard procedure for the
oisson equation (2.5)2 that delivers vC , the weak form of (4.1) is commented upon due to the contribution from

he exchange–correlation potential vxc in the context of GGA. This contribution presently appears symbolically
n (4.1) because it is originally defined through its action not on ψi but rather on the density variation δρ via
Exc = ⟨vxc δρ⟩:

ṽxc = εxc + ρ
∂εxc

∂ρ
, wxc = 2ρ

∂εxc

∂σ
∇ρ , vxc = ṽxc + wxc · ∇ . (4.2)

Here, ṽxc is the standard LDA term in the context of NLCC while the second term arises from gradient correction.
The operation of this second term on ψi naturally appears within a weak form and is actually implicit in the
derivation of the strong form (4.1). In order to elucidate this aspect, an indirect path is chosen instead based on an
intermediate form for the GGA contribution that can be obtained from the minimization statement of the energy,
effectively simplifying the direct operation of vxc on ψi within the strong form [1]: wxc · ∇ = −∇ ·wxc. For
the construction of the weak form, it is noted that ψi are subject to homogeneous Dirichlet boundary conditions,
imposed on sufficiently large domains in a numerical setting. Consequently, introducing a test function ϕ(r) and
observing ⟨∇ · (ϕwxc ψi )⟩ = 0, the GGA contribution −⟨ϕ ∇·wxc ψi ⟩ to the weak form may be recast in a way that
clarifies its operation on ψi and additionally highlights the symmetric contribution of the total exchange–correlation
potential to the weak form [1]:

⟨ϕ vxc ψi ⟩ = ⟨ϕ ṽxcψi ⟩ + ⟨ϕwxc · ∇ψi + ∇ϕ · wxc ψi ⟩ . (4.3)

To complete the weak form, the compact representation (3.3)2 is employed to express the nonlocal contribution
from the pseudopotential as

⟨ϕ vN L ψi ⟩ =

M∑
A=1

PA∑
α=1

⟨ϕ λAα⟩ h Aα ⟨λAα ψi ⟩ (4.4)

which is also observed to be symmetric and leads to the weak form of (4.1) after the standard manipulation of the
kinetic energy contribution as well:

1
2 ⟨∇ϕ · ∇ψi ⟩ + ⟨ϕ (vC + vxc + vN L )ψi ⟩ = ϵi ⟨ϕ ψi ⟩ (4.5)

In order to construct the discrete counterpart of the weak form (4.5), a set of basis functions NI is introduced
uch that a finite element test/trial function v is discretized as

∑
v I N and {w} will indicate the vector associated
I I

6
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with a set of values w I . Subsequently, the basis-weighted integrals λI

Aα = ⟨NIλAα⟩ are defined for each projector
uch that the nonlocal contribution (4.4) takes the discrete form

[HN L ] =

M∑
A=1

PA∑
α=1

{λAα}h Aα{λAα}
T , ⟨ϕ vN L ψi ⟩ = {ϕ}

T [HN L ]{ψi } . (4.6)

On the other hand, the exchange–correlation contribution (4.3) may be cast as

H I J
xc = ⟨NI ṽxc NJ ⟩ + ⟨NI wxc · ∇NJ + ∇NI · wxc NJ ⟩ , ⟨ϕ vxc ψi ⟩ = {ϕ}

T [Hxc]{ψi } . (4.7)

It is noted that the use of GGA in a finite element setting has recently been reported in [14], although details
of implementation were not provided. Indeed, the form of the exchange–correlation contribution to the discrete
Hamiltonian provided therein is not compatible with the GGA formulation above without further manipulation.
However, the software presented in [14] is a functional finite element framework from which the details of the
specific GGA implementation pursued therein may be extracted — see also [71] for a GGA-based application of
this software.

Defining the remaining standard contributions to the discrete Hamiltonian associated with kinetic energy and
electrostatics in addition to the overlap matrix [M] as

H I J
T =

1
2 ⟨∇NI · ∇NJ ⟩ , H I J

C =
1
2 ⟨NI vC NJ ⟩ , M I J

= ⟨NI NJ ⟩ (4.8)

one obtains the discrete form of the Kohn–Sham equation (4.1) with a symmetric discrete Hamiltonian [H ]:

[H ] = [HT ] + [HC ] + [Hxc] + [HN L ] , [H ]{ψi } = ϵi [M]{ψi } . (4.9)

4.2. Solution scheme

The solution scheme that is applied towards the solution of the discrete Kohn–Sham equation will closely follow
the choices in [43]. In this section, a number of differences and improvements are briefly commented upon.

Because [HC ] and [Hxc] depend on {ψi } through the electron density ρ, (4.9) is a nonlinear generalized eigenvalue
problem that needs to be solved in combination with the discrete counterpart of the Poisson equation (2.5)2 through
self-consistent field iterations within a suitable mixing scheme applied on the density. Presently, the Anderson
scheme will be employed [1] and, for consistency, mixing is applied in an identical fashion on the density gradient
as well in view of the GGA setting.

Within such an iterative scheme, convergence can be accelerated with a good initial guess for the orbitals {ψi }.
Presently, the iterations are initiated on a coarse mesh with a guess that is based on atomic solutions, for instance
those that are obtained through the radial formulation that will be discussed shortly. During mesh refinement
towards convergence, the coarser mesh solution is subsequently mapped onto the finer mesh through L2-projection
to generate the updated initial guess. It was found that such a choice greatly accelerates convergence and leads to
only a few iterations at sufficiently fine resolutions near the target accuracy requirements. When generating the types
of convergence plots to be presented in Section 6 or in attempting to assess whether target accuracy requirements
are met in the absence of an external comparison value, this choice clearly reduces overall calculation times as
well. However, it may not necessarily lead to a reduction if the only aim is to extract the energy associated with a
certain resolution, either because the coarse mesh solution is not sufficiently accurate to accelerate convergence or
because the accumulated time towards the target resolution exceeds the time associated with a direct initiation at
this resolution.

At each iteration, a generalized eigenvalue problem must be solved where the Hamiltonian is symmetric and the
overlap is symmetric positive-definite. For the large-scale standard eigenvalue problems that are addressed in density
functional theory calculations where O(106–107) degrees of freedom are easily encountered, the Chebyshev-filtered
subspace iteration method [72,73] has emerged as a leading approach over the past ten years [15,25,74]. Presently,
this method is adapted to the generalized eigenvalue problem setting through the application of the opening and
closing steps in the method, namely the Lanczos and the Rayleigh–Ritz algorithms, in a generalized format [75].
The core step in the method, on the other hand, is the Chebyshev polynomial filtering step that entails recursive
application of [M]–1[H ] on a set of vectors that span the subspace within which {ψi } are sought. As highlighted

earlier, the nonlocal pseudopotentials of [66] employed in this work do not vanish beyond a specified radius around

7
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an ion. Without a cut-off on the components of [HN L ], this feature leads to a dense Hamiltonian matrix. However,
the value of a suitable cut-off tolerance is dependent on the accuracy sought. In order to eliminate this arbitrariness,
the separable nature of the nonlocal pseudopotentials is recognized. Indeed, because the action of [HN L ] on a
vector is easily obtained through the expression (4.6), a cut-off is not required. All the components of the vectors
{λAα} can be calculated irrespective of their magnitude and, subsequently, the action of [H ] on a generic vector
{v} can be decomposed into two steps and summing their results: (1) the action of [HT ] + [HC ] + [Hxc] on
v} which requires the assembly of these contributions, accompanied by (2) the action of [HN L ] on {v}, namely
HN L ]{v} =

∑M
A=1

∑PA
α=1{λAα}h Aα({λAα}

T
{v}), which does not require assembly. The calculations carried out in

this work indicate that this choice leads to negligible change in calculation times in comparison to the approach
where a judiciously chosen cut-off is applied to [HN L ] during assembly in order not to compromise its sparsity
while ensuring a desired accuracy. The clear advantage is that the nonlocal pseudopotentials of [66] can now be
represented very precisely on a given mesh.

4.3. Energy expression

When employed together with (2.2)2, (4.1) allows expressing the total energy as

E = 2
∑

i ϵi − ⟨ρ (vC + vxc)⟩ + EC + Exc (4.10)

where, in view of (2.2)1 and (4.3),

⟨ρ vxc⟩ = ⟨ρ ṽxc⟩ + ⟨wxc · ∇ρ⟩ (4.11)

nd the explicit appearance of EN L is eliminated through a corresponding contribution from vN L within Ts . In order
o address open-shell problems and degenerate orbital energies, (4.10) will additionally be extended to fractional
ccupancy of the orbitals through finite-temperature smearing — see [25] for a summary of the algorithmic details.
he latter can be incorporated in (2.2) and (4.10) through orbital occupancy factors fi ∈ [0, 1], leading to

ρ(r) = 2
∑

i fiψ
2
i , E = 2

∑
i fiϵi − ⟨ρ (vC + vxc)⟩ + EC + Exc (4.12)

ore specifically [1,4,76], the free energy E = E − θ Ss is introduced where θ is the temperature and Ss is the
entropy of the reference Kohn–Sham system

Ss = −2k
∑

i { fi ln fi + (1 − fi ) ln (1 − fi )} (4.13)

ith k as the Boltzmann constant. Incorporating the normalization constraint together with the summation constraint∑
i fi = N , which is enforced through a Lagrange multiplier ϵF , the stationary point of the functional

F = E + 2
∑

i fiϵi (1 − ⟨ψ2
i ⟩) + ϵF (N − 2

∑
i fi ) (4.14)

elivers (4.1) as well as the Fermi–Dirac distribution fi = [1 + exp ϵi −ϵF
kθ ]–1 where ϵF appears as the Fermi energy.

Presently, smearing is only employed as a numerical tool to estimate the zero-temperature properties of the system,
in particular to minimize E [77].

5. Radial formulation with nonlocal pseudopotentials

The expression of the total energy (4.12)2 remains identical in the transition to the radial case which addresses a
single atom possessing a spherical density [43]. Relevant Poisson problems also retain their forms, with ∇

2 replaced
by ∇

2
r = r−2(r2(·)′)′ where (·)′ =

d(·)
dr . In the case of a purely local pseudopotential, the derivation of the radial

Kohn–Sham equation from its three-dimensional counterpart (4.1) follows the classical outline [78]. In the presence
of nonlocal contributions to the pseudopotential, on the other hand, the classical approach requires modification in
order to obtain the form stated in [53]. To this end, let ∇

2
= ∇

2
r + r−2

∇
2
s , which defines ∇

2
s as the Laplacian on

the unit sphere. The solution is assumed and indexed in the form ψnlm(r) = Rnl(r )Ylm (̂r) where n = 1, 2, . . . is the
rincipal quantum number and l = 0, 1, . . . , n − 1 so that (4.1) simplifies to

−
1
2 (Ylm∇

2
r Rnl + r−2 Rnl∇

2
s Ylm) + (vC + vxc)RnlYlm + vN L RnlYlm = ϵnl RnlYlm . (5.1)

Note that equal fractional occupancy is assumed for degenerate solutions associated with m = −l, . . . , l in order
o ensure a spherical density. Also, only a single energy level n will be occupied in the nonlocal pseudopotential
8
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solutions of this work and the value of this level will be indicated as the valence value from the corresponding
all-electron setting. Recalling the representation (3.3)1 with the subscript A dropped because there is a single atom,
the nonlocal contribution from the ionic pseudopotential can be expressed as

vN L RnlYlm =

ℓ∑
l ′=0

l ′∑
m′=−l ′

k∑
k=1

pl ′
k Yl ′m′ hl ′

k ⟨pl ′
k Rnl⟩r ⟨Yl ′m′Ylm⟩s =

k∑
k=1

pl
kYlm hl

k ⟨pl
k Rnl⟩r (5.2)

where ⟨·⟩r = ⟨· r2
⟩ denotes radial integration, ⟨·⟩s denotes integration on the unit sphere and the orthonormality

condition ⟨Yl ′m′Ylm⟩s = δl ′lδm′m has been invoked. Employing the eigenvalue property ∇
2
s Ylm = −l(l + 1)Ylm with

the accompanying centrifugal term definition vl =
l(l+1)

2r2 , multiplying (5.1) with Ylm and integrating over the unit
phere, one obtains the integrodifferential equation in [53] that is subject to the normalization constraint ⟨R2

nl⟩r = 1:

−
1
2∇

2
r Rnl + (vl + vC + vxc)Rnl +

∑k
k=1 pl

k hl
k ⟨pl

k Rnl⟩r = ϵnl Rnl . (5.3)

The radial Kohn–Sham equations for all occupied values of l must be solved self-consistently, together with the
radial Poisson equation for vC . Following steps which are similar to the three-dimensional case, the weak form of
(5.3) can be obtained through a radial test function ϕ(r ):

−
1
2 ⟨ϕ′ R′

nl⟩r + ⟨ϕ (vl + vC + vxc)Rnl⟩r +
∑k

k=1⟨ϕ pl
k⟩r hl

k ⟨pl
k Rnl⟩r = ϵnl⟨ϕRnl⟩r . (5.4)

The accompanying finite element formulation based on this symmetric weak form delivers an efficient solution
of the atomic problem with a nonlocal pseudopotential. Note that the presence of vxc in the context of a GGA
contribution is handled without difficulty also in the radial setting because the density renders it spherical as well
and a similar weak form implementation follows in terms of Rnl :

wxc = 2ρ
∂εxc

∂σ
ρ ′ , ⟨ϕ vxc Rnl⟩r = ⟨ϕ ṽxc Rnl⟩r + ⟨ϕ wxc R′

nl + ϕ′wxc Rnl⟩r . (5.5)

6. Numerical investigations

6.1. Discretization and accuracy

Towards the calculation of the total energy, the Poisson and Kohn–Sham equations will be solved within a
standard Bubnov–Galerkin finite element discretization. In particular, both Lagrange and B-spline basis functions
will be employed, the former referring specifically to standard hexahedral elements. For a given order p,
discretizations based on Lagrange basis functions will be indicated by Lp and those based on B-splines by B p.
Linear Lagrange and B-spline discretizations are equivalent and will be indicated by L1. Due to the combination of
its variational structure and the underlying discretization, FEM delivers systematic convergence towards the ground
state energy through monotonic reduction in the total energy with mesh refinement. For a given reference ground
state energy Eo which will be predicted on a fine discretization, this systematic convergence will be demonstrated
through the asymptotic expression for the error E − Eo:

E − Eo = Ch2k . (6.1)

Among the constants C and k, the latter is ideally equal to the order p of the discretization. The numerical value
f k will be predicted through the last three points on a series of successive mesh refinements and compared
gainst p in order to validate the FEM framework. The resolution of the discretization is controlled by a refinement
arameter eo that delivers the element size h and the number of degrees of freedom ndof . Specifically, in the radial
etting, the mesh will be composed of two parts: a core mesh where the element size is uniform and an outer mesh
here the element size is graded in order to resolve the vacuum. Both meshes are assigned eo elements, leading to

dof ≈ 2eo. For B-spline discretizations, the order can be varied independently of eo so that ndof = 2(eo + p−1). For
agrange discretizations, eo will stand for the number of linear elements which can then be merged into elements
f higher order so that ndof = 2eo holds irrespective of the order. A similar mesh structure is employed in the
hree-dimensional setting as well (Fig. 1).

Unless otherwise noted, only the GGA functional will be employed together with NLCC in all following examples
ased on the references earlier provided. When the nonlocal contributions to the Kohn–Sham equation as well as
o the total energy are omitted together with the NLCC contribution to the charge density and the regularized
9
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Fig. 1. The three-dimensional mesh structure is summarized. In the close-up view, the blue spheres indicate a portion of the ions in the
buckyball molecule. In the radial setting, the mesh structure follows any one of the edges from the vertex of the core region.

ionic charges are replaced by point nuclear charges, the all-electron case is obtained. This setup will additionally
be employed for demonstrating the implementation of the GGA functional. In all radial calculations, the calculated
reference values are converged to 10−10 accuracy with respect to domain size and to 10−11 with respect to resolution,
with the exception of the aluminum all-electron example where the latter accuracy is also 10−10. For further
validation of the results, comparison calculations will be carried out. For the all-electron (AE) case, the atomic
program from [79] (to be referred to as ATOM) will be employed, obtaining results which are converged to 10−9

accuracy with respect to domain size and resolution. For the nonlocal pseudopotential (PP) setting, ABINIT [80]
and BigDFT [81] will be employed in order to obtain results with 10−6 accuracy, for the former with respect to cell
size as well as energy cut-off and for the latter with respect to grid refinement in a free atom calculation. These
two programs are designed for general three-dimensional nonlocal pseudopotential studies and, as such, take orders
of magnitude larger time to deliver a single-atom result that is of comparable accuracy to the radial formulation
presented here. Effort is made to ensure agreement between the reference and comparison values to the available
accuracy.

6.2. Radial studies

6.2.1. All-electron calculations
The first demonstration of the radial case will be on the lithium atom in an all-electron setting. The calculated

reference value is Eo = −7.451 372 042 03 and the comparison value from ATOM is −7.451 372 042. Results
n Fig. 2(a) demonstrate predictions of the convergence rates that are observed to be nearly optimal for each
iscretization type. Additionally, B-spline basis functions are always significantly more accurate on a given
esolution, compared to Lagrange basis functions of the same order. In fact, the B3 discretization is outstanding

in terms of accuracy when compared to all other Lagrange discretizations, here limited to fifth order. Similar
observations also hold when spin-up and spin-down occupancy of the orbitals is distinguished, as demonstrated in
Fig. 2(b), where the calculated reference value is Eo = −7.462 180 386 79 and the comparison value from ATOM
s −7.462 180 387.

In remaining radial studies, spin will not be accounted for and only B-splines will be employed. With this
hoice, the FEM implementation of the all-electron setting with GGA is additionally demonstrated using carbon
nd aluminum atoms in Fig. 3. The reference (comparison) values are −37.748 208 778 92 (−37.748 208 779) and
242.224 964 048 3 (−242.224 964 048) for carbon and aluminum, respectively. Finer resolutions are required to

chieve a given accuracy for increasing atomic number. Considering that discretizations for eo = 24 have only about
0 degrees of freedom, the accuracy provided by B-splines is observed to be remarkable and can help efficiently
epresent enrichment functions for use in three-dimensional calculations.
10
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Fig. 2. Radial AE computations on the lithium atom are summarized. The prediction for the convergence rate (k) is indicated in parentheses
for each set of points belonging to a discretization choice, which are connected with a line for clarity.

Fig. 3. Radial AE computations on carbon and aluminum atoms are summarized.

6.2.2. Nonlocal pseudopotential calculations
Lithium atom is chosen again as the first example for the radial pseudopotential studies. For the default setting,

the calculated reference value is Eo = −0.348 890 083 64. The comparison values for this setting will be obtained
from BigDFT and for lithium it is −0.348 890. Only this example is also carried out with the LDA parameter
set in [68] without NLCC. The calculated reference value is Eo = −0.189 548 269 38 and the comparison value
is obtained from ABINIT as −0.189 548. The results in Fig. 4 demonstrate optimal convergence rates, thereby
alidating the FEM framework in the radial nonlocal pseudopotential setting as well. Here, the B5 discretization
lready achieved results of comparable magnitude to the reference value at very low resolution so that only a single
oint has been shown.

The radial nonlocal pseudopotential setting is also demonstrated for the carbon and aluminum atoms. The
alculated reference values for these are, respectively, −6.243 608 042 02 and −4.753 770 322 54 whereas the
omparison values are −6.243 608 and −4.753 770. These results further demonstrate the even higher accuracy of
-splines in the nonlocal pseudopotential setting. This accuracy can be employed to efficiently represent enrichment

unctions for three-dimensional nonlocal pseudopotential studies. The orbitals which would be employed in the
onstruction of such enrichment functions are visualized in Fig. 6 for aluminum. The radial functions of the
seudopotential solution rapidly approach the valence (n = 3) orbitals of the all-electron setting, which is required

n view of the norm-conserving property of the nonlocal pseudopotential employed.

11
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Fig. 4. Radial nonlocal PP computations on the lithium atom are summarized.

Fig. 5. Radial nonlocal PP computations on the carbon and aluminum atoms are summarized.

.3. Three-dimensional studies

.3.1. Single-atom calculations
In three-dimensional studies, the discretization setup follows the radial one such that a uniform core mesh is

urrounded by a graded outer mesh. Presently, the boundary of the outer mesh has been chosen to match a spherical
eometry as closely as possible even on a coarse discretization, which required employing NURBS outside the core
egion. However, this choice is not necessary and it can be demonstrated that using B-splines instead leads to
nsignificant changes. This is because the outer mesh mainly serves the purpose of resolving the vacuum whereas
he accuracy is mainly controlled by the core mesh where only B-splines are employed. Consequently, the notation

p will again be employed to refer to isogeometric discretizations. Only cubic and quartic discretizations will be
isplayed in the results because, as demonstrated in Fig. 2 as well, these choices can effectively compete with
igher-order Lagrange discretizations in a broad range of scenarios.

Towards the validation of the three-dimensional framework, nonlocal PPs will be employed in the default GGA
etting together with NLCC. To this end, the single-atom studies of Fig. 5 are revisited as a first step and their
hree-dimensional counterparts are summarized in Fig. 7. Here, the reference values are borrowed from the radial
alculations and the resolution is indicated with the number of degrees of freedom in order to highlight typical
omputational costs. The per-atom total energy error in AE studies is targeted to be below the chemical accuracy
f 1 kcal/mol (≈0.0016 Ha). In PP studies, the required accuracy is typically about an order of magnitude smaller
nd is presently chosen as 0.1 kcal/mol. These accuracy targets are additionally displayed on the figures. Despite
12
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Fig. 6. The valence AE and radial PP solutions for the aluminum atom are visualized, both in the context of the default GGA setting and
the latter also incorporating NLCC. In the density plot for the PP setting, the AE density distribution is associated only with the valence
orbitals and hence is marked with “v”.

Fig. 7. Three-dimensional nonlocal PP computations on the carbon and aluminum atoms are summarized.

he simple mesh construction where the uniform core mesh dominates the error, very high accuracies can easily
e attained in single-atom studies. This simple mesh construction influences the pre-asymptotic convergence rates
nd deviations from the optimal values can be observed [43]. Presently, similar to various radial results presented
arlier, these rates fall in the super-optimal range and are indicative of the advantages of increasing discretization
rder.

.3.2. Molecular calculations
Two molecular examples are considered in this section. The first one is the cyclo[18]carbon molecule [82], based

n the polyynic geometry reported in [83] where 18 carbon ions are located on a circle of radius 3.6873 Å with
alternating bond lengths of 1.362 Å and 1.199 Å. The reference total energy calculated with BigDFT is E =
o

13
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Fig. 8. Nonlocal PP computations on cyclo[18]carbon and buckyball molecules are summarized.

117.71503 Ha to 10−5 accuracy. The second one is the buckyball molecule where 60 carbon ions are located on
truncated icosahedron geometry with an encapsulating sphere that is assigned a radius of 3.5244 Å. The reference

otal energy from BigDFT is Eo = −394.1319 Ha to 10−4 accuracy. It is noted that this example was considered
ith B-spline discretizations earlier in [43] in an LDA setting, but it was not possible to approach these stringent

ccuracy requirements. In the present GGA setting with NLCC, due to algorithmic improvements mentioned earlier,
ccuracies that lie well beyond the target values have been attained in all discretization choices.

Due to the planar geometry of the first example, the length of the core mesh in the out-of-plane direction was
hosen to be smaller than the in-plane dimensions for numerical efficiency. As a consequence, it was not possible to
erfectly preserve the element aspect ratio during mesh refinement in some of the discretization choices. Although
eviations from the initial aspect ratio were very small when they occurred, all the data points available were
mployed for this example in the estimation of the convergence rates to partially alleviate any potential influence. For
onsistency, a similar approach was employed in the second example as well. The results in Fig. 8 again demonstrate
he favorable convergence rates of cubic and quartic B-spline discretizations. Here, Lagrange discretizations have
nce again been incorporated for comparison purposes. The well-established per-degree-of-freedom advantage of
-spline discretizations is evident in these results as well. It is worth noting that the time-to-solution aspect is an
dditional practical measure of interest. Although a detailed comparison of calculation times is not a goal of the
resent study, results indicate that comparable accuracies typically require times at the same order of magnitude for
agrange and B-spline discretizations, with the former choice usually displaying smaller per-iteration time despite

equiring a larger number of degrees of freedom — see Appendix for a representative analysis. Finally, the electron
ensity distributions for these examples are shown in Fig. 9 where it is observed that not all bonds are equal. Indeed,
he alternating density distribution for cyclo[18]carbon is consistent with the polyynic structure reported in [82]
nd the similar variation throughout the buckyball is associated with the presence of rings that alternate between
exagons and pentagons.

. Conclusion

The finite element method presents a powerful alternative to established electronic structure calculation methods
n the context of the Kohn–Sham density functional theory. Through its variational structure combined with a

ethodological refinement scheme, it offers systematic convergence towards the ground state energy. The element-
ased discretization along with the sparse matrix structure which emanates from it endows this real-space approach
ith good parallelization properties. The importance of employing higher-order discretizations in the context of the
nite element method has been highlighted over the past years. In this work, building upon recent studies, such
iscretizations have been investigated both through traditional Lagrange as well as more recent isogeometric choices.
pecifically, the studies have concentrated on introducing a class of accurate and highly transferable nonlocal
seudopotentials into the finite element setting based on the generalized gradient approximation of the exchange–
orrelation functional together with nonlinear core correction. In addition to the discussion of the three-dimensional
14
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Fig. 9. The electron density isosurfaces for cyclo[18]carbon and buckyball molecules are displayed (outer/gray: 0.22, inner/red: 0.3) with
the blue spheres indicating the carbon ions. Both plots are associated with B3 discretizations which deliver a per-atom error that is below
the target PP accuracy at 235,893 and 638,821 degrees of freedom, respectively. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

finite element implementation of this approach, the radial formulation has also been derived in order to enable the
efficient extraction of the atomic orbitals. Through a series of algorithmic improvements, the ability of this approach
to effectively satisfy stringent accuracy requirements has additionally been shown.

Among higher-order discretization choices, B-splines display their well-established per-degree-of-freedom accu-
racy advantage in this setting as well [33]. In order to fully harness this advantage and reflect it towards calculation
times, the generalized setting of the discrete eigenvalue problem is an outstanding challenge that needs to be
addressed. Based on the use of spectral elements, it is possible to effectively convert this problem to the standard
setting in the context of Lagrange-type discretizations [25]. A comparable treatment of isogeometric discretizations
towards a standard setting without compromising convergence rates would deliver significant computational gains. A
faster core algorithm for reaching the ground state energy within tight error bounds is crucial towards optimization
for predicting equilibrium molecular geometries and will also enable carrying out ab initio molecular dynamics
based on the investigated computational framework.
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Appendix. Calculation times

In this section, indicative results are presented as a representative analysis of major factors which influence
the calculation times mentioned in Section 6.3.2. To this end, the buckyball molecule is revisited to assess the
contribution of various algorithmic stages, although similar observations hold for the cyclo[18]carbon molecule as
well. At each self-consistent field iteration, the following steps are executed, with each step delivering an output for

the next one: (i) the Kohn–Sham equation is solved for the orbitals, (ii) the density is updated through mixing, (iii)
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Fig. 10. The total time for an iteration is summarized.

the Poisson equation is solved for the electrostatic potential, and (iv) the energy is evaluated. The first and third
steps dominate the iteration time. The element-level calculations for both of these steps require similar times so that
only the one associated with the first step will be monitored. For a given type of discretization and resolution, the
order of the Chebyshev filter that is employed in the first step is an additional factor which influences the iteration
time, finer resolutions typically requiring higher filter orders to attain convergence of the iterations in a shorter time.
During the convergence analysis of the molecular examples in Section 6.3.2, the filter order was initially chosen as
10 and subsequently gradually increased with resolution up to a common value of 60 in all cases. The determination
of the optimal filter order towards the minimization of the overall calculation time is not straightforward [84] and
can certainly influence the optimality of the discretization type chosen. Presently, because the cost of filtering scales
linearly with the filter order, a fixed value of 10 will be chosen in order to assess filtering times. The contributions
of the Lanczos and the Rayleigh–Ritz algorithms to the overall cost of the generalized eigenvalue problem solution
are omitted because they are less than an order of magnitude smaller than the filtering cost for the problem sizes
considered. In the context of a generalized eigenvalue problem, Chebyshev filtering also requires the calculation
of the overlap matrix inverse and its operation on vectors within the recursive application of [M]–1[H ]. For this
purpose, the sparse direct solver PARDISO [85] is employed to factorize [M] only once in a preprocessing step
and store it in memory for subsequent multiple uses through a finalization step that requires a significantly smaller
time. Both of these times will also be reported to further clarify the overall calculation cost. The Poisson equation
is also solved in a similar fashion, where the discrete Laplacian is factorized once and invoked from memory in
subsequent finalization steps. The times involved are comparable to the ones for the overlap matrix so that only the
overlap matrix times will be reported, which are measured from the L2-projection step in generating the updated
initial guess on a refined mesh as remarked in Section 4.2. To summarize, in addition to the total time per iteration,
the absolute time measurements corresponding to the following steps will be reported: factorization, finalization,
element calculation and filtering. Each measurement is run on a standard workstation with OpenMP parallelization
via 32 threads and repeated five times to alleviate the differences observed via averaging.

The total time per iteration for different discretization choices is summarized in Fig. 10. For a given number
of degrees of freedom, Lagrange discretizations display similar times whereas the difference between these and B-
spline discretizations, as well as the difference among different B-spline choices, are significantly larger. In view of
the convergence analysis in Fig. 8(b), it is more informative to monitor the calculation times for a target accuracy.
As noted earlier in Section 6.3.2, all times are at the same order of magnitude. Moreover, the cubic B-spline
discretization is more efficient than the quartic one in the context of the present implementation and it competes
well with the quartic Lagrange discretization. However, Lagrange discretizations of higher order are slightly faster
in general. In order to elucidate this difference, additional calculation times are summarized in Fig. 11. Although the
factorization step is carried out only once, it is observed that the required times are comparable with the filtering step.
Considering that higher filter orders were employed to attain low errors in Fig. 8(b), the overall cost of factorization

is not significant within the present setup. The finalization step is indicative of the Poisson equation solution time
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Fig. 11. Representative factors which influence the calculation times are summarized.

which, along with the element-level calculations, is likewise not significant compared to filtering. On the other hand,
the costly filtering step is where B-spline discretizations compete well with Lagrange discretizations, contributing
to an improved iteration time for cubic B-splines in particular.

Clearly, as noted in Section 7, if the discrete Kohn–Sham equation could be cast in a standard setting for B-
spline discretization as well, this discussion would be considerably influenced. Again for the present low filter
order, corresponding filtering times were probed by simply lumping the overlap matrix in order to generate a
standard eigenvalue problem by making use of the strictly non-negative entries for B-spline discretizations. In such
a setting, the filtering time scales linearly with the number of degrees of freedom. Consequently, the time gain in
the transition from the generalized to the standard setting increases with increasing resolution. According to the
probed times (not shown), this gain did not exceed a factor of eight for the finest cubic B-spline discretization
but would be more significant for larger system sizes. Moreover, such a reduction is sufficient to bring the cost of
filtering to the same level with the remaining algorithmic stages. Factorization in preprocessing would then also
be a significant overhead that can be entirely eliminated by additionally switching to an iterative solver for the
Poisson problem. These would enable assessing the competitiveness of B-spline discretizations in comparison to
the Lagrange discretizations employed in [25] for larger system sizes.
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