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Driver Modeling Through Deep Reinforcement Learning
and Behavioral Game Theory

Berat Mert Albaba , Student Member, IEEE, and Yildiray Yildiz , Senior Member, IEEE

Abstract— In this work, a synergistic combination of deep
reinforcement learning and hierarchical game theory is proposed
as a modeling framework for behavioral predictions of drivers in
highway driving scenarios. The modeling framework presented
in this work can be used in a high-fidelity traffic simulator
consisting of multiple human decision-makers. This simulator can
reduce the time and effort spent for testing autonomous vehicles
by allowing safe and quick assessment of self-driving control
algorithms. To demonstrate the fidelity of the proposed modeling
framework, game-theoretical driver models are compared with
real human driver behavior patterns extracted from two different
sets of traffic data.

Index Terms— Autonomous vehicles (AVs), deep learning,
driver modeling, game theory (GT), reinforcement learning (RL).

I. INTRODUCTION

SAFETY concerns about autonomous vehicles (AVs) con-
tinue to exist, which needs to be addressed for successful

integration into daily traffic [1]. In addition to real traffic tests,
traffic environments simulated in computers may be used both
to accelerate the validation phase and introduce a wide variety
of traffic scenarios, which may take several driving hours to
encounter [2]–[4]. For reliable simulation results, human driver
models should demonstrate human-like driving behavior with
reasonable accuracy.

Several approaches are proposed in the literature for mod-
eling human drivers. Markov models in [5]–[7] and support
vector machines in [8] and [9] are employed to predict driver
actions. Neural networks are also used for this purpose in
[10]–[12]. Other tools utilized to model driver actions are
dynamic Bayesian networks [13], Gaussian processes [14],
[15], and inverse reinforcement learning (RL) [16], [17].

Game-theoretical driver models are also proposed. For
example, in [18], a Stackelberg game is used to model highway
driving, but dynamic scenarios consisting of several moves
are not considered. Stackelberg games are also used in [19],
which considers multimove scenarios. However, computations
become quite complex once the number of players increases
to more than 2. A game-theoretical inverse RL method is
proposed in [20] for predicting the interaction between two
drivers while assuming a predefined policy for the surround-
ing vehicles. This approach is also not straightforward for
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extending to more crowded scenarios, where all the drivers
are strategic decision-makers. Deep learning-based driving
algorithms are also proposed in [21]–[25]. However, in these
studies, the goal is not to obtain human driver models but
optimal driving policies to be used in autonomous driving sys-
tems. Deep learning and imitation learning-based approaches
for modeling human drivers are proposed in [26] and [27],
respectively. These methods depend on the training data, which
may limit their generalization properties. Control theory-based
approaches, such as [28]–[30], are also proposed in the liter-
ature for modeling drivers.

This work proposes a deep RL and game theory (GT)-based
driver modeling method, which allows simultaneous decision-
making for multiagent traffic scenarios. What distinguishes
our approach from existing studies is that all the drivers in a
multimove scenario make strategic decisions simultaneously,
instead of modeling the ego driver as a decision-maker and
assuming predetermined actions for the rest of the drivers.
This is achieved by combining a hierarchical game-theoretical
concept named level-k reasoning [31]–[33] with a deep RL
method called deep Q-learning (DQN) [34]. The resulting
models have “bounded rationality” since the assumed levels
of other players are not always correct. There exist earlier
studies that also use RL and GT in modeling driver behavior,
such as [2] and [35]–[38]. A tabular RL method is used in
these studies, which severely limits the driver observation
space. This fact is stated in [2], where it is presented that the
main reason behind crashes is the limited observation space.
Thus, for the first time, instead of employing a table-based
RL method, a deep neural network-based approach, DQN,
is used in combination with GT in this work, which not
only enabled a dramatically larger observation space but also
allowed the introduction of a continuous one, providing infinite
resolution to the driver perception. Furthermore, different from
similar studies, any possibility of overfitting is eliminated
by conducting model-data comparisons using two indepen-
dent traffic data sets. In this study, a data-based modeling
approach is not used. Instead, driver models are derived using
the proposed modeling framework, and then, their predictive
power is tested using two independent traffic data sets. Finally,
the proposed models are compared with the baseline models,
IDM [39] and MOBIL [40], and models in the previous
work [35]. The contributions of this work over these ear-
lier results, which also use GT and RL, can be listed as
follows.

1) It is demonstrated that a dramatically larger class of
traffic scenarios, compared to earlier studies, can be
successfully modeled.

2) It is shown that the driver crash rates can be reduced to
realistic levels, which was not possible earlier.

1063-6536 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on December 26,2022 at 14:49:05 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-3406-8412
https://orcid.org/0000-0001-6270-5354


886 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 30, NO. 2, MARCH 2022

3) A dramatically larger percentage of real driver patterns
from two different data are successfully modeled com-
pared to earlier results.

4) It is shown that the proposed models perform signifi-
cantly better than the baseline models in the literature.

To the best of our knowledge, combining deep RL with
GT to model human driver behavior and demonstrating the
resulting modeling framework’s predictive power through traf-
fic data validation was not reported earlier in the literature.

This work is organized as follows. In Section II, the algo-
rithm combining DQN and the level-k approach is described.
In Section III, physical vehicle models, raw traffic data
processing, and driver observation and action spaces are
explained. In Section IV, the details of the training and
simulation of driver policies are given. In Section V, validation
studies are presented. A summary is provided in Section VI.

II. METHOD

A. Level-k Reasoning

In order to model the strategic decision-making process
of human drivers, a game-theoretical concept named level-k
reasoning is used [33]. The level-k approach is a hierarchical
decision-making concept and presumes that different reasoning
levels exist for different humans. The lowest level of reasoning
in this concept is called level-0 reasoning. A level-0 agent is a
nonstrategic/naive agent since his/her decisions are not based
on other agents’ possible actions. All level-k agents, except for
level-0, presume that the rest of the agents are level-(k−1) and
make their decisions based on this belief. Since this belief may
not always hold, the agents have bounded rationality, meaning
that they do not act optimally in all situations but provide
adequate performance.

B. Deep Q-Learning

In time-extended scenarios, where the agents make a series
of decisions before an episode is completed, such as the traffic
scenarios focused on in this work, level-k reasoning cannot
be used alone. To obtain driver models that provide the best
responses to the other agents’ likely actions in a multimove
setting, we utilize DQN together with level-k reasoning. The
main reason for the employment of DQN is the continuous
state space that becomes infeasible to handle with other RL
methods used in earlier studies [2], [35], [37], [38]. The
detailed expositions of DQN can be found in [34].

The neural network architecture for DQN utilized in this
work is a four-layer network initialized with the Glorot uni-
form initialization [41], which has an input layer consisting
of 19 nodes that take state representations, an output layer with
seven nodes that gives action Q-values, and three hidden layers
with rectified linear unit (ReLU) [42] activation that contains
256, 256, and 128 nodes. In this work, experience replay and
target network structures are also utilized, explained in [34].

Boltzmann exploration, i.e., softmax, is utilized with an
initial temperature of T = 50, which decreases exponentially
to 1 during the training process. With these temperature values,
the training starts with an almost uniform action probability
distribution, and then, the probability of taking the actions

Algorithm 1 Training Up to the Level-k Agent by Combining
DQN and Level-k Reasoning

with high Q values increases gradually. At time step t ,
the probability of taking action a is given as

Pt (a) = eQt (a)/T

∑n−1
i=0 eQt (ai )/T

(1)

where n represents the number of actions [43].

C. Combining Level-k Reasoning With Deep Q-Learning

To generate agents with different reasoning levels for mod-
eling multimove strategic decision-making in traffic scenarios,
the learning capability offered by DQN is combined with
the level-k reasoning approach. The combination of level-k
reasoning and DQN is explained in [35].

In the proposed approach, the predetermined, nonstrategic
level-0 policy is the anchoring policy from which all the higher
levels are derived using DQN. In order to obtain the level-
1 policy, a traffic scenario is created where all drivers are level-
0 agents except for the ego driver, and a uniform distribution
policy is assigned to the ego driver, i.e., ego driver selects
the actions randomly at the beginning. Then, the ego agent
is trained in this environment through DQN and learns how
to respond best to the level-0 policy. Once the training is
over, the ego driver becomes a level-1 agent. For the training
of the level-2 agent, a traffic scenario is formed where all
drivers are level-1 agents whose policy is obtained previously.
A uniform distribution policy is then assigned to the ego driver,
and the ego drive is trained in the environment formed by
level-1 drivers. Thus, in the end, the ego driver learns the best
responses to level-1 agents, i.e., level-1 policy, and the level-
2 agent is obtained. Training of higher levels, level-k, k ≥ 1,
is achieved similarly. The procedure for obtaining reasoning
levels up to the level-k through the proposed combination of
level-k reasoning and DQN is explained in Algorithm 1, where
nd is the number of drivers.

The utilized hierarchical learning process is computationally
feasible since, at each stage of learning, the agents other than
the ego agent use previously trained policies and become
parts of the environment. The computed driver policies can
then be used to obtain traffic scenarios containing a mixture
of different levels, where all the agents are simultaneously
making strategic decisions. This approach contrasts with the
conventional driver models used for crowded traffic scenarios,
where one or two drivers are strategic decision-makers, and
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the rest are assigned predefined policies that satisfy certain
kinematic constraints. In this work, the highest level is set to
level-3, in accordance with [44].

The main differences of the proposed approach from other
RL methods, such as robust adversarial RL [45] and multiagent
RL (MARL) [46], are as follows; Robust RL covers zero-sum
games, and extending the training for a zero-sum game with a
large number of players is nontrivial. MARL also suffers from
scalability issues. The round-robin approach addresses the
scalability problem of MARL. However, this method assumes
the knowledge of all players in the game, and thus, it is not
applicable for partially observable Markov decision Processes
(POMDPs). Besides, it is developed only for cooperative
games. Finally, in MARL, it is assumed that agents are rational
and do not deviate from the optimal converged policy, and
therefore, resulting policies are not bounded rational.

Remark 1: Since level-k reasoning reduces all the agents,
except for the ego agent, to becoming a part of the environ-
ment, the training process and its convergence properties are
equivalent to those of the conventional DQN.

Remark 2: Different driver levels may represent different
driving characteristics, as well as the depth of reasoning. For
example, a level-1 driver trained in traffic consisting of level-
0 agents that never change lanes can be more aggressive
compared to a level-2 agent that is trained in an environment
consisting of these aggressive level-1 types.

III. TRAFFIC SCENARIO

The traffic scenario comprises a five-lane highway and mul-
tiple vehicles. The lane width is 3.7 m, and each vehicle’s size
is 5 m×2 m. The vehicles have continuous dynamics. Specific
numerical values needed to create the traffic scenario, such as
observation and action space parameters, are determined based
on one of the two traffic data sets. Therefore, we first explain
how data are processed before providing the scenario details.
It is noted that data are only used for determining parameters
of action and observation spaces and for comparison with the
proposed policies.

A. Traffic Data Processing

In this work, two sets of traffic data, collected on US101 and
I80 highways [47], [48], are used for model validation. Among
these two, the US101 set is employed to determine the
observation and action space parameter values. Raw data are
first processed to eliminate unrealistic velocity changes, such
as 12-m/s increase/decrease in 0.1 s. The problem of large
velocity jumps is solved by applying a linear curve fitting.
To exemplify, if among the velocity values vi−5, vi−4, . . . , vi ,
vi+1, vi+2, . . . , vi+5, where the subscripts denote the time
steps, the values vi+1 and vi+2 show jumps, and these values
are replaced with the appropriate values vi+1 = vi + (vi+3 −
vi )/3 and vi+2 = vi +2(vi+3−vi )/3. Then, acceleration values
are obtained by using the five-point stencil method [49] given
as ai = (−vi+2 + 8vi+1 − 8vi−1 + vi−2)/12.

B. Driver Observation Space

In this work, it is assumed that a driver on lane l observes
the closest front and rear cars on lanes l − 2, l − 1, l + 1,

Fig. 1. Ego vehicle (red, center) and the vehicles the ego driver can observe.
Lane numbers are shown on the right.

and l + 2, along with the front car on lane l. Therefore,
up to nine surrounding cars are observable by the driver
(see Fig. 1). Observations are coded as relative positions
and velocities. Specifically, a driver on lane l can detect:
1) relative positions and velocities of the vehicles that are in
front of the driver, on lanes l − 2, l − 1, l, l + 1, and l + 2;
2) relative positions and velocities of the vehicles that are at
the back of the driver, on lanes l − 2, l − 1, l + 1, and l + 2;
and 3) own lane number (l).

C. Driver Action Space

Drivers have two action types: changing lane and changing
acceleration. For lane change, two actions are defined: moving
to the left lane and moving to the right lane, which are
assumed to be completed in 1 s. To determine acceleration
changing actions, the distribution of vehicle accelerations,
obtained by processing the US101 data, is used. Fig. 2 presents
the acceleration distribution. In the figure, five regions are
identified and approximated by known continuous distributions
that are shown in red color and superimposed on the original
figure. Based on this acceleration data analysis, the driver
actions in terms of accelerations are defined as follows.

1) Maintain: Acceleration is sampled from normal distrib-
ution with μ = 0 and σ = 0.075 m/s2.

2) Accelerate: Acceleration is sampled from a uniform
distribution between 0.5 m/s2 and 2.5 m/s2.

3) Decelerate: Acceleration is sampled from a uniform
distribution between −0.5 m/s2 and −2.5m/s2.

4) Hard Accelerate: Acceleration is sampled from an
inverse half normal distribution with μ = 3.5 m/s2 and
σ = 0.3 m/s2.

5) Hard Decelerate: Acceleration is sampled from a half
normal distribution with μ = −3.5 m/s2 and σ =
0.3 m/s2.

Remark 3: Distributions superimposed on the histogram
in Fig. 2 are continuous. Therefore, although the DQN samples
actions from five separate distributions, the actions that were
taken by the drivers are represented by continuous variables.
In other words, there are infinitely many actions that are
available for the drivers to take.

D. Equations of Motion

In Fig. 1, the variable x is used to represent the longitudinal
position and y represents the lateral position. Similarly, vx
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Fig. 2. Acceleration distribution (blue line), together with superimposed
standard distributions (red line).

and vy represent the longitudinal and lateral velocities, respec-
tively. The equations of motion for the vehicles in the traffic
are given by

x(t0 + t) = x(t0) + vx(t0) + 1

2
a(t0)t

2 (2)

y(t0 + t) = y(t0) + vy(t0) (3)

vx (t0 + t) = vx(t0) + a(t0)t (4)

where t0 is the initial time step and a is the acceleration.
Furthermore, it is assumed that lane changing takes 1 s.

E. Vehicle Placements

At the beginning of the training and simulations, vehicles
are randomly placed on a 600-m endless circular road segment.
It is observed from the US101 data that 50% of the time,
intervehicle distances remain between 11 and 27 m. Therefore,
initial distances between vehicles are constrained to be larger
than or equal to 11 m during initial vehicle placement. Initial
velocities are selected to prevent impossible-to-handle cases
at the beginning of the training or simulation. A driver who
is in close proximity to the vehicle in front should be able to
prevent a crash using the hard decelerate action.

F. Reward Function

In the reward function, a variable is defined for each of
these goals, and the weights are assigned to these variables to
emphasize their relative importance as

R = w1 ∗ c + w2 ∗ s + w3 ∗ d + w4 ∗ e (5)

where wi are the weights. The first term of the reward
function, c, is included in order to prevent crashes. c equals
−1 if a crash occurs and 0, otherwise. The second term, s,
used to have a high enough speed and calculated as s =
(v(t) − (vmax + vmin)/2)/vmax, where vmax = 24.59 m/s and
vmin = 2.78 m/s. The purpose of the third term, d , is to keep a
safe distance from the front car and equal to −1 if the distance
to the car in front is smaller than 11 m, 0 if the distance to
the car in front is between 11 and 27 m, and 1, otherwise. The
last term, e, is introduced to reduce the amount of unnecessary

driver actions and is equal to 0 if the action of the driver
is maintain, −0.25 if the action is accelerate or decelerate,
−0.5 if the action is hard accelerate or hard decelerate, and
−1 if the action is move left or move right.

Remark 4: vmax is selected as 24.59 m/s (55 mi/h), which is
the speed limit at US101 for the selected road section. Driver
models are not allowed to pass this speed limit. The average
velocity, (vmax + vmin)/2, is not the desired velocity. As shown
in (17), drivers take positive rewards as they approach the
maximum velocity and can be penalized for velocities smaller
than the nominal velocity.

IV. TRAINING AND SIMULATION

During the training of a level-k driver, 125 level-(k − 1)
vehicles are placed on the road, together with the ego vehicle.
This placement makes the traffic density approximately equal
to that of US101 data [47]. The number of cars is decreased
to 100 at the end of the 1300th episode and increased to
125 again at the end of the 3800th episode, to increase the
number of states that the drivers are exposed to during training.

A. Level-0 Policy

The nonstrategic level-0 policy must be determined first
before obtaining other levels. In earlier studies, where
approaches similar to the one proposed in this work are used,
level-0 policies are set as a single persisting action regardless
of the state being observed [50]–[52] or as a conditional logic
based on experience [53]. The level-0 policy used in this study
is defined as follows:

1) hard decelerate if the car in front is closer than 11 m
and approaching;

2) decelerate if the car in front is closer than 11 m and
stable or its relative position is between 11 and 27 m
and approaching;

3) accelerate if the car in front has a relative position that
is between 11 and 27 m and it is moving away or the
relative position is larger than 27 m;

4) maintain otherwise.

In the definition of level-0 policy given above, the terms
approaching, stable, and moving away are defined precisely.
A vehicle having a relative velocity smaller than −0.1 m/s
is considered as approaching, a vehicle having a relative
velocity between −0.1 and 0.1 m/s is considered as stable,
and a vehicle having a relative velocity larger than 0.1 m/s
is considered as moving away. Relative velocity is defined as
vfront − vback.

B. Simulation Performance

The following scenarios are simulated.

1) Level-1 driver is placed on a traffic environment con-
sisting nd − 1 level-0 drivers on a 600-m road segment.

2) Level-2 driver is placed on a traffic environment con-
sisting nd − 1 level-1 drivers on a 600-m road segment.

3) Level-3 driver is placed on a traffic environment con-
sisting nd − 1 level-2 drivers on a 600 - road segment.
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Here, nd corresponds to the total number of drivers on the
road. Simulations are performed for nd = 75, 100, and 125,
for each scenario. In all of the above scenarios, simulations
are run for 100 episodes, each covering a 100-s simulation.
In these simulations, drivers do not experience any crashes.

When compared with previous studies [2], [36], policies
proposed in this work show more realistic driving behavior
since the average crash rate is 2 per million miles driven
nationally [54].

Remark 5: In the level-k reasoning approach, a driver
assumes that the other drivers are one level below him/her.
For scenarios where this assumption is violated, the drivers
respond to an incorrect assumption, and therefore, crash
rates naturally increase. For example, in our simulations,
we observed 2%, 1%, and 0.67% crash rates for level-1 ver-
sus level-1, level-2 versus level-2, and level-3 versus level-3
encounters, respectively. Developing models for mixed level-k
encounters is an active area of research, where the models use
a “dynamic level-k method.” A recent related work can be
found in [55].

V. VALIDATION WITH TRAFFIC DATA

In order to compare the proposed policies with the
policies obtained by processing the real traffic data,
Kolmogorov–Smirnov test (K-S test) for discontinuous distrib-
utions [56] is used. The test is explained briefly in Section V-A,
and a more detailed description can be found in [56].

A. K-S Test for Discontinuous Distributions

For an unknown discrete probability distribution function
(pdf) F(x) and a hypothesized pdf H (x), the null hypothesis
of the K-S test is

H0 : F(x) = H (x) for all x. (6)

To test the null hypothesis, first, empirical cumulative pdf of
the observed data, Sn(x), and hypothesized cumulative pdf,
Hc(x), are calculated. Second, the test statistics, which are
measures of the difference between Sn(x) and Hc(x), are
calculated as D = supx |Hc(x) − Sn(x)|, D− = supx(Hc(x) −
Sn(x)) and D+ = supx(Sn(x) − Hc(x)), where D is the two
sided and D− and D+ are one sided test statistics. Third,
critical levels of D− and D+, P(D− ≤ d−) and P(D+ ≤ d+)
are calculated, where d− and d+ denote the observed values
of D− and D+, respectively. Finally, the critical value for the
two-sided test statistic is determined as

P(D ≥ d)
.= P(D+ ≥ d) + P(D− ≥ d) (7)

where d is the observed value of D. It is noted that this
critical value describes the percentage of data samples whose
test statistics are larger than or equal to d , given that the
null hypothesis is true. Thus, the probability of observation
(data point) being sampled from the hypothesized model,
H (x), or, equivalently, the probability of the null hypothesis
being true, increases with the increase in the critical value.
The null hypothesis is rejected if the critical value is smaller
than a certain threshold called the significance value α. Two
significance values are used: 0.05 and 0.10. The first one is

selected since it is a commonly used value [56] and the second
is selected to show its effect on the results.

Remark 6: Our null hypothesis is that the investigated
model is representative of data. We retain this hypothesis when
the analysis shows that it is not rejected. Therefore, in the rest
of this work, we call a data-model comparison “successful”
when the null hypothesis is not rejected.

B. Comparing Game-Theoretical Models With Traffic Data

The proposed continuous GT models are pdfs over the
action space defined in Section III. Since observing the same
state is nearly impossible in the continuous case, a probability
distribution cannot be formed. To solve this problem, states
are binned, and probability distributions are obtained based on
the frequency of actions taken by the real drivers (or models)
for each bin. For both the GT policies and the ones obtained
from the data, action probabilities that are lower than 0.01 are
replaced with 0.01 with renormalizations to eliminate close-
to-zero probabilities.

GT and the data-based policies are compared for each
driver. Details are explained, and the comparison process for
each driver is given in [35]. However, in this work, since DQN
is used instead of traditional RL methods, nVmodel ≥ nlimit con-
straint in [35, Algorithm 4] is removed. Thus, a significantly
larger portion of the real data is used in comparisons.

To compare the performance of these models with an
alternative model, the alternative model should have the same
stochastic map structure of proposed GT policies. In this
work, policies in the previous work [35] previous GT (pGT)
policies, discrete GT (dGT) models, IDM [39], and MOBIL
[40] are used as baseline models. For MOBIL, since the rear
vehicle on the same lane is not included in the observation
space of the ego driver in this work, this car is omitted,
and policies are generated for two different politeness values,
p: 0 and 1, referred to as M − 0 and M − 1. IDM and
MOBIL do not have stochastic map structures. Thus, first,
policies of IDM and MOBIL are generated. In other words,
for each state, actions taken by IDM and MOBIL are generated
for 100 random distance and velocity samples. Then, action
probability distributions are obtained for IDM and MOBIL.

C. Results

The following definitions are employed when reporting
the validation results. Given two discrete pdf p and q ,
the mean absolute error (MAE) between p and q measures
the average error between pdfs and is defined as MAE =
1/n

∑n
i=1 |p(xi) − q(xi)|, where xi s are random variables.

aMAE is the average of the MAE j s between the GT policies
and the data-based policies, for which the null hypothesis
is not rejected. Therefore, aMAE is calculated as aMAE =
1/M

∑M
j=1 MAE j , where M is the number of comparisons

for which the null hypothesis is not rejected. Finally, rMAE
is the average of the MAEks between the GT policies and the
data-based policies, for which the null hypothesis is rejected.
Therefore, rMAE is calculated as rMAE = 1/K

∑K
k=1 MAEk ,

where K is the number of comparisons for which the null
hypothesis is rejected.
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Fig. 3. Comparison results for nlimit = 3 (US101). (a) Percentages of modeled states by the GT policies. (b) Percentages of modeled states by the IDM
policy. (c) Differences in the percentages of the modeled states. (d) Box map showing median, maximum, and minimum. Standard error in the mean: 0.22%
for GT and 0.13% for IDM.

TABLE I

HUMAN DRIVER MODELING PERFORMANCES OF GT POLICIES AND THE
BASELINE METHODS FOR US101 DATA

Model versus data comparisons are made for two different
nlimit values, specifically for nlimit = 3 and nlimit = 5.
As explained earlier, nlimit is the minimum number of state
visits in the traffic data for the corresponding policy to be
considered in the K-S test. It is observed that the minimum
number of state visits is approximately equal to 3 for the
K-S test to acknowledge that the policy is sampled from a
nonuniform distribution, with a significance value of 0.05.
Therefore, we report the results for nlimit = 3. Moreover,
we also report the results for nlimit = 5 to demonstrate this
variable’s effect on the test outcomes.

1) Model Validation Using US-101 Data: In this section,
we give comparison results between the policies obtained by
processed US-101 Data and the GT policies. The data are
collected between 7.50 and 8.05 A.M. and consists of 2168 dif-
ferent drivers [47].

Table I presents the performances of the proposed GT
policies, pGT policies, dGT policies, IDM, and MOBIL
along with aMAE and rMAE values. In the table, “mean %
modeled” refers to the average of the successfully modeled

TABLE II

HUMAN DRIVER MODELING PERFORMANCES OF GT POLICIES AND THE
BASELINE METHODS FOR I80 DATA

state percentages over all 2168 drivers. As shown in this
table, the proposed policies can model human driver behavior
better than the baseline models. As explained in [35], since
a tabular/traditional RL method is utilized, data are filtered
in the previous work, and policies are compared with a
limited part of the data. However, in this work, data are
not filtered, and all of the data are used for comparisons.
Thus, although much larger data are used for comparisons,
there is a significant performance increase when the proposed
policies are compared with the policies in the previous work.
In addition, as a visual demonstration, Fig. 3 shows the
performances of GT policies and IDM for nstate = 3 in
US101 data. In Fig. 3(a)–(c), each vertical line belongs to
an individual driver, and the black line plots the moving
average for every 20 drivers. Fig. 3(d) shows the median,
25th–75th percentiles, maximum, minimum, and outliers
(red pluses).

2) Model Validation Using I80 Data: I-80 data collected
between 5.00 and 5.15 P.M. is used as the second validation
test, which contains 1835 drivers.
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Fig. 4. Comparison results for nlimit = 3 (I80). (a) Percentages of modeled states by the GT policies. (b) Percentages of modeled states by the IDM policy.
(c) Differences in the percentages of modeled states. (d) Box map showing median, maximum, and minimum. Standard error in the mean: 0.27% for GT and
0.07% for IDM.

Table II presents the performances of the proposed GT
policies and baseline models for I80 data. This table also
shows that the proposed GT policies overperformed baseline
methods, IDM and MOBIL, in terms of modeling human
drivers. Besides, again, the performances of the proposed
policies are significantly better than the policies in the previous
work. Also, a comparison between Tables II and III reveals
that I80 data are harder to model human driver behaviors for
most of the models. For visual demonstration, Fig. 4 shows
the performances of GT policies and IDM for nstate = 3 in
I80 data for each individual driver along with statistics.

Remark 7: US101 data are used only to determine the
observation and action set boundaries. It is not used to train
the GT driver models. Therefore, the GT policies are not
obtained by fitting the model parameters to the data. However,
since these data are used to set the observation-action space
boundaries, it still affected, albeit indirectly, the obtained
models. To test the resulting GT policies with data that are
not used in any way to obtain these policies, additional model
validation tests are conducted with the I80 data. To summarize,
although the US101 data are not used to train the models and,
therefore, overfitting is not a concern, additional validation
tests are conducted with the I80 data for further assurance of
the validity of the GT models.

VI. SUMMARY

In this work, a modeling framework combining a GT
concept named level-k reasoning and a deep RL method
called DQN is proposed. It is demonstrated that, compared
with earlier similar studies, the crash rates of the proposed
driver models are more realistic. For evaluating the predictive
power of the GT models, two independent traffic data sets,
obtained from highways US101 and I80, are used. GT models
and the driver policies derived from processing the data
are compared using the K-S test. The results show that the
proposed GT policies can model up to 77% and 72% of the
driver policies obtained from the US101 and the I-80 data
sets, respectively. Furthermore, GT policies perform better
than the baseline models, IDM [39] and [40], and the policies
in [35].
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