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a b s t r a c t 

The support vector data description (SVDD) approach serves as a de facto standard for one-class clas- 

sification where the learning task entails inferring the smallest hyper-sphere to enclose target objects 

while linearly penalising the errors/slacks via an � 1 -norm penalty term. In this study, we generalise this 

modelling formalism to a general � p -norm ( p ≥ 1 ) penalty function on slacks. By virtue of an � p -norm 

function, in the primal space, the proposed approach enables formulating a non-linear cost for slacks. 

From a dual problem perspective, the proposed method introduces a dual norm into the objective func- 

tion, thus, proving a controlling mechanism to tune into the intrinsic sparsity/uniformity of the problem 

for enhanced descriptive capability. 

A theoretical analysis based on Rademacher complexities characterises the generalisation performance 

of the proposed approach while the experimental results on several datasets confirm the merits of the 

proposed method compared to other alternatives. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

One-class classification (OCC) addresses the problem of recog- 

ising patterns that adhere to a specific condition presumed as 

ormal, and identifying them from any other object violating the 

ormality criterion. OCC stands apart from the conventional two- 

multi-class classification paradigm [1] in that it primarily uses ob- 

ervations from a single, very often the target class for training. 

ne-class classification acts as an essential building block in a di- 

erse range of practical systems including presentation attack de- 

ection in biometrics [2] , audio or video surveillance [3,4] , intru- 

ion detection [5] , social network [6] , etc. 

As with many other machine learning problems, state-of-the-art 

CC algorithms are built on the premise of deep learning method- 

logy [7] using massive labelled datasets, typically containing mil- 

ions of samples. Although deep structures have led to break- 

hroughs in one-class learning and classification, their reliance on 

uge sets of data may pose certain limitations in practice. In this 

ontext, collecting sufficiently large sets of training observations 

or certain applications can be a challenge, hindering a full ex- 

loitation of the expressive capacity of deep networks. Even if suf- 

cient data is gathered, labelling such huge amounts of data may 

e a bigger challenge. Whilst crowd-sourcing may be considered 
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s an applicable strategy to label huge sets of data in some fields, 

or a variety of different reasons including level of knowledge, data 

rivacy, time required to produce accurate labels, etc. it may not 

erve as a viable option in the domains such as defence, secu- 

ity, healthcare. Although certain techniques such as active learn- 

ng may be instrumental in reducing the quantity of necessary la- 

elling/labelled data, they still demand the time and domain ex- 

ertise of a human operator. In the absence of large training sets 

equired by deep nets, and specifically for small to moderate-sized 

atasets containing hundreds or thousands of training samples, 

ernel-based methods offer a very promising methodology of clas- 

ification. Moreover, unlike deep networks that incorporate many 

euristics with regards to their structure and the corresponding 

hyper)parameters, kernel methods are based on solid foundations 

nd are characterised by strong bases in optimisation and statisti- 

al learning theory. 

The support vector data description (SVDD) approach [8] which 

s proposed as an adaptation of support vector machines to the 

ne-class setting, presents a very popular kernel-based method 

or one-class classification. Although designed for one-class setting, 

he SVDD approach does not require the training data to be ex- 

lusively and purely normal/positive which can be regarded as a 

uite appealing property in practical applications where the data 

s very often contaminated with noise and outliers. Furthermore, it 

rovides an intuitive geometric characterisation of a predominantly 

ositive dataset without making any specific assumption regarding 

he underlying distribution. Moreover, the SVDD decision making 

https://doi.org/10.1016/j.patcog.2022.108930
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2022.108930&domain=pdf
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rocess entails computing a simple distance between the centre 

f the target class and a test observation to label it as either nor- 

al ( i.e. positive/target) or as anomaly ( i.e. negative/outlier). And 

nally, when large sets of training data are available, the SVDD 

ethod may be extended to a deep structure to directly learn fea- 

ures from the data for improved performance [7] . These proper- 

ies make SVDD a highly favoured method of practice in a variety 

f one-class classification applications where it serves as one of the 

ost widely used techniques, if not the most. 

The underlying idea in the SVDD approach is to determine the 

mallest hyper-sphere enclosing the data. While its hard-margin 

ormulation requires all target data to be strictly encapsulated 

ithin the inferred hyper-spherical boundary, in the soft margin 

VDD approach, in order to take into account the possibility of 

 contaminated dataset, the distance from each training object to 

he centre of the hyper-sphere need not be strictly smaller than 

he radius but larger distances are penalised. In order to encode 

nd penalise violations from the hyper-spherical decision bound- 

ry, non-negative slack variables measuring the extent of viola- 

ion of each object from the decision boundary are introduced. The 

ptimisation problem is then modified to reflect such violations 

nd penalise an � 1 -norm term on the slacks. In other words, the 

onventional SVDD method, and also the standard two-class SVM 

lassifier are founded on the idea of minimising an � 1 -norm risk 

ver the set of non-negative slack variables. In the context of two- 

lass classification, very recently [9] , the classical � 1 -norm penalty 

erm in the SVM formulation has been revisited to consider two 

lternative slack penalties defined by the � 2 - and the � ∞ 

-norms to 

ormulate new SVM algorithms. A reformulation of the standard 

wo-class SVM to the � 2 and � ∞ 

penalty terms has been verified 

o improve the classification performance, sometimes significantly 

9] . 

The standard SVDD approach operates on an � 1 -norm penalty 

ver slacks. This represents a simplistic and restricting assump- 

ion since the object function in this case is linear w.r.t. the er- 

ors. In real-world problems, non-linear objective functions are 

idely deployed for learning purposes as they may better suit the 

on-linear characteristics of real data. Furthermore, in the stan- 

ard SVDD formulation the fixed � 1 -norm may not effectively cap- 

ure the inherent sparsity of the data and there exists no explicit 

ontrolling mechanism over sparsity of the solution. These rep- 

esent some important limitations of the existing SVDD formula- 

ions which may inhibit their widespread deployment in practical 

roblems. In spite of these limitations, a large body of the pur- 

uant and ongoing work on SVDD has mainly focused on modify- 

ng the standard SVDD formulation via linear reweighting schemes. 

n this work, we address the aforementioned limitations and study 

he merits of different norm risks for “one-class” classification in 

he context of the SVDD approach. For this purpose, we consider 

 general � p -norm ( p ≥ 1 ) slack penalty term where p serves as

 free parameter of the algorithm. As such, while in the standard 

VDD method the slacks are penalised linearly, by introducing an 

 p -norm function, non-linear cost functions of the slacks may be 

ptimised where the degree of the non-linearity ( i.e. p) may be 

uned on the data. By varying parameter p ≥ 1 , the relative mag- 

itudes of errors corresponding to different samples may be mod- 

fied, and thus, the relative importance of objects with larger er- 

ors w.r.t. others with smaller slacks in the objective function may 

e controlled. The reflection of the � p -norm penalty term onto the 

ual space formulation of the problem turns out to be a dual � q -

orm ( q = 

p 
p−1 ), thus, providing the method the capability to tune 

nto the inherent sparsity of the problem. By virtue of using p ≥ 1 ,

he objective function of the proposed � p -norm SVDD approach is 

onvex, facilitating an effective optimisation. Through experiments 

n different datasets, it is shown that the introduction of a vari- 

ble � p -norm penalty into the objective function is effective and 
2

ossesses the potential to improve the generalisation capability, 

ometimes significantly. 

.1. Contributions 

The major contributions of the current study may be sum- 

arised as listed below. 

• We generalise the SVDD formulation from an � 1 to an � p -norm 

penalty function and illustrate that the proposed generalisation 

may lead to significant improvements in the performance of the 

algorithm; 
• We extend the proposed � p -norm formulation from a pure one- 

class setting to the training scenario where labelled negative 

objects are also available and illustrate the merits offered by 

the proposed extension; 
• Based on Rademacher complexities, we theoretically study the 

generalisation performance of the proposed � p -norm approach 

and derive bounds on its error; 
• And we carry out an experimental evaluation of the proposed 

method on multiple OCC datasets and provide a comparison to 

the original SVDD method and its different variants, as well as 

other OCC techniques from the literature. 

.2. Organisation 

The remainder of the paper is structured as follows. In 

ection 2 , the relevant literature with a particular emphasis on dif- 

erent variants of the SVDD formalism is reviewed. In Section 3 , 

nce a short overview of the support vector data description 

SVDD) approach [8] is given, we present our proposed � p - 

orm SVDD approach for the pure one-class setting and then 

erive its extension for labelled negative training observations. 

ection 4 studies the generalisation error bound of the proposed 

pproach based on Rademacher complexities. We present and 

nalyse the results of an experimental evaluation of the proposed 

ethod in Section 5 where possible extensions of the proposed ap- 

roach are also discussed. Finally, Section 6 concludes the paper. 

. Prior work 

Although different categorisations of OCC methods exist in dif- 

erent studies [8] , the one-class classification techniques may be 

oughly identified as either generative or non-generative [10] , the 

atter best represented by discriminative approaches. While in the 

enerative techniques, the objective is to model the underlying 

enerative process of the data, the discriminative methods try to 

irectly partition the observation space into different regions for 

lassification. Discriminative approaches tend to yield better per- 

ormance in practice since they try to explicitly solve the OCC 

roblem without attempting to solve an intermediate and more 

eneral task of inferring the underlying distribution or generative 

rocess. 

Generative OCC approaches encompass the methods that try to 

stimate the underlying distribution using, for example, Gaussian 

istribution modelling, or those which use a mixture of distribu- 

ions [11] . A different sub-category of generative approaches in- 

ludes methods that for decision making use the residual of recon- 

tructing a test sample with respect to a hypothesised model, some 

nstances of which are the kernel principal component analysis 

KPCA) and its variants [12] , or the autoencoder-based techniques. 

iscriminative methods constitute a strong alternative to the gen- 

rative one-class learners. As an instance, based on a variant of 

he Fisher classification principle, the kernel null space method 

ries to map positive objects onto a single point in a discriminative 

ubspace, obtaining very competitive results compared to some 
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ther alternatives [13] . Another successful discriminative one-class 

ethod focuses on the use of Gaussian Process (GP) priors [14] try- 

ng to directly infer the a posteriori class probability of the target 

lass. The work in [15] presents an incremental convex-concave 

ull one-class method, shown to be able to reduce the compu- 

ational time while expanding the boundary of the normal class. 

mong others, a widely applied discriminative one-class classifica- 

ion method is that of support vector data description (SVDD) ap- 

roach [8] that tries to estimate the smallest volume surrounding 

he positive objects. In the case of the existence of labelled nega- 

ive training objects, the decision boundary is refined by requiring 

he negative objects to lie outside the hyper-spherical boundary. 

he soft version of this approach allows the positive and negative 

if any) training objects to violate the boundary criterion but sub- 

ect to a linear penalty on the extent of the violation (called slack ) 

here a parameter controls the trade-off between the volume and 

uch errors in the objective function. Due to its success in data de- 

cription and its intuitive geometrical interpretation and the ability 

o benefit from a kernel-based representation, the SVDD approach 

erves as a widely used technique in the OCC literature, motivat- 

ng many subsequent research. As an instance, in [16] , based on 

he observation that the SVDD centre and the volume are sensi- 

ive to the parameter controlling the trade-off between the errors 

slacks) and the volume, a method called GL-SVDD is proposed 

here local and global probability densities are used to derive 

ample-adaptive errors via associating weights to the slacks cor- 

esponding to different objects. In [17] , a different sample-specific 

eighting approach (P-SVDD) based on the position of the feature 

pace image is proposed to adaptively regularise the complexity of 

he SVDD sphere. The authors in [18] define a density-based dis- 

ance between a sample point and the centre of the hyper-sphere 

o adjust the constraint set of the SVDD optimisation problem by 

e-weighting training objects. Apart from the research focused on 

mproving the performance of the SVDD method in a one-class set- 

ing, there also exist other studies where the SVDD approach is 

eneralised to two [19] , or to multiple classes [20,21] . The work 

n [22] , tries to improve the performance of the SVDD method by 

iscovering the characteristics of the data and tuning model pa- 

ameters via the chaotic bat algorithm. Other study [23] , drawing 

n ergodicity of chaotic functions via switching automatically be- 

ween global and local searches of the Bat algorithm, presented the 

o-called Chaotic Bat SVDD approach. 

Considering the body of work discussed above, one observes 

hat the majority of the existing studies tries to modify the slack 

rror term by introducing an adaptive weighting for each data 

ample based on different cues. Clearly, a simple linear weighting 

cheme does change the linearity of the objective function with re- 

pect to the slacks. The exception to the studies above is the work 

n [24] where instead of an � 1 -norm penalty, an � 2 -norm penalty 

s considered over the slacks. As will be demonstrated in the sub- 

equent sections, an � 2 slack penalty may not always yield an op- 

imal performance for data description. The current study is a gen- 

ralisation of the existing SVDD formulations as it considers an � p 

 p ≥ 1 ) slack norm penalty where p serves as a free parameter of

he algorithm allowing for different non-linear penalties to be op- 

imised w.r.t. slacks while at the same time providing the opportu- 

ity to tune into the inherent sparsity characteristics of the data. 

. Methodology 

In this section, first, we briefly review the SVDD method [8] and 

hen present the proposed approach. 

.1. Preliminaries 

The Support Vector Data Description (SVDD) approach [8] tries 

o estimate the smallest hyperspherical volume that encloses 
3 
ormal/target data in some pre-determined feature space. As a hy- 

ersphere is characterised by its centre O and its radius R > 0 , the

earning problem in the SVDD method is defined as minimising the 

adius while requiring the hypersphere to encapsulate all normal 

bjects x i ’s, that is 

min 

R, O 
E(R, O) = R 

2 

.t. ‖ 

x i − O ‖ 

2 
2 ≤ R 

2 , ∀ i (1) 

n practice, however, the training data might be contaminated with 

oise and outliers. In order to handle possible outliers in the train- 

ng set and derive a solution with a better generalisation capabil- 

ty, the objective function in the SVDD method is modified so that 

he distance from the centre O to each training observation x i need 

ot be strictly smaller than R , rather, larger distances are penalised. 

or this purpose, using non-negative slack variables ζi ’s, the SVDD 

ptimisation task is modified as 

min 

R, O, ζ
E(R, O, ζ) = R 

2 + c 
∑ 

i 

ζi 

.t. ‖ 

x i − O ‖ 

2 
2 ≤ R 

2 + ζi , ζi ≥ 0 , ∀ i (2) 

here ζ denotes a vector collection of ζi ’s and the trade-off be- 

ween the sum of errors ( i.e. ζi ’s) and the squared radius is con- 

rolled using parameter c. The optimisation problem above corre- 

ponds to the case where only normal samples (and possibly a 

inority of noisy objects) are presumed to exist in the training 

et. When labelled negative training objects are also available, the 

earning problem in the SVDD method is modified to enforce posi- 

ive samples to lie within the hyper-sphere while negative samples 

re encouraged to fall outside its boundary. 

The SVDD objective function in Eq. 2 depends on an � 1 -norm 

f the slack variables as 
∑ 

i ζi = ‖ ζ‖ 1 , and consequently, all er- 

ors/slacks are penalised linearly. Although penalising all errors lin- 

arly in their magnitudes is a plausible option, it is by no means 

he only possibly. An an instance, a different alternative may be 

o penalise only the maximum error/slack which can be achieved 

y incorporating an � ∞ 

-norm on the slacks as max i ζi = ‖ ζ‖ ∞ 

. Any 

ther penalty which would lie between penalising all the slacks 

inearly and penalising only the maximum error may then be char- 

cterised using a general � p -norm on the errors, i.e. via 
∑ 

i ζ
p 

i 
= 

 

ζ‖ p p . In particular, introducing a variable norm parameter p opens 

he door to consider non-linear penalties on the errors compared 

ith the original SVDD method which is limited to a linear penalty 

n the slacks. From a dual problem viewpoint, introducing an � p 

orm penalty on the slacks provides a mechanism to control the 

elative sparsity/uniformity of the solution in order to better con- 

ider the intrinsic sparsity of the problem. As such, in the proposed 

pproach, we generalise the SVDD error function using an � p -norm 

unction of slacks, discussed next. 

.2. � p -Norm SVDD 

By replacing the � 1 -norm term on the slack variables in 

q. 2 with a function of � p -norm, the optimisation problem in the 

roposed approach is defined as 

min 

R, O, ζ
E(R, O) = R 

2 + c 
∑ 

i 

ζ p 
i 

.t. ‖ 

x i − O ‖ 

2 
2 ≤ R 

2 + ζi , ζi ≥ 0 , ∀ i (3) 

n the objective function above, by modifying parameter p the rel- 

tive magnitudes of slacks with respect to each other may be con- 

rolled. In particular, by increasing p, the relative importance of ob- 

ects with a larger error compared to those with a smaller error 

ncreases. In the limit when p → + ∞ , the largest error will have a
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ominant impact on the objective function. In order to solve the 

ptimisation problem above, the Lagrangian is formed as 

 = R 

2 + c 
∑ 

i 

ζ p 
i 

−
∑ 

i 

αi [ R 

2 + ζi − ( ‖ 

x i ‖ 

2 
2 − 2 O 

	 x i + ‖ 

O ‖ 

2 
2 )] 

−
∑ 

i 

γi ζi (4) 

here αi ’s and γi ’s are non-negative Lagrange multipliers. In order 

o derive the dual function, the Lagrangian should be minimised 

ith respect to the primal variables R , O, ζi . Setting the partial 

erivatives of L w.r.t. R , O, and ζi to zero yields 

∂L 

∂R 

= 0 ⇒ 

∑ 

i 

αi = 1 (5a) 

∂L 

∂O 

= 0 ⇒ O = 

∑ 

i 

αi x i (5b) 

∂L 

∂ζi 

= 0 ⇒ ζi = ( 
αi + γi 

cp 
) 

1 
p−1 (5c) 

Substituting the relations above into L , the Lagrangian is ob- 

ained as 

 = (cp) 
−1 
p−1 (1 /p − 1) ‖ 

α+ γ‖ 

p/ (p−1) 
p/ (p−1) 

+ 

∑ 

i 

αi x 

	 
i x i −

∑ 

i 

∑ 

j 

αi α j x 

	 
i x j 

(6) 

here α and γ denote vector collections of αi ’s and γi ’s. Further- 

ore, one can easily check that the Slater’s condition is satisfied, 

nd thus, the following complementary conditions also hold at the 

ptimum: 

i ζi = 0 , ∀ i (7a) 

i (R 

2 + ζi − ‖ 

x i − O ‖ 

2 
2 ) = 0 , ∀ i (7b) 

Using Eq. 5c and Eq. 7a , it must hold that γi ( 
αi + γi 

cp ) 
1 

p−1 = 0 .

ince αi ≥ 0 and γi ≥ 0 , one concludes that γi = 0 , ∀ i . As a result,

he Lagrangian in Eq. 6 would be simplified as 

 = (cp) 
−1 
p−1 (1 /p − 1) ‖ 

α‖ 

p/ (p−1) 
p/ (p−1) 

+ 

∑ 

i 

αi x 

	 
i x i −

∑ 

i 

∑ 

j 

αi α j x 

	 
i x j 

(8) 

he dual problem entails maximising L in α: 

max 
α

L 

.t. α ≥ 0 , ‖ 

α‖ 1 = 1 (9) 

ote that, for p ≥ 1 , we have p/ (p − 1) ≥ 1 , and consequently, the

erm ‖ α‖ p/ (p−1) 
p/ (p−1) 

in the Lagrangian is convex w.r.t. α. Note also that 

he other terms in L are either linear or quadratic functions of α, 

nd hence, are convex while the constraints are affine. As a result, 

he optimisation problem above is a convex optimisation task. 

.3. � p -norm SVDD with negative samples 

In the proposed � p -norm approach, similar to the original SVDD 

ethod [8] , when labelled non-target/negative training observa- 

ions are available, they may be utilised to refine the description. 

n this case, as opposed to the positive samples that should be en- 

losed within the hypersphere, the non-target objects should lie 

utside its boundary. In what follows, the normal/positive samples 
4 
re indexed by i , j and the negative objects by l, m . In order to al-

ow for possible errors in both the positive and the negative train- 

ng samples, slack variables ζi ’s and ζl ’s are introduced. The opti- 

isation problem when labelled negative samples are available is 

hen defined as 

min 

R, O, ζ
E(R, O, ζ) = R 

2 + c 1 
∑ 

i 

ζ p 
i 

+ c 2 
∑ 

l 

ζ p 

l 

.t. ‖ 

x i − O ‖ 

2 
2 ≤ R 

2 + ζi , ‖ 

x l −O ‖ 

2 
2 ≥ R 

2 − ζl , ζi ≥ 0 , ζl ≥ 0 , ∀ i, l 
(10) 

n the objective function above, while c 1 may be used to control 

he fraction of positive training objects that fall outside the hyper- 

phere boundary, c 2 may be adjusted to regulate the fraction of 

egative training samples that will lie within the hypersphere. By 

ntroducing Lagrange multipliers αi ≥ 0 , αl ≥ 0 , γi ≥ 0 , γl ≥ 0 , the 

agrangian of Eq. 10 is formed as 

 = R 

2 + c 1 
∑ 

i 

ζ p 
i 

+ c 2 
∑ 

l 

ζ p 

l 
−

∑ 

i 

γi ζi −
∑ 

l 

γl ζl 

−
∑ 

i 

αi [ R 

2 + ζi − ( ‖ 

x i ‖ 

2 
2 − 2 O 

	 x i + ‖ 

O ‖ 

2 
2 )] 

−
∑ 

l 

αl [( ‖ 

x l ‖ 

2 
2 − 2 O 

	 x l + ‖ 

O ‖ 

2 
2 ) − R 

2 + ζl ] (11) 

n order to form the dual function, the Lagrangian should be min- 

mised w.r.t. R , O, ζi ’s, and ζl ’s. Setting the partial derivatives of L
.r.t. to R , O, ζi , and ζl to zero yields 

∂L 

∂R 

= 0 ⇒ 

∑ 

i 

αi −
∑ 

l 

αl = 1 (12a) 

∂L 

∂O 

= 0 ⇒ O = 

∑ 

i 

αi x i −
∑ 

l 

αl x l (12b) 

∂L 

∂ζi 

= 0 ⇒ ζi = ( 
αi + γi 

c 1 p 
) 

1 
p−1 (12c) 

∂L 

∂ζl 

= 0 ⇒ ζl = ( 
αl + γl 

c 2 p 
) 

1 
p−1 (12d) 

Resubstituting the relations above into Eq. 11 gives 

 = (c 1 p) 
−1 
p−1 (1 /p − 1) ‖ 

αT + γT ‖ 

p/ (p−1) 
p/ (p−1) 

+ (c 2 p) 
−1 
p−1 (1 /p − 1) ‖ 

αN + γN ‖ 

p/ (p−1) 
p/ (p−1) 

+ 

∑ 

i 

αi x 

	 
i x i −

∑ 

l 

αl x 

	 
l x l −

∑ 

i 

∑ 

j 

αi α j x 

	 
i x j 

−
∑ 

l 

∑ 

m 

αl αm 

x 

	 
l x m 

+ 2 

∑ 

i 

∑ 

l 

αi αl x 

	 
i x l (13) 

here αT and αN respectively stand for vector collections of αi ’s 

nd αl ’s. Similarly, γT and γN denote vector collections of γi ’s and 

l ’s, respectively. Since the Slater’s condition holds, the following 

omplementary conditions are also satisfied at the optimum: 

i ζi = 0 , ∀ i (14a) 

l ζl = 0 , ∀ l (14b) 

i (R 

2 + ζi − ‖ 

x i − O ‖ 

2 
2 ) = 0 , ∀ i (14c) 

l (R 

2 − ζl − ‖ 

x l − O ‖ 

2 
2 ) = 0 , ∀ l (14d) 
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Using Eqs. 12c and 14a , and also Eqs. 12d and 14b , one con-

ludes that γi = 0 , ∀ i and γl = 0 , ∀ l. As a result, the Lagrangian in

q. 13 would be 

 = (c 1 p) 
−1 
p−1 (1 /p−1) ‖ 

αT ‖ 

p/ (p−1) 
p/ (p−1) 

+ (c 2 p) 
−1 
p−1 (1 /p − 1) ‖ 

αN ‖ 

p/ (p−1)
p/ (p−1)

+ 

∑ 

i 

αi x 

	 
i x i −

∑ 

l 

αl x 

	 
l x l −

∑ 

i 

∑ 

j 

αi α j x 

	 
i x j −

∑ 

l 

∑ 

m 

αl αm 

x 

	 
l x m

+ 2 

∑ 

i 

∑ 

l 

αi αl x 

	 
i x l (15) 

he dual problem then reads 

max 
αT , αN 

L 

.t. αT ≥ 0 , αN ≥ 0 , 

‖ 

αT ‖ 1 − ‖ 

αN ‖ 1 = 1 (16) 

ince p ≥ 1 leads to p/ (p − 1) ≥ 1 , the terms ‖ . ‖ p/ (p−1) 
p/ (p−1) 

in the La-

rangian are convex while the remaining terms are either linear or 

uadratic functions and the constraint sets are affine. Subsequently, 

he maximisation problem in Eq. 16 is convex. 

.4. Joint formulation 

As discussed earlier, when only positive labelled training ob- 

ervations are available, in the proposed approach one solves the 

ptimisation problem in Eq. 9 with the Lagrangian given in Eq. 8 . 

hen in addition to the positive training samples, labelled nega- 

ive training objects are also available, the problem to be solved 

s expressed as the optimisation task in Eq. 16 with the corre- 

ponding Lagrangian given in Eq. 15 . Although the optimisation 

asks corresponding to the pure positive case and that of the sec- 

nd scenario where negative training samples are also available 

ay appear different, nevertheless, both optimisation problems 

an be expressed compactly using a joint formulation as follows. 

et us assume that vector y corresponds to the labels of train- 

ng samples where for positive objects the label is +1 while for 

ny possible non-target training samples the corresponding label 

s −1 . Furthermore, suppose the Lagrange multipliers associated 

ith the negative and positive samples are all collected into a sin- 

le vector α. In order to reduce the clutter in the formulation, 

et us further assume q = p/ (p − 1) , c̄ 1 = 

1 
2 (c 1 p) 

−1 
p−1 (1 − 1 /p) and

 ̄2 = 

1 
2 (c 2 p) 

−1 
p−1 (1 − 1 /p) . With these definitions, the Lagrangian in 

q. 15 may be expressed as 

 = −c̄ 1 ‖ 

α � (1 + y ) ‖ 

q 
q − c̄ 2 ‖ 

α � (1 − y ) ‖ 

q 
q + 

∑ 

i 

αi y i x 

	 
i x i 

−
∑ 

i, j 

αi y i α j y j x 

	 
i x j (17) 

here � denotes hadamard/elementwise product. It may be eas- 

ly verified that when only positive training samples are available, 

he Lagrangian above correctly recovers that of Eq. 8 while in the 

xistence of labelled negative training objects, it matches that of 

q. 15 . As a result, in the proposed approach, the generic optimi- 

ation problem to solve can be expressed as 

max 
α

L 

.t. α ≥ 0 , y 	 α = 1 (18) 

here y is the vectors of labels and the Lagrangian L is given as

q. 17 . 

.5. Kernel space representation 

In many practical applications, instead of a rigid boundary, a 

ore elastic description is favoured. In such cases, a reproducing 
5 
ernel Hilbert space representation may be adopted. Inspecting the 

agrangian in Eq. 17 , it can be observed that the training samples 

nly appear in terms of inner products which facilitates deriving 

 kernel-space representation for the proposed approach. Since in 

he kernel space it holds that φ(x i ) 
	 φ(x j ) = κ(x i , x j ) where κ(., . )

s the kernel function, the Lagrangian in the reproducing kernel 

ilbert space may be written as 

 = −c̄ 1 ‖ 

α � (1 + y ) ‖ 

q 
q − c̄ 2 ‖ 

α � (1 − y ) ‖ 

q 
q 

+ 

∑ 

i 

αi y i κ(x i , x i ) − ( α � y ) 	 K ( α � y ) (19) 

here K denotes the kernel matrix. If additionally, all objects have 

nit length in the feature space, i.e. if φ(x i ) 
	 φ(x i ) = 1 , one may

urther simplify the Lagrangian. For this propose, note that as 

or normalised feature vectors we have 
∑ 

i αi y i κ(x i , x i ) = y 	 α and

ince due to the constraints imposed it must hold that y 	 α = 1 ,

he term 

∑ 

i αi y i κ(x i , x i ) can be safely dropped from the objective 

unction without affecting the result. As a result, the optimisation 

roblem for unit-length features shall be 

in 

α
c̄ 1 ‖ 

α � (1 + y ) ‖ 

q 
q + c̄ 2 ‖ 

α � (1 − y ) ‖ 

q 
q + ( α � y ) 	 K ( α � y ) 

s.t. α ≥ 0 , y 	 α = 1 (20) 

s a widely used kernel function, the Gaussian kernel by defini- 

ion, yields unit-length feature vectors in the kernel space, and 

he formulation above is applicable. Note that when p → +1 , then 

 → + ∞ , and the terms based on � q -norm tend to functions of

 + ∞ 

-norm which is equal to the maximum element of a vector. 

sing the equivalency between an Ivanov and a Tikhonov regu- 

arisation, and the fact that bounding the maximum element of a 

ector bounds all the elements of the vector with the same con- 

tant, the norm terms appear as upper bound constraints on the 

ual variable which yields exactly the same constrained optimisa- 

ion problem as that of the standard SVDD approach. Alternatively, 

hen p = 1 , setting the gradient of the Lagrangian in Eq. 11 w.r.t.

i ’s and ζl ’s to zero will yield upper bound constraints on α, simi- 

ar to the standard SVDD method in [8] . 

.6. Decision strategy 

Similar to the conventional SVDD approach, for decision mak- 

ng in the proposed � p -norm method, the distance of an object to 

he centre of the description is gauged and employed as a dissim- 

larity criterion. The distance of an object z to the centre of the 

ypersphere O in the kernel space is 

f (z ) = ‖ 

φ(z ) − φ(O) ‖ 

2 
2 = κ(z , z ) − 2 

∑ 

i 

αi y i κ(z , x i ) 

+ ( α � y ) 	 K ( α � y ) (21) 

n order to compute the radius of the description, note that the 

omplementary conditions in Eqs. 14c and 14d may be compactly 

epresented as α j (R 2 + y j ζ j −
∥∥φ(x j ) − φ(O) 

∥∥2 

2 
) = 0 . As a result, 

f for an object x j the corresponding Lagrange multiplier α j is 

on-zero, it must hold that R 2 + y j ζ j −
∥∥φ(x j ) − φ(O) 

∥∥2 

2 
= 0 , and 

ence, the radius of the description may be computed as 

 

2 = 

∥∥φ(x j ) − φ(O) 
∥∥2 

2 
− y j ζ j 

= κ(x j , x j ) − 2 

∑ 

i 

αi y i κ(x j , x i ) + ( α � y ) 	 K ( α � y ) − y j ζ j 

(22) 

here j indexes an object whose corresponding Lagrange multi- 

lier α j is non-zero. The objects whose distance to the centre of 

he hyper-sphere is larger than the radius (subject to some mar- 

in) would be classified as novel. 



S. Rahimzadeh Arashloo Pattern Recognition 132 (2022) 108930 

4

a

S

T

l

F

t

s

R

w

a

o

t

T

p

c

P

w

 

o

T  

X

c

t

E

r

R

T  

t

c

o

T

a  

w

E

g

A  

a

E

P

E

w

o  

t

fi

j  

o

h∥∥∥∥∥
S  

f

‖
a∥∥∥∥∥
A  

R

R

U  

c  

T

t

o

s

t  

n

d

n

t

p

i

o

p

E

5

p

v

m

n

. Generalisation error bound 

In this section, using the Rademacher complexities, we char- 

cterise the generalisation error bound for the proposed � p -norm 

VDD approach. 

heorem 1. Let us assume F corresponds to a class of kernel-based 

inear functions: 

 = { x → w 

	 φ(x ) , ‖ 

w ‖ 2 ≤ B } (23) 

hen the empirical Rademacher complexity of function class F over 

amples (x i ) 
n 
i =1 

, denoted as ˆ R n (F ) , is bounded as [25] 

ˆ 
 n (F ) ≤ 2 B 

n 

√ 

tr(K ) ≤ 2 BB κ√ 

n 

(24) 

here tr(. ) denotes matrix trace and K stands for the kernel matrix 

ssociated with the feature mapping φ(. ) and B 2 κ is an upper bound 

n the kernel function κ(., . ) . 

Next, we present the main theorem concerning the generalisa- 

ion performance of the proposed approach. 

heorem 2. In the proposed approach, assuming that υ is a margin 

arameter, with confidence greater than 1 − 
, a test point x is in- 

orrectly classified with the probability bounded as 

 [ y 
(

f (x ) − R 

2 
)

> υ] ≤ 1 

nυ p 
‖ 

ζ‖ 

p 
p + 

4 pBB κ

υ p 
√ 

n 

(B 

2 + 3 B 

2 
κ + R 

2 ) p−1 

+ 3 

√ 

ln (2 / 
) 

2 n 

(25) 

here y is the ground truth label for observation x . 

For the proof of Theorem 2 , first, we review a few relevant the-

ries and then present the proof. 

heorem 3. Assume δ ∈ (0 , 1) and suppose G is a function class from

to [0,1]. Let (x i ) 
n 
i =1 

be independent samples that are drawn ac- 

ording to a probability distribution D. Then with a probability higher 

han 1 − 
 over (x i ) 
n 
i =1 

, for each g ∈ G it holds that [25] 

 D [ g(x )] ≤ ˆ E [ g(x )] + 

ˆ R n (G) + 3 

√ 

ln (2 / 
) 

2 n 

(26) 

where ˆ E [ g(x )] is the empirical expectation of g(x ) on the 

andom sample set (x i ) 
n 
i =1 

and 

ˆ R n (G) denotes the empirical 

ademacher complexity of the function class G. 

heorem 4. If A : R → R is L -Lipschitz and satisfies A (0) = 0 , then

he empirical Rademacher complexity of the composition function 

lass A ◦ F satisfies ˆ R n (A ◦ F ) ≤ 2 L ̂  R n (F ) [25] . 

Towards the proof of Theorem 2 , we present the following the- 

rem. 

heorem 5. Let us consider h (x ) as the hypothesis function defined 

s h (x ) = f (x ) − R 2 where f (x ) measures the distance of sample x

ith label y to the centre of the hypersphere in the feature space (see 

q. 21 ). For some fixed margin υ > 0 , we define g(. ) as 

(x ) = A (yh (x )) = 

{ 

0 if yh (x ) ≤ 0 ; (
yh (x ) /υ

)
p if 0 ≤ yh (x ) ≤ υ; 

1 else. 

(27) 

 : R → [0 , 1] is L -Lipschitz and satisfies A (0) = 0 . Then with a prob-

bility higher than 1 − 
 over (x i ) 
n 
i =1 

it holds 

 D [ g(x )] ≤ 1 

υ p n 
‖ ζ‖ p p + 

4 Bp 

nυ p 
(B 2 + 3 B κ + R 2 ) p−1 

√ 

tr(K ) + 3 

√ 

ln (2 / 
) 

2 n 

(28) 
6 
roof. We have 

ˆ 
 [ g(x )] = 

1 

n 

∑ 

i 

g(x i ) ≤
1 

nυ p 

∑ 

i 

(
y i ( f (x i ) − R 

2 ) 
)

p 
+ 

= 

1 

nυ p 

∑ 

i 

ζ p 
i 

= 

1 

nυ p 
‖ 

ζ‖ 

p 
p (29) 

here (z) + = 

{
0 if z < 0 

z otherwise. 
and ζ stands for a vector collection 

f all ζi ’s. Note that A (. ) is Lipschitz with constant L . As with

he zero-one loss, the margin loss above penalises any misclassi- 

ed objects but also penalises h when it correctly classifies an ob- 

ect with low confidence. In order to derive an upper bound on L ,

bserve that ∂A 
∂ 
(

yh (x ) 
) = 

p 
υ p 

(
y ( f (x ) − R 2 ) 

)
p−1 , and consequently, we 

ave 

∂A 

∂ 
(
yh (x ) 

)
∥∥∥∥∥

2 

= 

p 

υ p 

∥∥( f (x ) − R 

2 ) 
∥∥p−1 

2 
≤ p 

υ p 
( ‖ 

f (x ) ‖ 2 + R 

2 ) p−1 

(30) 

ince the kernel function is bounded by B 2 κ , using Eq. 21 , and the

act that ‖ w ‖ 2 2 = α	 K α [25] , we have 

 

f (x ) ‖ 2 ≤ B 

2 + 3 B 

2 
κ (31) 

nd hence 

∂A 

∂ 
(
yh (x ) 

)
∥∥∥∥∥

2 

≤ p 

υ p 
(B 

2 + 3 B 

2 
κ + R 

2 ) p−1 (32) 

s a result, A (. ) is Lipschitz with constant L = 

p 
υ p (B 2 + 3 B 2 κ +

 

2 ) p−1 . 

Next, using Theorem 4 and Theorem 1 , we have 

ˆ 
 n (G) ≤ 2 L ̂  R n (F ) ≤ 4 BB κL √ 

n 

≤ 4 pBB κ

υ p 
√ 

n 

(B 

2 + 3 B 

2 
κ + R 

2 ) p−1 (33) 

sing Eq. 29 and Eq. 33 in Theorem 3 , the proof to Theorem 5 is

omplete. Since we have P [ y 
(

f (x ) − R 2 
)

> υ] ≤ E D [ g(x )] , using

heorem 5 , the proof to Theorem 2 is completed. �

As may be observed from Eq. 25 , parameter p directly affects 

he expected loss on the training set (the first term on the RHS 

f the equation) and also controls the Rademacher complexity (the 

econd term on the RHS of Eq. 25 ) of the proposed method. As 

he error probability varies as a function of p, the utility of a free

orm parameter in the proposed approach is justified. Note that 

epending on ζ and the margin parameter υ , setting p = 1 may 

ot necessarily minimise the RHS in Eq. 25 , and hence, may lead 

o an increased probability of misclassification in the proposed ap- 

roach. In practice, the norm parameter p may be adjusted accord- 

ng to the characteristics of the data to optimise the performance 

r to control the false acceptance/rejection rate. Note also, since 

arameter p appears in the dual problem as ‖ . ‖ p/ (p−1) 
p/ (p−1) 

terms (see 

q. 20 ), it also affects the sparsity of α. 

. Experiments 

In this section, an experimental evaluation of the proposed ap- 

roach is conducted where we provide a comparison to some other 

ariants of the SVDD approach as well as to baseline approaches on 

ultiple datasets. The rest of this section is organised as detailed 

ext. 

• In Section 5.1 , we visualise the decision boundaries inferred by 

the proposed approach for different p’s for synthetic data. 
• In Section 5.2 , the implementation details, the experimental 

set-up, and the standard datasets used in the experiments are 

discussed. 



S. Rahimzadeh Arashloo Pattern Recognition 132 (2022) 108930 

Fig. 1. Decision boundaries for the proposed � p -SVDD approach with a Gaussian 

kernel function for different values of p for 100 normally distributed random sam- 

ples with mean of 2 and standard deviation of 3 in each dimension. ( p = 1 corre- 

sponds to the original SVDD method). 
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• In Section 5.3 , the results of an experimental evaluation of the 

proposed approach in a pure one-class setting (labelled neg- 

ative objects unavailable) are presented and compared with 

other methods on multiple datasets. 
• Section 5.4 provides the results of an experimental evaluation 

of the proposed approach in the presence of negative train- 

ing samples along with a comparison against other methods on 

multiple datasets. 

.1. Decision boundaries 

In order to visualise the effect of norm parameter p on the in- 

erred decision boundaries, we randomly generate 100 normally 

istributed 2D samples with a mean of 2 and standard devia- 

ion of 3 in each direction. Using a Gaussian kernel function, 

he proposed approach is then run to derive a description of 

he data. The experiment is repeated for different values of p ∈ 

 1 , 16 / 15 , 8 / 7 , 4 / 3 , 2 , 15 / 7 , 7 / 3 , 5 / 2 , 3 } where p = 1 corresponds to

he original SVDD method in [8] . The decision boundaries superim- 

osed on the data are visualised in Fig. 1 . From the figure, it may

e observed that for the case of p = 1 the method has inferred a

oundary which separates a region of relatively low density in the 

iddle of the distribution from the rest of the 2D space. For the 

andom data samples generated in this experiment with a mean of 

2,2) this clearly indicates a case of over-fitting. By increasing the 

orm parameter above 1, the decision boundary better covers the 

ean of the distribution. More specifically, while for smaller values 

f p the boundary is tighter, for larger values the description tends 

o encapsulate a higher percentage of the normal samples. As will 

e discussed in the following sections, in the proposed method, we 

une parameter p using the validation set corresponding to each 

ataset. 

.2. Implementation details 

In the experiments that follow, the features are first stan- 

ardised by subtracting the mean computed over all positive 

raining samples and then dividing by the standard deviation 
7 
ollowed by normalising each feature vector to have a unit � 2 - 

orm. For datasets D 1 : 20 , the positive samples are divided ran-

omly into three non-overlapping equal size subsets to form the 

raining, validation, and the test sets. Similarly, the negative sam- 

les are divided randomly into three disjoint equal size subsets 

or training, validation and testing purposes. In order to min- 

mise possible effects of random data partitioning on the per- 

ormance, we repeat the procedure above 10 times, and record 

he mean along with the standard deviation of the performance 

ver these 10 trials. For dataset D21, in order to make the re- 

ults consistent and comparable with the relevant literature, we 

ollow the standard zero-shot evaluation protocol for this dataset 

26] . We set the parameters of all methods on the correspond- 

ng validation subset of each dataset. In particular, for the pro- 

osed approach p ∈ { 32 / 31 , 16 / 15 , 8 / 7 , 6 / 5 , 4 / 3 , 3 / 2 , 2 , 5 / 2 , 5 , 20 }
nd c 1 , c 2 ∈ { 10 −3 , 10 −2 , 10 −1 , 1 } . In all experiments, we use a

aussian kernel the width of which is set to half of the average 

airwise Euclidean distance among all training objects. As the dual 

roblem in Eq. 20 is convex, one may use different algorithms 

27] for optimisation. In this work, we use CVX [28] , a package for 

olving convex programmes. 

In order to evaluate the proposed approach, 20 benchmark 

atabases from the UCI repository [29] , TUDelf University [30] , 

EEL repository [31] , CENPARMI [32] , Statlib [33] , and Zalando 

34] are used. Furthermore, we use the Replay-Mobile face pre- 

entation attack detection dataset [26] which is a relatively larger 

ataset where GoogleNet representations extracted from the face 

egion are used as features [35] . The datasets used in the ex- 

eriments correspond to different application domains from var- 

ed sources. The statistics of the datasets used in the experiments 

re reported in Table 1 . For the evaluation of the proposed ap- 

roach, we conduct two sets of experiments. The first set follows 

 pure one-class classification paradigm, i.e. only positive samples 

re used to train the models. In the second set of experiments, 

egative objects are also deployed for model training. For com- 

arison, we report the performance of the original SVDD approach 

f [8] denoted as “� 1 -SVDD” and also its alternative variant which 

onsiders squared errors in the objective function, denoted as “� 2 - 

VDD” [24] . The proposed approach is denoted as “� p -SVDD” in 

he corresponding tables. We also provide a comparison of the 

roposed � p -SVDD method to some linear re-weighting variants 

f the SVDD approach including P-SVDD [17] , DW-SVDD [36] , and 

L-SVDD [16] as well as state-of-the-art OCC techniques. In par- 

icular, we have included kernel-based one-class classifiers which 

re applicable to moderately-sized datasets. These are the kernel 

aussian Process method (GP) [14] , the Kernel Null Foley-Sammon 

ransform (KNFST) [13,37] , and the Kernel Principal Component 

nalysis (KPCA) [38] . 

Following the common approach in the literature and in order 

o facilitate the comparison of the performances of different meth- 

ds independent from a specific operating threshold, we report the 

erformances in terms of the AUC measure which is the area under 

he Receiver Operating Characteristic curve (ROC). The ROC curve 

haracterises the true positive rate against the false positive rate at 

arious operating thresholds. A higher AUC indicates a better per- 

ormance for the system. 

.3. Pure one-class setting 

In this setting, only positive objects are used for training. 

able 2 reports the performances of different methods in this set- 

ing where we set parameter p on the validation subset of each 

ataset to maximise the performance. A number of observations 

rom the table are in order. First, on all datasets the proposed � p -

VDD approach yields a superior performance compared to its � 1 - 

VDD and � -SVDD variants. In particular, on some datasets such 
2 
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Table 1 

Statistics of the datasets used. 

Abbrev. Dataset #total #positive dim. Source 

D1 Iris (virginica) 150 50 4 UCI 

D2 Hepatitis (normal) 155 123 19 UCI 

D3 Ecoli (periplasm) 336 52 7 UCI 

D4 Concordia16 (digit 1) 4000 400 256 CENPARMI 

D5 Delft pump (5x1) 336 133 64 Delft 

D6 Balance-scale (middle) 625 49 4 UCI 

D7 Wine (2) 178 71 13 UCI 

D8 Waveform (0) 900 300 21 UCI 

D9 Survival ( < 5yr) 306 81 3 UCI 

D10 Housing (MEDV > 35) 506 48 13 Statlib 

D11 glass6 214 185 9 KEEL 

D12 haberman 306 225 3 KEEL 

D13 led7digit 443 406 7 KEEL 

D14 pima 768 500 8 KEEL 

D15 wisconsin 683 444 9 KEEL 

D16 yeast(0-5-6-7-9-vs-4) 528 477 8 KEEL 

D17 cleveland(0-vs-4) 177 164 13 KEEL 

D18 Breast(benign) 699 458 9 UCI 

D19 Survival ( > 5yr) 306 225 3 UCI 

D20 FMNIST (Class “1”) 1926 1027 784 Zalando 

D21 Replay-Mobile 100885 45,233 1024 Idiap 

Table 2 

Comparison of the performance of OCC approaches on different datasets in a pure one-class scenario in terms of % AUC (mean ±std). 

GP KPCA KNFST P-SVDD DW-SVDD GL-SVDD � 1 -SVDD � 2 -SVDD � p -SVDD 

D1 68.03 ±16.51 78.17 ±22.69 68.51 ±16.46 78.98 ±15.58 67.42 ±16.75 67.70 ±16.39 67.42 ±16.75 67.37 ±16.52 81 . 23 ± 11 . 26 

D2 58.78 ±4.37 66.46 ±6.75 58.65 ±4.39 62.51 ±5.98 59.36 ±4.37 61.20 ±6.06 59.98 ±4.31 59.48 ±4.26 66 . 60 ± 6 . 80 

D3 61.30 ±11.33 53.06 ±13.66 61.32 ±11.15 53.98 ±12.31 61.67 ±11.66 61.08 ±10.49 61.08 ±11.36 61.20 ±11.46 62 . 19 ± 10 . 53 

D4 92.96 ±2.60 94.10 ±1.73 92.94 ±2.62 93.24 ±2.50 93.31 ±2.54 93.21 ±2.53 94.36 ±1.84 93.58 ±2.42 94 . 43 ± 1 . 58 

D5 87.87 ±3.43 86.07 ±3.29 87.85 ±3.45 84.78 ±3.92 87.85 ±3.45 88.02 ±3.33 87.85 ±3.45 87.90 ±3.40 88 . 41 ± 2 . 77 

D6 94.52 ±3.57 90.77 ±2.46 94.66 ±3.52 92.94 ±3.16 94.68 ±3.54 94.64 ±3.54 94.70 ±3.55 94.60 ±3.56 94 . 79 ± 3 . 59 

D7 60.82 ±11.03 72.30 ±11.10 60.71 ±10.99 65.64 ±9.04 61.12 ±11.57 64.12 ±10.85 60.79 ±11.04 60.90 ±11.19 72 . 53 ± 11 . 36 

D8 64.15 ±4.66 61.47 ±1.90 64.10 ±4.64 64.09 ±5.91 65.37 ±5.09 65.39 ±5.41 64.91 ±5.53 65.10 ±5.48 65 . 86 ± 4 . 23 

D9 53.41 ±18.99 47.37 ±14.10 59.66 ±16.34 52.29 ±19.26 58.28 ±21.15 66.40 ±12.11 64.43 ±14.87 60.72 ±15.26 67 . 40 ± 10 . 21 

D10 87.73 ±6.00 78.70 ±8.49 87.76 ±6.02 81.28 ±11.89 87.77 ±6.11 87.82 ±6.03 87.77 ±6.11 87.78 ±6.08 87 . 91 ± 5 . 92 

D11 87.81 ±10.11 95.44 ±2.59 87.55 ±10.65 95.48 ±3.53 86.90 ±10.06 96.58 ±2.18 94.24 ±2.53 90.68 ±5.67 96 . 73 ± 1 . 38 

D12 59.70 ±5.90 70.66 ±5.79 55.54 ±5.51 59.75 ±7.79 55.84 ±7.12 70 . 77 ± 5 . 96 58.34 ±7.41 66.02 ±4.94 70 . 77 ± 5 . 88 

D13 62.63 ±18.55 67.49 ±7.79 62.34 ±18.01 66.60 ±15.73 41.54 ±6.43 66.77 ±14.25 62.84 ±13.62 69.04 ±10.99 69 . 41 ± 9 . 62 

D14 51.66 ±5.36 71 . 43 ± 3 . 41 51.46 ±5.32 53.47 ±5.42 54.93 ±4.78 56.04 ±4.46 61.24 ±4.95 59.83 ±3.75 71 . 43 ± 3 . 57 

D15 52.70 ±12.37 95.88 ±1.05 53.51 ±12.56 65.21 ±12.28 47.10 ±14.97 70.68 ±10.68 93.39 ±1.73 68.75 ±10.83 95 . 91 ± 1 . 03 

D16 57.74 ±9.93 63.71 ±7.39 58.56 ±8.80 62.94 ±8.48 61.02 ±10.33 63.26 ±9.98 60.93 ±9.65 61.52 ±10.68 64 . 23 ± 8 . 29 

D17 51.49 ±13.99 79.13 ±9.71 51.78 ±14.04 57.93 ±13.99 51.09 ±13.90 51.85 ±14.47 51.09 ±13.90 51.35 ±14.06 79 . 38 ± 9 . 27 

D18 45 . 02 ± 3 . 25 38.11 ±2.53 45.74 ±2.93 41.15 ±5.13 42.64 ±5.04 42.07 ±5.14 41.22 ±5.62 41.99 ±5.16 41.76 ±5.67 

D19 55.16 ±13.36 37.01 ±8.20 44.70 ±11.81 51.49 ±13.02 61.38 ±14.80 61.01 ±9.08 60.28 ±9.47 58.64 ±11.56 62 . 60 ± 9 . 83 

D20 94.82 ±1.47 94.86 ±10.9 94.78 ±1.49 94.96 ±1.23 95.37 ±0.87 96 . 92 ± 0 . 73 96.37 ±0.79 96.48 ±1.14 96 . 92 ± 0 . 63 

D21 91.09 ±6.35 89.19 ±6.49 91.06 ±6.30 90.91 ±6.38 91.26 ±5.96 91.28 ±5.97 91.15 ±6.09 91.26 ±5.89 91 . 41 ± 5 . 72 
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Table 3 

Average ranking of different OCC methods in a 

pure one-class setting using the Friedman’s test. 

(p-value = 1 . 12 e − 10 ) 

Algorithm Rank 

GP 6.47 

KPCA 5.45 

KNFST 6.71 

P-SVDD 5.95 

DW-SVDD 5.61 

GL-SVDD 3.54 

� 1 -SVDD 5.19 

� 2 -SVDD 4.73 

� p -SVDD (this work) 1 . 30 

5

l

t

a

s D1 and D14, the improvement in the performance offered by 

he proposed approach is substantial while on some other datasets 

uch as D17 the improvement is huge and reaches 28% . It should 

e noted that the performance improvements offered by the pro- 

osed approach are obtained despite the fact that the validation 

ets of some datasets may not be very large, and hence, may not 

erve as a very good representative of the entire the distribution of 

amples for tuning parameter p. It is expected that a more repre- 

entative validation set would lead to even further improvements 

n the performance. A statistical ranking of different methods in 

he pure one-class setting using the Friedmans test is provided in 

able 3 . From the table, it can be observed that while the proposed

 p -SVDD approach ranks the best among other approaches while 

he standard � 1 -SVDD approach ranks much worst which under- 

ines the significance of the proposed � p -norm approach. Further- 

ore, although the � 2 -SVDD method provides some improvement 

ith respect to the original � 1 -SVDD approach, its performance is 

till inferior compared to the proposed method. The second best 

erforming method (in terms of average ranking) corresponds to a 

ample re-weighting SVDD approach presented in [16] which uses 

lobal and local statistics to linearly weight slacks in the objective 

unction. 
t

8 
.4. Training in the presence of negative data 

In this second evaluation setting, in addition to positive objects, 

abelled negative samples are also used for training. Table 4 reports 

he performances of different methods in this setting. Note that 

s in the case of pure one-class learning, the optimal p value for 

he proposed approach is determined on the validation set. From 
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Table 4 

Comparison of the performance of OCC approaches on different datasets in the presence of negative training objects in terms of 

% AUC (mean ±std). 

Dataset KNFST − P-SVDD − DW-SVDD − GL-SVDD − � 1 -SVDD − � 2 -SVDD − � p -SVDD −

D1 95.90 ±5.48 39.45 ±21.77 74.38 ±24.80 64.62 ±19.09 58.53 ±21.63 59.79 ±22.50 10 0 . 0 0 ± 0 . 00 

D2 69.25 ±11.91 55.88 ±4.63 58.98 ±5.02 66.41 ±6.91 59.38 ±4.99 59.60 ±5.12 71 . 57 ± 7 . 92 

D3 70.80 ±4.94 52.53 ±8.94 60.70 ±7.55 60.71 ±8.34 59.19 ±8.86 59.95 ±8.56 75 . 82 ± 5 . 37 

D4 96 . 56 ± 1 . 50 93.27 ±1.71 94.92 ±1.45 93.33 ±1.79 94.46 ±1.23 93.88 ±1.23 96 . 56 ± 1 . 43 

D5 93.02 ±2.11 88.63 ±5.07 91.17 ±3.49 91.17 ±3.49 91.17 ±3.49 91.19 ±3.45 93 . 32 ± 1 . 94 

D6 90.29 ±12.84 88.73 ±3.46 92.61 ±4.15 92.56 ±4.14 92.62 ±4.14 92.41 ±4.23 96 . 11 ± 4 . 79 

D7 93.70 ±3.77 50.84 ±8.34 73.84 ±6.50 58.59 ±8.39 58.13 ±9.14 58.66 ±8.90 94 . 83 ± 3 . 00 

D8 90.01 ±1.31 64.97 ±3.74 66.93 ±3.24 67.20 ±3.15 66.95 ±3.30 65.95 ±3.35 91 . 51 ± 1 . 40 

D9 64.14 ±9.19 48.56 ±10.65 83.08 ±10.33 63.30 ±11.58 59.92 ±9.96 60.72 ±15.15 96 . 44 ± 2 . 25 

D10 89.37 ±7.15 82.92 ±7.86 86.66 ±8.53 85.88 ±8.47 86.66 ±8.53 86.58 ±8.58 89 . 81 ± 5 . 00 

D11 96.52 ±3.62 84.95 ±11.15 94.90 ±1.78 96.50 ±1.86 94.02 ±3.96 89.88 ±5.76 97 . 12 ± 1 . 72 

D12 52.52 ±7.84 58.84 ±6.19 63.06 ±5.22 69.44 ±7.54 62.10 ±9.37 65.95 ±6.16 71 . 23 ± 7 . 42 

D13 91.11 ±7.62 68.97 ±12.57 47.65 ±13.31 69.24 ±13.25 69.54 ±10.59 66.53 ±8.41 95 . 20 ± 2 . 93 

D14 63.94 ±3.85 55.37 ±4.12 64.88 ±4.01 61.15 ±4.01 59.14 ±4.89 64.90 ±3.59 79 . 75 ± 0 . 99 

D15 94.20 ±2.85 68.65 ±4.92 65.80 ±8.32 91.91 ±2.71 93.32 ±2.35 88.39 ±3.73 98 . 69 ± 0 . 54 

D16 61.74 ±12.47 64.12 ±5.56 63.19 ±6.27 64.67 ±5.55 64.33 ±5.08 62.68 ±7.29 84 . 70 ± 2 . 69 

D17 88.11 ±6.10 51.27 ±14.69 50.22 ±13.93 51.75 ±14.62 50.22 ±13.93 50.36 ±13.67 92 . 80 ± 3 . 73 

D18 56.83 ±3.88 49.04 ±1.92 51.52 ±2.54 51.74 ±3.55 52.02 ±2.40 47.06 ±4.54 66 . 10 ± 9 . 22 

D19 78.46 ±4.54 62.56 ±9.53 0.8586 ±10.37 65.30 ±9.56 66.69 ±9.38 50.44 ±12.80 92 . 65 ± 2 . 13 

D20 99 . 25 ± 0 . 40 95.83 ±1.40 97.72 ±0.99 97.55 ±0.79 97.03 ±1.15 97.24 ±0.96 98.07 ±0.86 

Table 5 

Average ranking of different OCC 

methods in the presence of neg- 

ative training samples using the 

Friedmans test). (p-value = 8 . 97 e −
14 ) 

Algorithm Rank 

KNFST − 2.80 

P-SVDD 

− 6.350 

DW-SVDD 

− 4.45 

GL-SVDD 

− 3.90 

� 1 -SVDD 

− 4.55 

� 2 -SVDD 

− 4.90 

� p -SVDD 

− (this work) 1 . 05 
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mong the GP, KPCA and KNFST approaches, only the KNFST ap- 

roach is able to directly deploy negative samples for training. In 

rder to emphasise that a method uses negative objects for train- 

ng, a negative exponent (“−”) is used in the table. We also include 

he P-SVDD, DW-SVDD, and the GL-SVDD approaches trained using 

oth negative and positive samples and denote them as P-SVDD 

−, 

W-SVDD 

−, and GL-SVDD 

−. From Table 4 , it can be observed that

n all datasets the proposed � p -SVDD approach obtains a better 

erformance as compared with its � 1 -SVDD and � 2 -SVDD variants. 

n particular, while on some datasets the � 1 -SVDD and � 2 -SVDD 

pproaches are unable to effectively utilise negative training sam- 

les, the proposed � p -SVDD method can better benefit from such 

amples to refine the description for improved performance. When 

ompared with linear sample re-weighting methods of P-SVDD 

−, 

W-SVDD 

−, and GL-SVDD 

−, the proposed approach also performs 

etter. An average ranking of different methods in this evaluation 

etting is provided in Table 5 . From Table 5 it may be seen that the

roposed � p -SVDD 

− approach utilising negative objects for training 

anks the best among other competitors. Furthermore, neither the 

 1 -SVDD 

− nor the � 2 -SVDD 

− methods which use negative train- 

ng samples do not rank the second. The second best performing 

ethod in this setting corresponds to the KNFST method [13,37] . 

.4.1. Noise Analysis 

In order to analyse the behaviours of different OCC methods in 

he presence of noise in the data we evaluate different approaches 

ubject to different levels of attribute noise [39] on six sample 
9 
atasets. The results of this experiment are visualised in Fig. 2 . 

rom the figure, it may be observed that, as expected, the perfor- 

ance of all methods deteriorate when the percentage of noise in- 

reases. However, on some datasets (D1 and D3), the performance 

f the proposed approach stays relatively more stable compared 

o other approaches. Moreover, the proposed approach performs 

omparatively better compared to other methods over the range 

f noise level. 

.4.2. Other kernel Functions 

In this section, in order to examine the utility of the proposed 

pproach using other kernel functions, we use the recently pro- 

osed Hermite orthogonal polynomial kernel function [40] and 

ompare the performances of different approaches on six example 

atasets. The results of this experiment are reported in Table 6 . 

rom the table, it can be seen that the proposed approach per- 

orms relatively better compared to other OCC methods. Moreover, 

hile on some datasets the performance of the Hermit orthogonal 

olynomial kernel is inferior compared to that of the Gaussian ker- 

el, on other datasets it provides an edge over the Gaussian kernel 

unction. It may be concluded that depending on the characteris- 

ics of the data, the Hermit kernel may provide performance ad- 

antages over the Gaussian kernel. 

.5. Running times 

In this section, we provide a comparison of different methods 

n terms of their running times for training. Since all methods in- 

luded in the comparison are kernel-based approaches, in order to 

rovide a more accurate comparison, we report the running times 

xcluding the computation time of the kernel matrix (incurring 

(n 2 ) complexity) which is common to all methods. The results 

f this experiment are reported in Table 7 . From the table, the 

ollowing observations may be made. The fastest OCC methods in 

he comparison are those of GP and KNFST closely followed by the 

PCA approach. The SVDD-based methods are typically computa- 

ionally less efficient, partly due to the complexity of the corre- 

ponding constraint optimisation problem. Among the SVDD-based 

ethods, the proposed � p -SVDD approach appears comparatively 

ess efficient which may be attributed to the relatively more com- 

lex optimisation problem to be solved for this method. 
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Fig. 2. Performances of different methods subject to noise in the dataset in terms of average AUC. 

Table 6 

Comparison of the performance of OCC approaches on different datasets using Hermit orthogonal polynomial kernel in terms of 

% AUC (mean ±std). 

Dataset KNFST − P-SVDD − DW-SVDD − GL-SVDD − � 1 -SVDD − � 2 -SVDD − � p -SVDD −

D1 76.62 ±16.34 54.05 ±18.28 92.63 ±9.12 84.92 ±13.22 66.14 ±17.83 76.87 ±17.14 99 . 65 ± 1 . 15 

D3 61.28 ±10.39 59.89 ±10.23 71.25 ±8.24 68.19 ±8.72 66.21 ±8.91 64.55 ±8.97 77 . 50 ± 6 . 44 

D6 57.34 ±9.16 61.31 ±11.49 58.76 ±8.24 86.02 ±15.70 87.97 ±14.16 41.51 ±12.34 96 . 72 ± 3 . 36 

D11 92.90 ±7.45 85.45 ±7.14 92.76 ±3.79 93.73 ±4.37 92.37 ±4 . 85 95.15 ±2.75 95 . 45 ± 2 . 21 

D13 89.74 ±6.23 67.73 ±19.47 53.32 ±5.44 70.06 ±11.95 78.45 ±9.45 81.73 ±6.03 96 . 15 ± 0 . 76 

D17 88.39 ±7.66 49.88 ±17.13 51.81 ±16.97 50.08 ±17.08 50.56 ±17.29 82.29 ±7.91 92 . 25 ± 3 . 75 

Table 7 

Comparison of average running times for different methods in seconds. 

GP KPCA KNFST P-SVDD DW-SVDD GL-SVDD � 1 -SVDD � 2 -SVDD � p -SVDD 

D1 0.0003 0.0004 0.0002 0.2016 0.1804 0.1792 0.1794 0.2469 0.3083 

D2 0.0002 0.0022 0.0003 0.2105 0.1922 0.1896 0.1966 0.2884 0.3871 

D3 0.0002 0.0012 0.0003 0.1996 0.1914 0.1794 0.1821 0.2473 0.3153 

D4 0.0003 0.0017 0.0004 0.2316 0.2436 0.2231 0.2265 0.4587 0.7738 

D5 0.0002 0.0014 0.0003 0.1978 0.1847 0.1902 0.1937 0.2874 0.4073 

D6 0.0002 0.0013 0.0003 0.1995 0.1836 0.1835 0.1858 0.2455 0.3050 

D7 0.0002 0.0012 0.0003 0.1984 0.1841 0.1846 0.1868 0.2622 0.3130 

D8 0.0003 0.0023 0.0006 0.2571 0.2232 0.2192 0.2288 0.4661 0.6209 

D9 0.0002 0.0013 0.0003 0.2052 0.1898 0.1893 0.1855 0.2663 0.3353 

D10 0.0002 0.0011 0.0002 0.1975 0.1845 0.1839 0.1829 0.2487 0.2922 

D11 0.0002 0.0034 0.0005 0.3005 0.2169 0.2152 0.2050 0.3947 0.5071 

D12 0.0002 0.0016 0.0003 0.2268 0.2153 0.2137 0.2089 0.4067 0.5947 

D13 0.0005 0.0024 0.0005 0.2543 0.2402 0.2455 0.2403 0.5062 0.8135 

D14 0.0004 0.0032 0.0007 0.2711 0.2733 0.2596 0.2613 0.5942 0.9610 

D15 0.0004 0.0030 0.0007 0.2756 0.2409 0.2465 0.2729 0.5709 0.8943 

D16 0.0003 0.0029 0.0005 0.2733 0.2706 0.2554 0.2874 0.5871 0.9243 

D17 0.0002 0.0016 0.0003 0.2096 0.1919 0.1918 0.1912 0.3433 0.4514 

D18 0.0005 0.0027 0.0004 0.2852 0.2546 0.2778 0.2923 0.5853 0.9324 

D19 0.0001 0.0008 0.0003 0.2316 0.2032 0.2042 0.2043 0.3613 0.534 

D20 0.0011 0.0062 0.0012 0.4752 0.4683 0.5180 0.4554 1.1746 1.8325 
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. Conclusion 

We presented a generalisation of the SVDD approach from 

he conventional � 1 -norm to an � p -norm ( p ≥ 1 ) risk w.r.t. slacks.

he proposed approach, in the primal space, enabled formulating 

on-linear loss functions over errors while in terms of the dual 

epresentation of the problem, it was illustrated that proposed 

pproach leads to an optimisation task where � q -norm ( q ≥ 1 ) 

enalties over the dual variable (absent in the original SVDD for- 

ulation) are introduced into the objective function, allowing the 
10 
lgorithm to tune into the inherent sparsity of the data. We 

howed that the proposed approach leads to a convex optimisation 

ask, and thus, may be optimised effectively. A theoretical analysis 

f the proposed method revealed the dependence of the generali- 

ation error bound on parameter p. In particular, it was shown that 

he training error loss and the empirical Rademacher complexity of 

he algorithm need not be minimised for p = 1 which is the case 

onsidered in the standard SVDD formulation. The results of an ex- 

erimental evaluation on several standard OCC datasets showed 

hat the proposed approach leads to improvements upon the 
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xisting � 1 - and � 2 -norm penalty functions in addition to some 

ther linear sample re-weighting SVDD variants and also performs 

ery favourably compared with other existing OCC methods. 

The proposed method, similar to the standard SVDD approach, 

oes not make any specific assumption regarding the distribution 

f the data. Nevertheless, if information regarding the distribution 

f the data is available, one may consider possible adaptations of 

he proposed approach where such information is reflected onto 

he objective function. One limitation of the proposed method is 

hat all slacks are similarly penalised via a common � p -norm. In 

his context, one possible extension might be to consider sample- 

pecific penalty functions. Other limitation of the proposed ap- 

roach relates to its inability to directly learn features from the 

ata. In this respect, a possible direction for future investigation is 

o couple the training stage of the proposed approach with that 

f a deep network for a joint learning of data representation and 

 one-class description for enhanced performance. While in this 

ork we considered the case of q ≥ 1 , other possibilities may in- 

lude the non-convex case of q < 1 to study and analyse its im-

act on the performance. Finally, a further possible direction for 

uture investigation may include analysing and designing other po- 

entially faster solutions to the convex optimisation problem of the 

roposed approach. 
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