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A B S T R A C T

Context: In the context of collaborative software development, there are many application areas of task
assignment such as assigning a developer to fix a bug, or assigning a code reviewer to a pull request. Most
task assignment techniques in the literature build and evaluate their models based on datasets collected from
real projects. The techniques invariably presume that these datasets reliably represent the ‘‘ground truth’’. In
a project dataset used to build an automated task assignment system, the recommended assignee for the task
is usually assumed to be the best assignee for that task. However, in practice, the task assignee may not be
the best possible task assignee, or even a sufficiently qualified one.
Objective: We aim to clean up the ground truth by removing the samples that are potentially problematic
or suspect with the assumption that removing such samples would reduce any systematic labeling bias in the
dataset and lead to performance improvements.
Method: We devised a debiasing method to detect potentially problematic samples in task assignment datasets.
We then evaluated the method’s impact on the performance of seven task assignment techniques by comparing
the Mean Reciprocal Rank (MRR) scores before and after debiasing. We used two different task assignment
applications for this purpose: Code Reviewer Recommendation (CRR) and Bug Assignment (BA).
Results: In the CRR application, we achieved an average MRR improvement of 18.17% for the three
learning-based techniques tested on two datasets. No significant improvements were observed for the two
optimization-based techniques tested on the same datasets. In the BA application, we achieved a similar average
MRR improvement of 18.40% for the two learning-based techniques tested on four different datasets.
Conclusion: Debiasing the ground truth data by removing suspect samples can help improve the performance
of learning-based techniques in software task assignment applications.
. Introduction

Task assignment in software engineering is concerned with assign-
ng a developer(s) to a development-related task such that the assigned
erson is capable of completing the task effectively, expediently, and
ith acceptable quality [1]. Several studies in the literature proposed

echniques to automate assignments tasks [2–5]. The techniques de-
elop models based on historical data, which need to be reliable and
ccurate enough for the models to perform optimally in practice. In
revious work, Tuzun et al. [6] investigated problems that can plague
istorical data in this and other contexts in software engineering, and
roposed strategies that can be applied to improve both data quality
nd model performance. These problems occur when the proposed
echniques blindly rely on the data as absolute ground truth: however
istorical data that involve human decisions come with biases that are
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baked into those decisions. Two instances of task assignment discussed
in Tuzun et al. are CRR and BA. This paper presents two applications,
i.e., CRR and BA, that demonstrate how cleaning up the ground truth
to eliminate suboptimal decisions from the historical data can improve
the performance of models that rely on the historical data.

The code review process is an important step in the software devel-
opment lifecycle. Effective code reviews increase internal quality and
reduce defect rates [7]. For effective code reviews, reviewers should
be selected carefully. According to Google’s best practices for code
reviews [8], ‘‘the best reviewer is the person who will be able to give
you the most thorough and correct review for the piece of code you are
writing’’. Several CRR techniques exist in the literature [9–17]. These
CRR techniques use different strategies, but they invariably either build
or evaluate their models based on datasets gathered from industrial or
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open-source projects. Hence they rely on the datasets accurately cap-
turing the ground truth regarding past reviewer selections. The models
assume that a code reviewer assigned to a review task, often determined
in a pull request (PR), in a dataset is the best possible reviewer for the
ask. However, in practice, the selected code reviewer may not be the
ost qualified, or even sufficiently qualified to review the submitted
R [18]. In several cases, reviewer assignments can be based on non-
echnical factors, which may invalidate the central assumption that
he models are built on [18]. This situation was described in a study
n code reviewer practices at Microsoft [19], where reviewers are
ssigned to PRs according to their availability and social relationship
ith the person who makes the reviewer assignments. According to
ogan et al. [18], availability is an important factor for reviewer
ssignments and is frequently substituted for technical or competency
actors. Consequently, recommendation labels in datasets that originate
rom real practice may be suboptimal, and can negatively affect the
ccuracy and reliability of the CRR techniques that rely on them.

BA is another important task in managing software projects. Many
pen-source projects contain open bug repositories, where both de-
elopers and users report the problems they encounter. Additionally,
hey can recommend changes and enhancements to improve the overall
uality of the software [3]. As in CRR, for each reported bug, often
n assigner selects an appropriate developer who has the expertise to
erform the fix. The assignment can be manual or automated. In auto-
ated BA, the assignment is decided by heuristics or trained models,
sing and combining text categorization [20], machine learning [3,21],
rtifact/dependency analysis [22,23]. Regardless of the technique used,
istorical bug assignment data that originate from proprietary or open-
ource projects involving human decision makers play an important
ole. Thus, as in the case of CRR, the data is susceptible to biases
esulting in suboptimal assignments where an assigned developer might
ot have been the most qualified, or even sufficiently qualified, for the
ask.

In machine learning, the kind of labeling error that exists in CRR
nd BA datasets is generally referred to as systematic labeling bias.
upervised learning techniques require labels in the training samples.
hese labels indicate real/actual classes of interest in past data so that
odels can be built to predict the classes of new data. For instance,

n order to distinguish between apples and oranges, an actual label
i.e., apple or orange) for each training sample is required. Ground
ruth refers to these labels indicating the actual class of the training
amples. In more complex tasks of pattern recognition, such as the
lassification of code review tasks according to who should review
hem, 100% ‘‘correct’’ labels may not be present in the training samples
ue to several factors, including subjective ones, that need to be con-
idered. The notion of a ‘‘correct’’ label is not well-defined in such a
ontext. Although the labels are not perfect, they are still considered
s the ground truth. When the amount of problematic labels in the
round truth is relatively small or inconsistencies in the class labels
re negligible, associated samples can be treated as normal noise. But
n some cases, the ground truth may include more pervasive problems
ue to basic/naïve assumptions in the labeling process [24] or intrinsic
roperties of the observed data [25] that can prevent the models from
onverging, learning generalizable patterns, or, as in the CRR and BA
ases, being as effective in real practice as they could be. These cases
re said to have systematic labeling bias. To the best of our knowledge,
utomatic cleaning ground truth data in the software task assignment
roblem has not been investigated by any other study in the literature.

With the goal of preventing labeling problems of the kind described
bove for task assignment automation in software engineering, we
ormulate two research questions:

RQ1: How can we eliminate systematic labeling bias in task assignment
round truth data?

RQ2: How does systematic labeling bias elimination in the ground truth
ata affect the performance of task assignment techniques that rely on the
2

ata?
For RQ1, we explore possible solutions and introduce a new ap-
proach to detect and eliminate potentially ‘‘incorrect’’ assignee labels in
CRR and BA datasets. For RQ2, we measure the effects of our proposed
approach by comparing before and after accuracy rates of five CRR
techniques and two BA techniques. The five CRR techniques are Naïve
Bayes, k Nearest Neighbor (k-NN), Decision Tree, RSTrace [26] and
Profile based [27]. The two BA techniques are deep-learning based bug
triage — Deep Triage [28] and Convolutional Neural Network (CNN)
based word representation — CNN Triage [29].

Section 2 provides a summary of relevant previous work on CRR
approaches, BA approaches, cognitive biases in software engineering,
and ground truth problems in software engineering. Section 3 defines
success criteria for CRR and BA for correct assignments. Furthermore,
Section 3 introduces our debiasing (data cleaning) approach. Section 4
describes our experiments underlying the two applications, introducing
first the datasets, preprocessing steps, and experimental setups, and
then presenting the results. Section 5 answers the research questions
and discusses the limitations of our work. Finally, Section 6 summarizes
the contributions and discusses future work.

2. Background and related work

In the following, we provide a summary of CRR and BA techniques,
related work on cognitive biases and ground truth problems in software
engineering.

2.1. Code reviewer recommendation techniques

The CRR techniques discussed in the literature fall under mainly
two categories: optimization-based approaches and learning-based ap-
proaches. We mention representative works below to illustrate the
diversity of the approaches. For a more detailed overview of CRR
techniques, please refer to Cetin et al. [30].

Optimization-based approaches. Balachandran [9] proposed a heuris-
tic that analyzes the change history to find suitable reviewers. They
reach 60%–92% recommendation accuracy, which is better than a
comparable CRR approach based on file change history. Lee et al. [10]
proposed a graph-based technique to find reviewers in open-source
projects. Their method achieves an average recall of 0.84 for Top-5
predictions and a recall of 0.94 for Top-10 predictions. A technique
based on analyzing file-path similarity was developed by Thongta-
nunam et al. [11]: later Xia et al. [12] extended this technique with text
mining to leverage additional information in recommendations. Ouni
et al. [13] proposed a search-based genetic algorithm to identify most
appropriate peer reviewers for their code changes. The authors eval-
uate their approach on three different open-source projects (e.g., Qt,
OpenStack, and Android). Their experiments show that their genetic
algorithm recommends code reviewers with up to 59% of precision and
74% of recall. Zanjani et al. [14] presented a technique focusing on
previous review quality of candidate reviewers. They argue that provid-
ing specific information (e.g., quantification of review comments and
their recency) significantly improves CRR approaches. Sulun et al. [26]
proposed a graph-based technique using traceability relations between
PRs, source code files, and bugs to recommend code reviewers for
a given PR. Rebai et al. [31] proposed applying a multi-objective
search algorithm, NSGA-II, to obtain a CRR technique that finds a
balance between the objectives of expertise, availability and history of
collaborations during recommendation.

Learning-based approaches. Jiang et al. [16] proposed a technique
that builds a model with Support Vector Machines (SVM) to make
reviewer recommendations in open-source projects. The authors eval-
uate their technique on 18,651 pull requests of five popular projects
on GitHub. They indicate that their technique achieves an accuracy
between 72.9% and 93.5% for Top-3 recommendation. Xia et al. [17]
presented a hybrid approach in which they combined latent-factor

models and neighborhood methods. Their results demonstrate that the
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proposed approach performs better than comparable methods for all
Top-k recommendations. Strand et al. [32] developed a CRR technique
that considers workload of possible reviewers and attempts to suggest
a reviewer such that the review load is balanced.

All the CRR techniques described above evaluate their models based
on datasets collected from real projects, where a reviewer assigned to
a code review task is assumed to be the right, or best, reviewer for
the job. However in practice, this assumption is often violated, making
the ground truth suspect. Some authors [13,14,17,33] acknowledge
this problem explicitly as a limitation. For instance, Ouni et al. [13]
discuss that reviewers who are assigned to a PR may not do the job
well for various reasons (such as workload or availability), or the
review may end up being poor quality because the assignment was
mainly determined by social factors rather than competence. Lipcak
and Rossi [33] state that evaluating CRR techniques with Top-k-style
criteria may not be accurate as it is not guaranteed that the actual
reviewers in the test data were the best candidates (or even sufficiently
qualified) for the tasks for which they were selected.

2.2. Bug assignment techniques

BA entails assigning a reported bug to an appropriate developer
capable of fixing it. This can be done by a human manually or with
the help of an automated technique. Similar to CRR approaches, BA
techniques can be optimization-based or learning-based. We mention
some representative works in each category below.

Optimization-based approaches: Zhang et al. [34] proposed a com-
ination of information retrieval and machine learning techniques to
dentify historical bug reports similar to a new bug. They utilized the
EP algorithm and k-NN classification for searching similar bugs and
sed extracted features from these bugs to develop severity prediction
nd bug assignee recommendation heuristics. They evaluated their
pproach on five open-source projects, including GNU Compiler Collec-
ion (GCC), OpenOffice, Eclipse, Netbeans, and Mozilla, and found that
heir approach can outperform other BA techniques such as DRETOM,
REX, and DevRec [34].

Xia et al. [35] introduced a specialized optimization-based topic
odeling technique named multi-feature topic model (MTM) to map

ug reports to specific topics and an incremental learning method
amed TopicMiner to find an appropriate developer based on the devel-
per’s affinity to the identified topics of the new bug. They evaluated
heir approach on five projects: GCC, OpenOffice, Mozilla, Netbeans,
nd Eclipse. Their experiments show that TopicMiner can achieve Top-
and Top-5 prediction accuracies within the ranges 48%–68% and

6%–90%, respectively.
Sun et al. [22] presented a novel bug fixer recommendation method

amed BugFixer, which constructs a Developer-Component-Bug (DCB)
etwork to model the relationships between the developers, source
ode components, and bug reports. Their experiments show that Bug-
ixer can outperform competing methods for large projects and achieve
omparable performance for small projects. Naguib et al. [23] intro-
uced a BA recommendation heuristic that profiles the developers
ccording to their previous activities in the bug tracking repository.
ach profile is used to identify the most suitable assignee for a par-
icular bug according to their roles, expertise, and involvements in the
roject. Their approach was evaluated on three different projects. Their
xperiments show that their approach can achieve an average hit ratio
f 88%.
Learning-based approaches: Anvik et al. [3] proposed a semi-

automated approach that utilizes SVM to recommend an appropriate
developer to address a given bug. They evaluated their approach on
Eclipse and Firefox projects and achieved 57% and 64% precision
levels, respectively. Murphy et al. [20] presented a supervised Bayesian
learning approach to determine the appropriate developer for a bug
based on features extracted from the bug description. The authors
3

evaluated their approach on the Eclipse dataset and achieved 30%
accuracy. Anvik et al. [23] introduced a recommender system for BA
with two different deep learning classifiers. The authors evaluated their
Convolutional and Recurrent Neural Network classifiers on Netbeans,
Eclipse, and Mozilla projects. Jonsson et al. [21] studied an ensemble
of machine learning algorithms, including Naïve Bayes, SVM, and Deci-
sion Trees, to automate the BA process. They evaluated their classifiers
on five industrial projects. Lee et al. [28] built an automatic bug
assigner with CNN and evaluated their model on both open-source and
industrial projects. Their experiments showed that their CNN approach
could achieve 61% accuracy on a dataset where human assigners
achieved 41% accuracy. Mani et al. [36] suggested an Attention-
Based Deep Bidirectional Recurrent Neural Network (DBRNN-A) with a
softmax classifier. They hypothesized that including the bug description
as an input in addition to the bug title would increase performance.
The authors evaluated their models on three different open-source
projects. Their model outperformed others that adopted the bag-of-
words approach in terms of Top-10 average accuracy. Zaidi et al. [29]
presented a CNN where the bug descriptions were embedded using
three different word embedding techniques. Bhattacharya et al. [37]
suggested a set of machine learning techniques and a probabilistic,
graph-based model with which they achieved up to 86.09% prediction
accuracy.

As with the CRR techniques, the BA techniques mentioned above
evaluate their models based on datasets collected from real projects,
where past assignment decisions were assumed to be optimal. Again,
as in the case of CRR, in practice, suboptimal bug assignments due
to convenience or other cognitive biases can pollute the ground truth,
limiting the performance of the models.

Other researchers have proposed automated techniques for cleaning
ground truth data for software engineering problems outside of task
assignment. Yang et al. [38] proposed an automated dataset purifica-
tion technique to filter code changes irrelevant to a bug. They argued
that, when training automated program repair techniques, relying on
manual patches as the ground truth could impact the assessment of test-
suite-adequate patches due to the likelihood of manual patches having
been mixed with other code changes irrelevant to the bug. Therefore,
they suggested an automated approach to isolate the segments of the
code where the actual bug was fixed from the irrelevant code segments
included in the patch. Their work is similar to our approach in that
it also treats human-produced data as being prone to noise. However,
the context in which the authors apply their approach in filtering
human-produced patches differs from ours: cleaning ground truth data
in software task assignment. Moreover, they deduce the relevancy of
a line of code to the given bug through delta debugging. In contrast,
we identify an objective success measure customized to the type of task
assignment.

2.3. Cognitive biases in software engineering

A cognitive bias is a type of systematic error in decision making
that causes suboptimal outcomes. The error occurs due to established
beliefs and misguided intuition. Our past work [39] on improving the
performance of CRR techniques addresses systematic labeling errors
that in great part stem from such biases.

Cognitive biases are pervasive in software engineering. Mohanani
et al. [40] provided many examples of cognitive biases in software
engineering in their literature review and advocated their mitigation
as central to improving the quality of the decision making. Ralph
[41] attributed the persistence of high software project failure rates
despite important advances in software technologies and processes to
cognitive biases. Stacy and Macmillian [42] stated that cognitive biases
have an adverse effect on software developers’ thought processes. They
advised empirical investigation rather than relying on intuition, and
seeking disconfirmatory information to reduce cognitive biases. Smith
and Bahill [43] similarly argued that cognitive biases disturb rational

decision making in systems engineering through a mechanism called
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attribute substitution: the substitution of a convenience factor for an
objectively important factor in a decision. They suggested that raising
the awareness of this mechanism among engineers could help alleviate
its adverse effects in engineering decisions. Attribute substitution is
particularly relevant to our work since it is often a primary source of
failed labels in CRR and BA datasets caused by past task assignments,
where convenience and social factors are substituted for factors that are
directly related to the suitability of an assignee for the specific task.

2.4. Ground truth problems in software engineering

Outside BA and CRR [18], ground truth problems exist in data-
analytics solutions that support other common prediction and recom-
mendation tasks in software engineering.

Bird et al. [44] studied bug-fix datasets and found strong evidence of
systematic bias due to mislabeling of bug fixes in version histories. The
performance of a defect prediction model that they tested was adversely
affected when the model was built from biased data.

Nguyen et al. [45] examined tagging and linkage biases in IBM
Jazz software. Tagging bias results from treating all logged issue as
bugs (some of which can represent other coding tasks, decisions, or
enhancements). A linkage bias occurs when there is no traceability
connection between a bug-fix PR and the corresponding bug report. The
authors found linkage and tagging biases even in datasets previously
thought to be near accurate.

Herzig et al. [46] analyzed tangled changes in defect prediction. A
tangled change is caused by bundling multiple unrelated changes in a
single commit. Tangled changes introduce noise to the data, where as
much as 17% of all source files could be incorrectly associated with
bug reports due to such tangling. The authors state this can negatively
impact defect prediction models.

Ahluwalia et al. [47] investigated biases in datasets that were used
to build defect prediction models. The authors stated that the bugs were
usually discovered after several releases, and therefore may have still
been dormant in the snapshot taken to build the models. According
to the study, dormant bugs exist in up to 20% of existing releases in
a dataset, distorting the ground truth by causing defective code to be
mislabeled as defect-free. The authors analyzed 282 releases from six
open source projects and demonstrated the existence of ground truth
problem in bug datasets, however they did not propose a solution for
debiasing the data. Chen et al. [48] also analyzed dormant bugs, using
the Apache codebase. They observed a higher dormant bug rate of 33%
than that reported by Ahluwalia et al. Both studies demonstrate that the
existence of dormant bugs could potentially affect the reliability of the
ground truth.

In our earlier work [6], we compiled a list of typical cases that illus-
trate the pervasiveness of ground truth problems in software engineer-
ing and provided a prioritization and remediation process. We listed
six different software engineering applications (CRR, reopened bug
prediction, sentiment analysis, defect prediction, rework estimation,
and BA) that potentially suffer from ground truth problems.

In this paper, we apply the ground truth improvement process and
some of the improvement strategies described in Tuzun et al. [6] to
both CRR and BA tasks. Specifically, we extend our previous work on
the CRR application [39] to generalize our approach by adding BA as an
additional application. In the CRR application, the labeling was done in
real-time by parties directly involved with reviewer assignments. After
recognizing that the original labelers could have been prone to cogni-
tive biases, we looked for more objective, longer-term success factors
in the data that confirm or refute the labeling decisions, and devised
a heuristic to flag and remove the samples that violated the identified
success factor. Cleaning up the ground truth data by removing suspect
samples improved the performance of the evaluated CRR techniques.
Here we describe the approach used in the CRR application, generalize
it to task assignment with an additional application concerning the BA
4

case.
3. Strategies for fixing the ground truth in task assignment

Our goal is to eliminate systematic labeling bias in historical data
about task assignment. To be able to do this, we need a way to identify
whether a task assignment decision can be considered as successful
after the fact: that is, whether the labels of the assignment sample, the
assignees, turned out to be the right choices for the task represented
by that sample. Thus deciding label correctness requires a success
measure. If the success measure is qualitative or subjective, we can only
use manual methods to determine it. For example, for CRR, additional
expert checks may be put in place to flag low-quality reviews when
a PR is closed. The flagged assignments can then be excluded from
the data. The same can also be done post hoc: the reviewer assignment
data can be cleaned by an expert after the fact using similar quality
checks. Similar manual corrections can be applied in BA. However,
these expert-reliant approaches would not scale up well because of
their cost, impracticality, or both. Besides, manual expert checks are
subjective and can still be error-prone, and we must still assume the
expert performing the checks and verifying the labels is impartial: if the
expert is biased, we create a circular situation in which we attempt to
address the bias by a method that may re-introduce the same or another
kind of bias during the correction process.

In the following subsections, we focus on objective, automatically
identifiable task assignment success measures for the two applications
we are considering, and propose a heuristic to eliminate labeling bias
based on these measures.

3.1. Characterization of a successful assignment task

In CRR case, when PRs are associated with coding tasks or defects
in an issue or task tracking system, an objective success measure can
be defined: if the tracked element is not reopened again, the PR is
deemed successful. The PR process often involves multiple rounds of
reviewers commenting on the scope of the PR, possibly resulting in
several commits to address any outstanding concerns, and concludes
with a merge into the main branch to close the PR out. The code
review task associated with the PR itself is successful if the PR is
successful. Similarly, the reviewers performing the code review for the
PR themselves can be deemed successful if the PR they helped close out
is successful.

A similar success measure can be defined for a bug fix. Identifying
the appropriate developer to fix a bug is a crucial part of the software
development lifecycle. The assigned developer is responsible for pro-
viding a fix for the reported problem. A successful bug assignee can be
defined as a developer who provides a proper fix to the bug that has
been assigned to them. We can first classify a bug fix as successful if the
bug is not reopened after resolving the bug. If the bug fix is successful,
we can conclude that the developer assigned to that bug was a successful
bug assignee.

While the above success measures are objective, they still have a
few caveats. First, it cannot be immediately determined whether a
task assignment is successful: we can only decide the success status in
retrospect, after sufficient time has elapsed following the closing of the
PR or bug report. Second, they rely on the assumption that reopening
the underlying report or task after the PR or report has been closed can
only be due to the original action (or the person performing that action)
not having been successful, and not due to, for example, something
outside the scope of the original task having changed, causing a ripple
effect. A typical situation that can cause such a ripple effect is a future
commit that refactors a dependency associated with a development
task. Third caveat is that the objective success measure assumes perfect
bug identification: a new bug is created only when the origin of a newly
discovered issue cannot reliably be traced to an existing bug report
that can be reopened (no duplicate entries in the bug tracking system).
We will accept these caveats, and see whether, even in their presence,
the approach that we propose can achieve reasonable improvements in
the performance of existing CRR and BA techniques with the adopted
success measures.
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Fig. 1. The lifecycle of a bug and where it interacts with the BA and PR process.

3.2. The debiasing method

The objective success measures defined in the previous section
provides us with a straightforward way to identify incorrect labels
in CRR and BA datasets and remove them. For CRR, the success
measure requires linkages between PRs and tasks logged in a tracking
system. Most available datasets that have the required linkage focus
on bug-related code review performed in the context of a PR. The
CRR techniques on which we have tested our approach do the same.
So in the CRR case, we limit ourselves to code reviews performed
in the context of PRs associated with bugs. For BA, no such linkage
is necessary since the success measure is directly associated with the
status of a bug report.

Fig. 1 shows the typical flow of a bug as it is tracked in a bug
tracking system (e.g., JIRA). The circles (Reported, Need More Info,
Open, In Progress, Closed) represent the different states. BA happens
in an earlier stage of a bug’s lifecycle. After a bug is identified, the
reporter should go through previous bug reports to see whether the
bug encountered is a new bug or it already existed and was previously
resolved in the bug tracking system. If no previous bug report matches
the identified bug, a new bug report is created in the system. At this
stage, the bug is in the Reported state. The BA process takes place in
between the Reported and Open state, as the bug is considered Open
when a developer is assigned to fix it. The PR process interjects this
flow at the transition from the In Progress to the Closed state. After a
developer fixes a bug, before the bug is closed, the developer creates a
PR and one or more team members are invited to review the code. A
PR conversation takes place discussing the fixes, which may result in
a number of additional commits if the fixes were deemed inadequate.
When the reviewers finally approve the fix, the developer merges the
PR to the master and the bug’s status is changed to Closed.

After merging, the patch is eventually deployed. However further
testing, field testing by end users, or ongoing development work may
at one point reveal that the bug had not been fixed as intended, in
which case the bug may be reopened by changing its status back from
Closed to Open. When this happens, barring other rare reasons that
may cause a previously identified bug to reappear exactly in the same
context, we can reclassify the original PR and bug report as having been
unsuccessful: the assignee for a task assignment become a candidate for
a biased, mislabeled sample, and thus for removal from the dataset.

The debiasing approach is based on the above reasoning, and con-
sists of the removal of all potentially unsuccessful PRs for the CRR case
and unsuccessful bug reports for the BA case. Given a CRR dataset
consisting of a set of PRs, reviewer assignments for each PR, a bug
associated with each PR, and the status history of each bug in the issue
tracking system, we check, for each PR, whether the associated bug was
5

reopened after it was closed following the merge. Similarly, given a BA
dataset with historical bug reports, bug assignees for each report, and
the status history of each bug, we check, for each closed bug report,
whether the report was reopened at a later time. If in both cases, the
given PR or bug report was reopened, we consider them to be unsuc-
cessful post hoc and remove the associated samples from the data along
with the task assignee. Next, we test through experiments whether this
debiasing approach improves the performance of existing automated
CRR and BA techniques that rely on historical task assignments.

4. Experiments and results

4.1. Dataset descriptions and preprocessing

4.1.1. The CRR dataset
For the CRR application, we evaluate the debiasing method on

two different datasets. These datasets belong to projects from two
sources: Qt,1 a company that develops cross-platform software, and
from Apache.2 The projects are Qt Creator and HIVE, respectively. They
are chosen because they are both open-source, have full PR and code
review history, and the PR information is linked to the bug tracking
information, as required.

For Qt Creator, we extracted the PR history3 and bug history4 until
December 2019. For HIVE, we used the version provided by SEOSS
33 [49], a dataset repository that includes data retrieved from several
open-source software projects. In the data gathering stage, we used the
Perceval tool from GrimoireLab [50], which allows accessing datasets
from both GitHub and Jira. Most of the PRs in the two datasets have
Jira bug IDs (in HIVE 96.34%, and in Qt-Creator 73.18%). This allowed
us tracing PRs to Jira bug reports.

Before we apply the debiasing method on these datasets, we per-
formed three preprocessing steps. As a first step, we removed the PRs
that do not have any association with a Jira bug. In both datasets, some
seemingly distinct reviewer labels correspond to the same reviewer. For
instance, two different reviewer labels ‘‘jkobus’’ and ‘‘Jarek Kobus’’ may
refer to the same reviewer. In the second step of the preprocessing,
duplicate reviewer labels were identified and merged automatically
if they corresponded to the same email address. In the third step,
we checked whether a PR’s associated bug in the Jira database was
reopened after the PR was merged. If so, we tagged these PRs as
unsuccessful.

Table 1 shows the total number PRs, unsuccessful PRs, and the
ratio of unsuccessful PRs to successful PRs. The total number of PRs
in Qt Creator after preprocessing was 5927.406 of these PRs were
unsuccessful, corresponding to a failure/success ratio of 7%. The HIVE
dataset had 3621 PRs after preprocessing with 196 unsuccessful ones,
yielding a failure/success ratio of 5%. There were 152 distinct code
reviewers in the Qt Creator dataset and 108 distinct code reviewers in
the HIVE dataset.

4.1.2. The BA dataset
For the BA application, we used four different datasets. Three of

the datasets, Hadoop,5 Netbeans6 and Kafka,7 are Apache2 projects.
The last dataset, Evergreen,8 is a project from MongoDB,9 a document-
oriented database system. These projects are chosen because they are
open-source, and provide full bug status history and bug assignee

1 https://doc.qt.io/qt-5/index.html
2 https://www.apache.org
3 https://code.qt.io/cgit/playground/qt-creator/.
4 https://bugreports.qt.io/projects/QTCREATORBUG/issues/.
5 http://hadoop.apache.org.
6 https://netbeans.apache.org.
7 https://kafka.apache.org.
8 https://github.com/evergreen-ci/evergreen.
9 https://evergreen.mongodb.com/waterfall/evergreen.

https://doc.qt.io/qt-5/index.html
https://www.apache.org
https://code.qt.io/cgit/playground/qt-creator/
https://bugreports.qt.io/projects/QTCREATORBUG/issues/
http://hadoop.apache.org
https://netbeans.apache.org
https://kafka.apache.org
https://github.com/evergreen-ci/evergreen
https://evergreen.mongodb.com/waterfall/evergreen
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Table 1
PR and reviewer statistics of the datasets.

Dataset # Total # Unsuccessful U-to-S #
PRs PRs Ratio Reviewers

Qt Creator 5927 406 7% 152
HIVE 3621 196 5% 108

Table 2
BA statistics of the datasets.

Dataset # Total # Valid # Unsuccessful U-to-S #
Bugs Bugs BAs Ratio Assignees

Kafka 11 918 6457 270 4.2% 573
Hadoop 15 575 5635 289 5.1% 476
Netbeans 5705 1252 32 2.6% 141
Evergreen 10 545 6438 229 3.6% 62

information. The bug history of Hadoop, Netbeans, and Kafka were
extracted from Jira until August 2021 using the Perceval [50] tool. For
Evergreen, we used the version provided by Qamar et al. [51].

Before applying the debiasing method on these datasets, we per-
formed certain preprocessing steps. First, we checked whether each
assignee label was unique. We did not find any bug assignee labels that
corresponded to the same developer. The second step was separating
out the bugs that did not have an assignee. We expected any bug that
had been in the Open state at one point in their lifecycle to have had an
assignee, but we still detected bugs that had been opened at one point
and did not have an assignee. After detecting these bugs, we separated
them from the bugs that had a valid assignee. In the third step, we
removed all bugs that were not closed at the time of data retrieval:
the BA techniques we used to evaluate our debiasing approach train
their classifiers on closed bugs. In our final preprocessing step, we
identified all bugs that were reopened at one point, and tagged them
as unsuccessful.

Table 2 shows the total number of bugs, the number of valid
ugs, the number of unsuccessful BAs, the ratio of unsuccessful BAs to
uccessful BAs, and the number of assignees in each dataset. Valid bugs
re closed bugs with valid assignee labels. The number of unsuccessful
As include only valid bug reports. For example, out of the 15,575
ugs in the Hadoop dataset, 5635 were closed and had a valid assignee
abel. Out the remaining 9940 bugs, 6074 were opened with assignee
abels, 3235 were opened without assignee labels, and 631 were closed
ithout assignee labels. Out of the 5635 valid bug reports, 289 were

agged as unsuccessful BAs, corresponding to a failure/success ratio of
.1%. There were 476 distinct bug assignees in the dataset.

.2. Evaluation setup

.2.1. CRR evaluation
To evaluate the reliability and usefulness of the debiasing method,

e selected five different CRR techniques from the literature, namely,
rofile-based [27], RSTrace [15], Naïve Bayes, k-NN (5-NN), and De-
ision Tree. Initially, we wanted to apply the method to all CRR
echniques discussed under Section 2. However, only a few of the CRR
echniques [15,27] provide source code or pseudocode. Therefore, we
elected those that we could actually run or re-implement. We had to
mplement the profile-based technique ourselves since the source code
as not available. For RSTrace, we used the available implementation

hared in the original paper [15]. For Naïve-Bayes, 5-NN, and Deci-
ion Tree, we used the implementations provided by the Scikit-learn
ibrary [52].

For the three machine learning techniques (Naïve Bayes, k-NN, and
ecision Tree), we used the file-paths given in the PRs as features.
o convert these file-paths to numeric values for classification, we
pplied two vectorizers (CountVectorizer and TfidfVectorizer) from the
cikit-learn library. Hyperparameters of the machine-learning-based
6

Table 3
List of hyperparameter values for the learning-based CRR models.

Model Hyperparameter Values

Naïve-Bayes Distribution type {multinomial, Gaussian, Bernoulli}

Distance type {Manhattan, Euclidean}
5-NN NN search algo. {ball tree, KD tree, brute-force search}

Weight function {uniform, inverse distance}

Split strategy {Gini impurity, entropy}
Decision Tree Measure of split quality {best, random}

Maximum depth {1, 2,… , 10}

Table 4
List of the hyperparameters for the learning-based BA models.

Model Hyperparameter Values

Learning rate {0.005, 0.01}
CNN Triage Number of filters {32, 64}

Test size {0.10, 0.20, 0.25}
Evaluation Step {13, 32}

Batch size {16, 32, 64, 128}
Deep Triage Learning rate {1e−3, 1e−4, 1e−5}

Epoch {5, 10, 100}

models were optimized using values from commonly accepted ranges
and according to the characteristics of our datasets. These values are
given in Table 3.

4.2.2. BA evaluation
We selected two different BA techniques, Deep Triage [36] and

CNN Triage [29], from the literature to evaluate the debiasing method.
The selected techniques are both deep-learning-based approaches. We
wanted to evaluate our debiasing method on a variety of different
techniques listed under Section 2. However, the source code for most
of these techniques were not made available to the public.

Deep Triage [36] takes bug title and description as input and maps
this information to individual bug assignees by using an attention-
based, DBRNN-A with Word2Vec word embedding [53]. The classifier
is trained with a dataset consisting of closed bugs with valid assignee
labels. The technique also needs to learn bug representations from the
bug summary and description of all samples. The model architecture
involves nine layers. Input layer is followed by Embedding, Long-Short
Term Memory (LSTM), Soft Attention, Batch Normalization, Merge,
Dense, Dropout and finally another Dense layer.

CNN Triage [29] experiments with different word embedding tech-
niques(Word2Vec, GloVe, ELMo) combined with a Convolutional Neu-
ral Network (CNN) to perform a bug assignment. In our experiments,
we have used the Word2Vec model as the word embedding tech-
nique [53]. The classifier is trained with closed bugs with valid assignee
labels. The bug description is fed to the neural network to recommend
the appropriate bug assignee. After the text input is vectorized, it is
passed through Convolutional and Pooling layers where the number of
filters is taken as a hyperparameter. Finally, the data is passed through
a Softmax Regression layer which gives the assignment probability of
all developers for the input bug.

Before evaluating the debiasing method with these techniques, we
ensured that the techniques were working correctly by training the
models with their original datasets and replicating the original authors’
results. We then tried the techniques on our datasets with different
hyperparameter values to choose the best combination for each dataset.
To perform the comparison, we subsequently retrained the models with
the same chosen hyperparameter values using the debiased versions
of each dataset to ensure the comparison is fair. Table 4 shows the
hyperparameters and their tried values for each technique and dataset.
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4.3. Performance measures

We assessed the accuracy of the CRR and BA techniques selected by
two widely used measures: Top-k accuracy (namely, Top-1, Top-3 and
Top-5) [54] and Mean Reciprocal Rank (MRR) [55]. A task assignment
technique returns an ordered list of assignees for an input task, however
only one of the returned assignees is the right one. Given a set of input
tasks, Top-k accuracy is the probability that the right assignee occurs
among the top k assignees returned for those input tasks. Reciprocal
Rank is the inverse of the position of the right assignee for an input
task. MRR is the average of these inverse positions over all input tasks.

We computed the relative improvements in the above measures
after debiasing to demonstrate the effectiveness of our approach as
follows:
𝑆after − 𝑆before

𝑆before
, (1)

here, 𝑆before is the performance of a task assignment technique before
e applied debiasing and 𝑆after is the performance after we applied
ebiasing using the same dataset.

.4. Balancing

We balanced the samples in the CRR datasets with respect to
uccessful and unsuccessful task assignments using under-sampling.
owever we did not do this with the samples in the BA datasets. The
A techniques used to evaluate the debiasing method are based on deep
eural network (DNN) architectures. DNNs are more sensitive to false
abels than other machine learning techniques, with a tendency to eas-
ly memorize noisy samples [56]: they suffer from excessive over-fitting
hen the models are trained with false labels. The over-fitting problem,
hen present, is often resistant to regularization techniques [56]. When
easures are taken to remove false labels before training, as we do
ere with the debiasing method, their performance can be significantly
mproved even when the ratio of the false labels removed in the original
ataset is low. In addition, DNN-based techniques are less tolerant to
nder-sampling than non-DNN-based techniques because they require
large number of samples to work. Therefore we decided not to

pply balancing (through under-sampling) to the BA datasets, which
re trained with DNN-based techniques.

The selected CRR techniques were trained and tested with the HIVE
nd Qt Creator datasets. Both datasets had a quite low unsuccessful PR
ate (5% to 7%) according to our success criterion. The literature [57]
uggests unsuccessful PRs are significantly more pervasive than they
ere in our datasets. The actual ratios of re-instated tasks in some
opular open-source projects are much higher than the ratios measured
n the CRR datasets. For example, in Eclipse, the ratio was found to
e 16.1% and in OpenOffice as high as 26.31%. A lower than actual
atio often stems from the common practice of creating a new task
ssignment out of convenience because searching for existing reports,
dentifying the one that matches the new task, and reopening the
xisting task may require effort. Developers may not remember or know
bout the original task due to turnover or time lapse, and inadvertently
istake a recurring task for a brand new one.

The problem with a low unsuccessful PR rate in the dataset due
o missed reopened tasks—bug reports in our case—is that debiasing
hrough the removal of the corresponding data points would yield
nly marginal improvements in performance with non-DNN-based tech-
iques. We are interested in assessing how much improvement can
e achieved by debiasing if the training dataset’s ratio was realistic,
loser to the actual ratios observed in real practice. Therefore, we
nder-sampled the data [58] by randomly removing successful PRs
ntil the unsuccessful PR ratio was in the same ballpark range as the
ates reported in the literature: starting from the first successful PR,
e randomly removed three out of every four successful PRs. This
ffectively quadrupled the unsuccessful PR ratios, bringing them closer
7

o the more commonly observed values. f
.5. The evaluation process

Fig. 2 illustrates the evaluation process. The box Original (Og)
epresents the preprocessed dataset containing successful (S) and un-
uccessful (U) PRs. Debiasing removes unsuccessful PRs, resulting in a
ebiased (Db) dataset. At the first step, a task assignment technique

s trained with both Og and Db datasets, resulting in two models.
he performance of the models is compared to assess the effect of
ebiasing. We expect the performance of the model trained with the de-
iased dataset to be better since debiasing attempts to remove samples
uspected of having bad labels.

When the original datasets contain too few samples that exhibit
ossible labeling bias and the techniques used are tolerant of false
abels, we expect the improvement to be marginal, as explained in the
revious section. In these situations, to see how much improvement
an be achieved when systematic labeling bias is as pervasive as it
s reported in the literature, we balanced the PRs to bring the ratio
f the unsuccessful PRs to realistic levels. This is the Balanced (Ba)
ataset at the top left. The Ba dataset is then debiased by the same
rocedure as before, resulting in the Balanced-Debiased (DbBa) dataset.
he results are again compared for the evaluated task assignment
echnique. Our expectation is the improvement in performance in this
atter comparison to be superior to the one without balancing.

Finally, an extra validation step is possible to check any observed
elative improvement in performance is not due to a random reduction
n the sample size, but due to the targeted removal of only badly
abeled (unsuccessful) PRs: for this to be true, random removal of
atapoints instead of targeted removal should not improve the perfor-
ance. We form several datasets by randomly removing data from the

uccessful subset only (favoring this class for the reduction) and from
oth successful and unsuccessful PRs (not favoring any class). These
eductions give rise to the Reduced-Biased (RBi) and Reduced-Unbiased
RUb) datasets shown at the bottom corners of Fig. 2. We compare the
erformance of the task assignment technique with these datasets to
he performance with the dataset DbBa to show that any improvement
n performance with debiasing is not merely accidental, but must be
ecause of having deleted the badly labeled samples. Like balancing,
e conducted this validation step only for the CRR cases: therefore,

he BA application only relied on the Original(Og) and Debiased(Db)
atasets in Fig. 2.

.6. Testing strategies

.6.1. CRR testing strategies
While testing both categories of techniques, we preserved the

hronological order of the data to avoid attempting to predict past
nstances using future instances. Therefore, we made sure that the
raining samples always preceded the tested samples.

While evaluating the debiasing method on the optimization-based
RR techniques (Profile-based and RSTrace), we incrementally pre-
icted each sample using all samples that preceded it, expanding the
odels used for prediction one sample at a time.

However this fine-grained, one-by-one strategy cannot be applied in
earning-based approaches: the standard testing methodology is based
n using multiple folds. Therefore, for the learning-based techniques
Naïve Bayes, k-NN [5-NN], and Decision Tree), we performed sliding-
indow testing. We divided our dataset into 10 folds, chose a test

old, and trained our models using all the folds chronologically located
efore the test fold. In each iteration, we shifted the window to the next

old and repeated the same procedure.
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Fig. 2. The evaluation process using different versions of the preprocessed datasets.
4.6.2. BA testing strategies
While testing the BA techniques, we ensured that the chronological

order of the data was preserved. The Deep Triage already preserved
the chronological order of the data. However, in CNN Triage, the
data was being shuffled. Therefore, we modified the source code to
disable the shuffling of data to preserve the chronological order. Both
Deep Triage and CNN Triage originally used only Top-k accuracy as
their performance measure. We modified the implementation to also
measure MRR.

4.7. Results: Effect of debiasing

4.7.1. CRR results
In order to investigate the effect of removing unsuccessful PRs, we

evaluated the performance of the five CRR techniques on Qt Creator
and HIVE datasets before and after the debiasing. Notice that after debi-
asing, the datasets contained only samples corresponding to successful
PRs.

Table 5 summarizes the Top-3 and Top-5 accuracies before and
after the debiasing using both datasets. The three learning-based CRR
techniques perform better with debiasing than the two optimization-
based ones according to the Top-3 measure. For the Naïve Bayes
technique, we observe the highest relative improvement, 17% and 23%,
on the HIVE and Qt Creator datasets, respectively.

The Top-1 and MRR results are compared in Figs. 3 and 4, respec-
tively. Overall, higher accuracy rates were obtained for higher 𝑘 values
for Top-k accuracy. We did not observe a considerable improvement
in the accuracy of optimization-based approaches for any 𝑘 value
through debiasing, whereas learning-based approaches showed a clear
improvement especially in Top-3 accuracy.

Unlike the Top-k measures that focus on best predictions, the MRR
measure considers the ranking of each prediction. It is therefore more
representative of average performance. Fig. 4 shows the MRR scores
before and after the debiasing. In terms of MRR, debiasing yields
the best relative improvement on the learning-based techniques. The
improvement for the 5-NN technique on the HIVE dataset is 25%
and for Naïve Bayes technique on Qt Creator dataset is 26%. These
improvements are higher than those observed with the Top-k measures.
8

Fig. 3. CRR Top-1 Accuracy before and after debiasing on the balanced versions of
the datasets.

4.7.2. BA results
To study the effect of removing unsuccessful bugs from the datasets,

we evaluated the accuracy of the two BA techniques on Kafka, Hadoop,
Netbeans, and Evergreen datasets before and after the debiasing.
Table 6 summarizes the Top-3 and Top-5 accuracies before and after
the debiasing for all datasets. Both BA techniques performed better
according to the Top-3 and Top-5 measures on the debiased datasets.
The highest relative improvement is observed in the Top-3 accuracy
of CNN Triage on the Hadoop dataset. The Top-3 accuracy of the
CNN Triage technique on the Hadoop dataset showed 85.61% relative
improvement after debiasing. The highest improvement in the Top-
5 accuracy was achieved in the CNN Triage technique on the Kafka
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Table 5
Performance of CRR techniques before and after debiasing on the balanced versions of HIVE and Qt Creator.

Technique Top-3 accuracy

HIVE Qt Creator

Before debiasing After debiasing Relative improvement Before debiasing After debiasing Relative improvement

Naïve Bayes 23.52% 27.72% 17.86% 26.23% 32.60% 24.29%
5-NN 34.20% 38.99% 14.01% 42.54% 48.28% 13.49%
Decision Tree 37.51% 40.74% 8.61% 40.94% 44.75% 9.31%
Profile based 39.18% 39.44% 0.66% 39.74% 40.03% 0.73%
RSTrace 40.78% 41.12% 0.83% 42.36% 42.67% 0.73%

Technique Top-5 accuracy

HIVE Qt Creator

Before debiasing After debiasing Relative improvement Before debiasing After debiasing Relative improvement

Naïve Bayes 27.75% 29.31% 5.62% 35.59% 39.53% 11.07%
5-NN 47.12% 50.20% 6.54% 52.71% 55.77% 5.81%
Decision Tree 46.69% 50.71% 8.61% 53.77% 55.37% 2.98%
Profile based 50.30% 51.13% 1.65% 48.80% 49.44% 1.31%
RSTrace 48.20% 48.34% 0.29% 50.40% 50.57% 0.34%
Fig. 4. CRR MRR Scores before and after debiasing on the balanced versions of the
datasets.

dataset with 35.13% relative improvement after debiasing. Fig. 5
summarizes the Top-1 accuracies of both techniques on all datasets.
While the increase in Top-1 accuracies is less than those of Top-3
and Top-5, the improvement is still non-trivial. Both BA techniques
achieved lower accuracies overall for the Hadoop and Kafka datasets
due to the larger number of bug assignees in these datasets.

The results for MRR before and after debiasing is shown in Fig. 6.
Overall, the MRR scores of the techniques increased after debiasing.
The greatest MRR improvement, at 67%, occurred with CNN Triage on
the Evergreen dataset.

5. Discussion

The debiasing method we propose can be applied to any assignment
task in software engineering (i.e., feature assignment, test assignment
tasks). However, there are three prerequisites that need to be satisfied
to successfully apply the method for a software engineering assignment
task. (1) Previous task assignment data should be readily available to
represent the ground truth. (2) There should be an objective success
measure (e.g., in the bug assignment problem, the success measure
9

Fig. 5. BA Top-1 Accuracy before and after debiasing on the datasets.

was about whether a bug was reopened) to assess if the assignment in-
stance is successful. (3) Unsuccessful and successful assignment samples
should be balanced for most machine learning techniques to perform
sufficiently well.

In Section 5.1 we revise two research questions and explain our
approach to them. Afterwards, in Section 5.2 we discuss that the
proposed debiasing method is really effective. Later, in Section 5.3 we
show the number of unsuccessful samples could be superfluous and
confirm reopened PRs indeed had poor reviews. Lastly, in Section 5.4
we consider internal and external threats to validity.

5.1. Research questions

RQ1: How can we eliminate systematic labeling bias in task assignment
ground truth data?

Since manual methods are not cost-efficient, are error-prone, and
do not scale up well, we looked for an automated method based on
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Table 6
Performance of BA techniques before and after debiasing on Kafka, Hadoop, Netbeans and Evergreen.

Dataset Top-3 accuracy

DeepTriage CNNTriage

Before debiasing After debiasing Relative improvement Before debiasing After debiasing Relative improvement

Kafka 17.48% 19.81% 13.33% 9.72% 12.85% 32.20%
Hadoop 12.92% 13.77% 6.58% 6.67% 12.38% 85.61%
Netbeans 38.89% 40.61% 4.42% 44.33% 48.46% 9.32%
Evergreen 31.78% 33.26% 4.66% 40.08% 42.96% 7.19%

Dataset Top-5 accuracy

DeepTriage CNNTriage

Before debiasing After debiasing Relative improvement Before debiasing After debiasing Relative improvement

Kafka 25.50% 27.58% 8.16% 13.95% 18.85% 35.13%
Hadoop 18.11% 19.09% 5.41% 14.20% 17.84% 25.63%
Netbeans 44.84% 48.57% 8.32% 51.33% 56.31% 9.70%
Evergreen 41.10% 44.39% 8.00% 52.37% 54.43% 3.93%
Table 7
MRR for random vs. Targeted removal of PR samples.

HIVE

Naive Bayes 5-NN Decision Tree Profile based RSTrace

With unsuccessful PRs (Balanced) 18.26% 27.32% 30.96% 33.22% 33.17%
Without unsuccessful PRs (Balanced-Debiased) 20.97% 34.82% 35.89% 34.28% 33.26%
Without unsuccessful–successful PRs (Reduced-Unbiased) 18.13% 26.62% 30.75% 33.14% 33.09%
Without successful PRs (Reduced-Biased) 17.27% 23.24% 26.83% 32.56% 32.87%

Qt Creator

Naive Bayes 5-NN Decision Tree Profile based RSTrace

With unsuccessful PRs (Balanced) 23.37% 33.76% 33.73% 32.27% 35.58%
Without unsuccessful PRs (Balanced-Debiased) 29.58% 37.32% 38.35% 33.48% 35.67%
Without unsuccessful–successful PRs (Reduced-Unbiased) 22.12% 33.49% 32.23% 32.15% 35.41%
Without successful PRs (Reduced-Biased) 18.30% 30.72% 29.41% 31.43% 35.13%
Fig. 6. BA MRR Scores before and after debiasing on the datasets.

an objective success measure to remove suspicious labels. In CRR, a
PR, the underlying code review, and the assigned reviewer’s work were
deemed successful only if the bug the PR targeted was never reopened
following a successful merge and the associated closure of the bug.
Similarly in BA, the bug fix and the assigned developer’s work were
10
deemed successful only if the associated bug report was never reopened
following its closure. The debiasing method we proposed simply re-
moved these deemed unsuccessful samples from the task assignment
data to eliminate possible biases in past task assignments. These success
measures can easily be adopted to other task assignment problems
in software engineering, for example for assigning new features to
appropriate developers. Task assignment techniques could then use the
debiased data as their ground truth to build their models for improved
performance.

RQ2: How does systematic labeling bias elimination in the ground truth
data affect the performance of task assignment techniques that rely on the
data?

We applied our automated debiasing method to a diverse set of five
CRR techniques using two open-source datasets and two BA techniques
using five open-source datasets. We found that, when the data had
sufficiently high-rates of badly labeled samples, the performance of
both CRR and BA techniques in general improved after debiasing. The
highest improvement in CRR was observed with learning-based CRR
techniques. The improvements in the optimization-based CRR tech-
niques tested were marginal. Both BA techniques used to evaluate our
debiasing approach were learning-based, and exhibited improvement
levels that exceeded the ones observed for the learning-based CRR
techniques.

We can speculate about the reasons behind the improvement differ-
ence between optimization-based and learning-based CRR techniques.
The reviewer recommendation heuristics of the optimization-based
techniques tested did not as heavily depend on learning from the past
data as those of learning-based techniques. Additionally, not every sam-
ple may have been as equally valuable in the optimization-based tech-
niques and the optimization criterion may have inadvertently already
discounted badly labeled samples. Therefore, a debiasing approach
focused on removing suspected badly labeled samples may not have
made much difference in these techniques.
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Fig. 7. Percentage of unsuccessful PRs detected at each day following a successful merge due to reopening of the underlying bug (HIVE dataset).
Fig. 8. Percentage of untouched PR files after closure over time (HIVE dataset).

The higher improvements with DNN-based architectures used in BA
can be explained by the higher sensitivity of the DNN architectures
to false labels compared to the sensitivity of other machine learning
techniques used in CRR. Debiasing would naturally yield better result
with techniques that more easily degrade with false labels.

As mentioned in Section 3.2, ideally, when a bug is found, the
reporter should go through the past bug reports to identify whether
the observed bug has been encountered before. If the bug had already
been identified in the past and was closed, the bug report needs to
be reopened. However, this process may not be followed in open-
source projects due to laxer rules, typically high number of developers
contributing to the project, and the time consuming nature of this
practice. Instead, the reporters may be more inclined to create a new
bug report for an already encountered bug. With industrial projects, we
would expect a more structured quality assurance process and more
compliance with stricter guidelines, which should produce a higher
quality data with less noise and more reliability. Therefore, we would
expect the reopen rate in industrial projects to be higher and our
debiasing method to be more effective.

Based on testing our debiasing method with two task assignment
applications, multiple task assignment techniques for each application,
and multiple datasets, we conclude that the method improves the qual-
ity of the ground truth, and is especially worthwhile for learning-based
task assignment techniques.
11
5.2. Does debiasing actually work or is it just coincidence?

To illustrate that improvements observed with debiasing are not
accidental, we performed an additional validation step with the CRR
datasets and techniques. We used the balanced versions of the datasets
for this purpose because the original, unbalanced versions showed only
marginal improvements with debiasing due to the very small number
of badly labeled samples (as explained in Section 4.4). We used the
following procedure for this extra validation step:

• Remove PRs randomly from a dataset and evaluate the accuracy
of each technique before and after debiasing. This process com-
pares the dataset version RUb (Reduced-Unbiased) in Fig. 2 to
the version DbBa (Balanced-Debiased). The number of samples
removed equals the number of unsuccessful PRs to achieve a
fair comparison. This is repeated 100 times to create different
randomly reduced versions of a dataset to compare with the
DbBa version. The performance results from the different random
reductions are then averaged.

• Randomly remove only successful PRs from a dataset (thus intro-
ducing a bias against successful PRs) and evaluate the accuracy
of each technique before and after debiasing. This process com-
pares the dataset version RBi (Reduced-Biased) in Fig. 2 to the
version DbBa (Debiased-Balanced). Again the random reduction
is repeated 100 times and performance results averaged.

Table 7 summarizes the results of this step for the MRR measure.
The results are expected. All techniques performed best without un-
successful PRs (DbBa) and worst with randomly removed successful
PRs (RBi). In all cases, the techniques invariably performed worse with
randomly removed PRs (RUb) than without unsuccessful PRs (DbBa).
We conclude that the improvements observed with debiasing is not
accidental since targeted removal of samples focusing on unsuccessful
PRs always gave better results.

5.3. How many unsuccessful samples could be superfluous?

In Section 3.1, we discussed a number of caveats about the success
measure adopted. We now focus on the second caveat, and assess, in
the context of the CRR application, to what extent reopened review
tasks could be attributed to reasons other than the review/reviewer
quality of the original associated PR. This assessment considers the
possibility that the original PR was indeed successful and the reopened
task was in fact a false positive. The false unsuccessful attribution
could be due to changes to the codebase unrelated to the original task
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(e.g., changes in the underlying dependencies that makes it look like
the original bug suddenly resurfaced instead of being reported as a
new bug). To do this, we analyzed the elapsed time between Closed
and Reopened transitions of each reopened bug in the datasets. If the
elapsed time was small, e.g., less than one day, resurfacing of the
bug would be unlikely to have been related to external circumstances
impossible to have been detected by the PR reviewers. We also looked
at the percentage of the files involved in an unsuccessful PR that were
not changed (untouched) in a commit following the closure of the
associated bug. If this percentage was high after a certain time had
elapsed, their likelihood of causing the bug to resurface was considered
low, hence the PR was likely genuinely unsuccessful.

Fig. 7 shows the above effects in the HIVE dataset: 45% of the bugs
were reopened on the same day of the PR and 80% of the bugs were
reopened within 24 days. Fig. 8 shows that 80% of the files involved in
an unsuccessful PR remained untouched 19 days after the closure of the
underlying bug. The results were similar on the second dataset. Because
most bugs were reopened in the first few days of their closure and
most files involved in an unsuccessful PR remained untouched during
the initial days after closure, we believe mislabeling unsuccessful PRs,
although possible in rare circumstances, was unlikely to have been
pervasive enough to compromise the PR success measure.

To confirm that reopened PRs indeed had poor reviews, we per-
formed a quality analysis of in Qt Creator dataset for a random 10%
sample (40 data points). You can find this analysis in a supplement
posted to Figshare.10 Two authors independently inspected the quality
of each review for this sample. We found that 32 out of the 40
(80%) had in fact poor reviews according to the criteria we used.
We categorized poor reviews as Superficial (only ‘‘Looks-Good-to-Me’’
style comments, or missing comments) (21), Overruled (author indi-
cated reviewer had misjudged the changes) (3), and Poor-Effort (self-
admittance of a substandard/rushed review) (6).

5.4. Threats to validity

Our method of identifying a badly labeled task assignment is subject
to a construct threat [59]. It may not be possible to catch all reopened
bugs: some may have been completely missed, others may be reopened
in the future, and thus may not have been captured in the dataset.
Leaving these false negatives in the dataset would reduce the efficacy
of debiasing. Conversely, there may have been false positives: a task
assignment identified as unsuccessful due to a reopened bug may have
actually been successful. We discussed some possible reasons for such
cases in Section 5.3, and by examining two indicators in the datasets
for one of the applications, concluded that these cases are likely to have
been rare.

CRR datasets had low unsuccessful PR rates: possibly, in many
cases, the developers who created the bug reports failed to associate
a recurring bug with an existing bug report, and instead created a
new bug report (we previously discussed possible reasons for this.) At
these low rates, the introduced bias is not significant, and removing
it would not yield much benefit. We observed precisely this effect in
the original data: improvements in performance measures were less
than 1%, and thus not material. We thus looked at the reopened bug
rates in the literature and balanced the CRR datasets by randomly
removing successful PRs to move the unsuccessful PR ratio to within
the reported ranges, and evaluated the debiasing method with these
reduced datasets. Because of this adjustment, we must accept that any
observed improvements are conditional on a dataset having sufficient
systematic labeling bias.

BA techniques we used in this study were not used out of the box.
We had to modify the published source code for each technique to be
able to run them with shell commands. Although our modifications

10 https://figshare.com/s/f456ae85508bb1bfa78e.
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should not have affected how the techniques work, there remains
a small risk that we may have inadvertently changed their original
behavior. Although we were conducting experiments on a server with
256 GB memory and 64-core processor, while running the CNN Triage
technique, we encountered memory limitation problems caused by
word embeddings: this narrowed down the range of values we could
use for the hyperparameter tuning.

Threats to external validity are concerned with generalizability
[59]. We evaluated our approach on two open-source datasets and
five different CRR techniques and four datasets with two BA tech-
niques. We believe the CRR and BA techniques used are a reasonable
representation of common approaches. However we acknowledge the
limitations of two datasets for CRR application and two techniques for
the BA application. We could not find additional CRR datasets that both
contained sufficient samples and integrated PR information with bug
tracking, as required. We could not find any other BA techniques with
published source code or an executable.

Open-source projects typically have high turnover rates. Unlike
in closed-source projects, many contributors and reviewers become
inactive over time, and new contributors constantly join these projects.
For this reason, the number and activity level of the assignees and
the nature and difficulty of development task assignments may be
drastically different in closed-source projects. Therefore, our findings
may not apply to closed-source projects.

One way to mitigate a study’s internal threats is to make the study
replicable. We provide a complete replication package that includes the
datasets, source code modifications, all of our scripts, and step-by-step
evaluation procedures in a Figshare archive10.

6. Conclusion and future work

Good assignee selection is central to effective task assignment in
software development. Task assignment techniques attempt to auto-
mate the assignee selection process, but many techniques build their
models and evaluate them using historical data whose ground truth
may be unreliable. Ground truth problems often result from the sus-
ceptibility of human decision makers to cognitive biases, such as sub-
stituting a convenience attribute for a competence attribute. When the
task assignments are associated with a success measure, such as the
closing of a bug report indefinitely, we can use the success measure to
detect, post-hoc, unsuccessful assignments, and remove the associated
samples from the historical data. We used this method to clean up, or
debias, the ground truth data in two task assignment applications: CRR
and BA.

To evaluate our debiasing method, we conducted experiments with
five existing CRR techniques (Profile based, RSTrace, Naïve Bayes, k-
NN [5-NN], Decision Tree) on two open-source datasets (HIVE, Qt
Creator) and two existing BA techniques (CNN Triage, Deep Triage)
on four open-source datasets (Kafka, Hadoop, Netbeans, Evergreen).
We compared the MRR and Top-k performance of these techniques
both with and without debiased samples, and found that debiasing
using our method can achieve performance improvements between
10%–26% with general learning-based techniques, and 7%–67% for
deep-learning-based techniques. However, the debiasing method was
not able to achieve significant levels of improvement with optimization-
based techniques. Unfortunately, it is not possible to set a universal
threshold for how much improvement would be considered significant
or worthwhile in an arbitrary task assignment context. Since our de-
biasing approach is automated with a negligible marginal cost, even
small levels of improvement would be welcome.

Our work has implications for both practitioners and researchers.
Researchers can apply our proposed debiasing approach preprocessing
the training data to improve the accuracy of their learning-based task
assignment models. Recommendation tools built on these models would
then inherit these improvements. The debiasing method could also be

https://figshare.com/s/f456ae85508bb1bfa78e
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c

useful for flagging potentially improper development task assignments
in an organization.

In the future, we are planning to extend our evaluation to other
task assignment problems, for example, the assignment of new soft-
ware requirements to an appropriate member of a development team,
using additional datasets. If expanded evaluations prove the debiasing
method to be widely effective, we plan to provide tool support for
automated debiasing so that our method can easily be integrated into
existing recommendation systems. We also plan to evaluate our ap-
proach on industrial projects since such projects could provide a better
use case with less noise for our approach.
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