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We study a dynamic contest model where efforts exerted in previous periods accumulate as fatigue. As 
an individual’s fatigue level increases, it becomes more costly to exert one unit of effort in the future. 
This creates a trade-off between exerting high efforts today to collect winning prizes sooner and exerting 
low efforts today to gain a cost advantage in the future. We characterize the steady state conditions for 
open-loop equilibrium and analyze equilibrium efforts in the presence of accumulated fatigue.
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1. Introduction

It is well established that fatigue is an important problem for 
economic agents in various industries and that it mostly has a 
negative impact on productivity [see 2,3,7,9,18, among others], es-
pecially in competitive situations such as sport competitions or job 
promotions [see, for instance, 10,19,20]. Despite its significance, 
however, there are only a few numbers of studies that analytically 
investigate how fatigue affects behavior in strategic environments. 
Having a variety of application areas, such as sports, warfare, elec-
tions, labor market, and firm competition, contest games constitute 
a fruitful venue for the analysis of how fatigue affects performance 
in strategic interactions. The analysis would be particularly promis-
ing in dynamic contest models, where a player makes multiple 
decisions through time, so that it is natural to expect future de-
cisions to be influenced by past decisions, due to an accumulated 
fatigue that may cause a decrease in productivity or an increase in 
cost. In this paper, we study how equilibrium behavior changes in 
a dynamic contest game in the presence of accumulated fatigue.

In a contest model, there are multiple players exerting costly 
and irreversible efforts in order to increase their chances of win-
ning a set of valuable prizes [see 5,16, among others]. Here 
we consider a two-player infinite-horizon dynamic contest model 
where the two players compete in a component battle for a com-
mon winning prize awarded in each period. Each player exerts 
some effort, and a contest success function determines who wins 
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the battle. Exerted efforts accumulate as fatigue in the following 
periods. Fatigue directly affects the marginal cost function in the 
future, which is modeled in a novel fashion (see Fig. 1 in the next 
section), so that an increase in fatigue level implies that it will be 
more costly to exert efforts in future periods. This creates an in-
teresting trade-off. On the one hand, a player can choose to exert 
high efforts today, increasing his probability of collecting winning 
prizes in early periods, but decreasing his chances of being suc-
cessful in later periods. On the other hand, a player can choose 
to exert low efforts today, saving his energy, so that although it is 
less likely that he collects prizes in early periods, it becomes more 
likely that he wins in later periods, since having a low fatigue level 
would give him a cost advantage in the future. In the current pa-
per, following Grossmann et al. [12] and Keskin and Sağlam [14], 
we resort to open-loop strategies and analyze open-loop equilib-
rium. We characterize the steady state conditions and investigate 
how equilibrium efforts appear in the presence of accumulated fa-
tigue. We conclude with a variety of comparative static results.

Our dynamic contest model has several interpretations. (i) Con-
sider two individuals working in the same firm. In each month, 
they exert efforts such that one of them is entitled to a premium 
at the end of the month. (ii) Consider two firms competing in the 
same market. In each year, they exert efforts such that one of them 
improves its relative stature in the eyes of the consumers and ob-
tains a larger market share in that year. (iii) Consider two countries 
fighting a war for the control of a territory that generates valuable 
resources. In each period, they exert efforts such that one of them 
earns the right to control the territory and to collect the resources 
in that period. Note that fatigue is a natural phenomenon for such 
interpretations in the sense that working overtime, overuse of pro-
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ductive inputs, or fighting more fiercely may result in performance 
losses in the future in the respective examples. It is also worth not-
ing that a discount factor regulates the future value of the winning 
prize in our model. The discount factor can also be interpreted as 
the probability that the interaction between the two players is ter-
minated before the next period. As such, it can be argued that the 
current model potentially ends in finite time, but even then, the 
expected payoffs would be written over an infinite horizon.

The conventional assumption in most of the existing dynamic 
contest models is that efforts exerted in a period have a one-time 
effect, which is to influence the outcome of the component bat-
tle within the same period [see, for example, 8,15,17]. As opposed 
to this common way of modeling, there also are studies that con-
sider additional direct and/or indirect effects of exerted efforts. For 
a selection of such examples, one can refer to the models with 
learning by doing [4], with talent investments [11], with resource 
constraints [13], or with fatigue [19]. In the current paper, since 
we analyze the effects of fatigue in a model where a player’s fa-
tigue level accumulates as he exerts efforts throughout the game 
and the cost from exerting one unit of effort is higher when a 
player is more tired, we also make a contribution to this strand of 
literature.

To elaborate, Harbaugh and Klumpp [13] study a four-player 
elimination tournament where each player is endowed with one 
unit of effort to allocate across two stages. The authors show that 
a weak player exerts more effort in the semi-final stage, but a 
strong player chooses to save his effort to have a better chance 
of winning the final stage. This can be interpreted as a rather ob-
scure modeling of fatigue in the sense that increasing efforts in 
a stage decreases the efforts in the next stage. The first attempt 
for a more apparent modeling of fatigue appears in Ryvkin [19]. 
The author investigates the effect of fatigue in a two-player finite-
horizon dynamic contest model. Each player makes a binary choice 
between exerting ‘low’ or ‘high’ effort in each period. Fatigue is 
introduced in such a way that a player’s probability of winning 
the next component battle decreases in his own fatigue level and 
increases in the other player’s fatigue level. As such, what is impor-
tant is the difference between the players’ fatigue levels, while the 
actual fatigue amounts do not have any direct effect on the nature 
of the strategic interaction. One major finding is that players are 
more likely to choose ‘high’ efforts in later periods. The paper also 
tests the model predictions in a laboratory experiment and reports 
that subjects behaved in line with the predictions. Later, Sela and 
Erez [23] also study resource constraints in a dynamic contest, but 
they regulate the effect of today’s effort on tomorrow’s resource 
budget using a fatigue parameter. For a lower value of this param-
eter, an effort level causes a smaller decrease in the next stage 
resources. The authors analyze a two-player n-stage contest and 
show that players’ equilibrium efforts are weakly decreasing over 
the stages if the same prize is awarded in each stage. They also 
identify the prize distribution that balances players’ equilibrium ef-
forts over the stages. More recently, Sela [21,22] utilizes a similar 
idea in different contest models, namely in elimination tourna-
ments and best-of-k contests. The author shows that the lowest 
amount of effort is always allocated in the last stage, but the com-
parison of equilibrium effort levels in earlier stages depends on 
the fatigue parameter and the contest type. In comparison to the 
papers summarized above, our paper takes a different approach 
in modeling the effect of fatigue: it is introduced as a state vari-
able, such that it accumulates throughout the game and affects the 
marginal cost of exerting effort.

As a final note, upon completion of the current paper, we be-
came aware of a recent working paper by Angelova et al. [1]. The 
authors study symmetric equilibria in an n-player finite-horizon 
dynamic contest model in the presence of fatigue accumulation. 
Although there appear similarities to our paper in how fatigue 
269
Fig. 1. The illustration of Ci(E, e).

is modeled, there also are a number of differences between our 
model and their model. Those differences will be discussed in de-
tail in the next section.

The remainder of the paper is organized as follows. In Section 2, 
we present the details of our model. In Section 3, we characterize 
the steady state conditions for an open-loop equilibrium and pro-
vide a comparative static analysis around the stable steady state. 
In Section 4, we conclude by further mentioning some numerical 
results on a finite-horizon version of the model and for a speed of 
convergence analysis in the original infinite-horizon model.

2. The model

Consider an infinite-horizon dynamic contest model where 
two players compete in a component battle in each period
t ∈ {0, 1, 2, . . .}. Each player i ∈ {1, 2} chooses an effort level 
ei,t ∈ [0, ∞), and a contest success function Pi(e1,t, e2,t) deter-
mines the probability that player i wins the component battle in 
period t . We assume that Pi is an increasing, twice-differentiable, 
and concave function of ei,t .

The winner of each battle collects a common prize of V > 0. 
Exerting effort is costly. A player gets tired as he exerts efforts, 
which in turn changes the marginal cost of effort in the next pe-
riod. More precisely, let Ei,0 = 0 denote player i’s initial fatigue 
level, and define the fatigue level in the beginning of period t + 1
as

Ei,t+1 = (1 − ri)
(

Ei,t + ei,t
)

(1)

where ri ∈ [0, 1] denotes the recovery rate for player i. This indi-
cates that the effort exerted by player i directly contributes to his 
fatigue level, but then a portion of the total fatigue “Ei,t + ei,t ” is 
recovered right before period t + 1 starts.

The cost incurred by player i in period t depends on his current 
fatigue level and the effort exerted in this period: Ci(Ei,t , ei,t). The 
intuition is as follows. Consider the function illustrated in Fig. 1. A 
marginal change in ci represents the cost incurred from exerting 
one unit of effort at a given fatigue level. If player i starts with a 
fatigue of E , his fatigue increases to E + e after exerting e units of 
effort, leading to a cost of ci(E + e), but ci(E) of that cost is not 
incurred within the current period. As such, we assume that for 
every i ∈ {1, 2} and every (E, e) ∈ [0, ∞)2,

Ci(E, e) = ci(E + e) − ci(E),
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given an increasing, twice-differentiable, and strictly convex func-
tion, ci .

Finally, everything is common knowledge.
Now, it can be argued that Angelova et al. [1] introduce fatigue 

into dynamic contests in a similar manner. To our understanding, 
however, there is one crucial difference in the model’s interpre-
tation. According to their model, fatigue is costly and the effort 
exerted in a period has an indirect cost. For example, having a pos-
itive fatigue level of F > 0 in the beginning of a period, a player 
incurs a cost of F 2 when he does not exert any effort in that pe-
riod, while exerting a positive effort e > 0 increases his fatigue 
level to F + e, in which case he incurs a cost of (F + e)2. Thus, the 
cost is indeed a function of the fatigue level at the end of a period. 
On the other hand, in the current paper, we assume that exerting 
effort is costly and that there are cost spillovers via fatigue. As 
such, fatigue has an indirect effect on costs in our model, or more 
precisely, the fatigue level only affects the marginal cost of exert-
ing effort in a period. For the sake of comparison, we can further 
note that our model assigns a zero cost to a player who chooses 
not to exert any effort in a period independent of his fatigue level. 
On top of this major difference in the model’s interpretation, there 
are other differences between the two papers: Angelova et al. [1]
analyze symmetric equilibria in a finite-horizon game with n sym-
metric players, whereas we characterize the steady state conditions 
for an equilibrium in an infinite-horizon game with two asymmet-
ric players.

3. The results

Assuming that a player’s effort choices or his accumulated fa-
tigue levels are not observable to his competitor, at least to some 
degree, we resort to open-loop strategies and analyze open-loop 
equilibrium. Accordingly, each player chooses an action path in the 
first period and commits to these strategies throughout the game. 
Taking a pre-committed action path e j = (e j,t)

∞
t=0 for player j as 

given, player i ∈ {1, 2} determines his best responses aiming to 
maximize his expected lifetime utility. The associated discrete-time 
optimal control problem for player i can be written as

max
∞∑

t=0

βt [
Pi(e1,t, e2,t)V − Ci(Ei,t, ei,t)

]
subject to Ei,t+1 = (1 − ri)

(
Ei,t + ei,t

)
for Ei,0 = 0 and when (e j,t)

∞
t=0 is given.

We utilize the discrete-time maximum principle for open-loop 
strategies, as proposed by Corella and Hernández-Lerma [6]. By 
their Theorem 12, we know that there exists a sequence of multi-
pliers (λt)

∞
t=1 ∈R∞ such that for every t ≥ 1,

∂ Hi,t(·)
∂ Ei,t

= λt; (2)

for every t ≥ 0,

∂ Hi,t(·)
∂ei,t

= 0; (3)

and for every h ≥ 1,

lim
t→∞λt

t−1∏
s=h

∂ Ei,s+1

∂ Ei,s
= 0, (4)

where the discrete Hamiltonian function for player i can be written 
as
270
Hi,t(ei,t, Ei,t, λt+1) = βt [
Pi(e1,t, e2,t)V − Ci(Ei,t, ei,t)

]
+ λt+1(1 − ri)

(
Ei,t + ei,t

)
.

Equations (2)–(4) constitute the set of necessary and sufficient 
conditions for an optimal solution under certain assumptions. Note 
from equations (1) and (2)–(3) that λt is finite and ∂ Ei,t+1/∂ Ei,t =
1 − ri for every t , so that all the respective assumptions hold.

The first-order conditions for optimality are

∀t ≥ 1 : ∂ Hi,t(·)
∂ Ei,t

= −βt ∂Ci(Ei,t, ei,t)

∂ Ei,t
+ λt+1(1 − ri) = λt

(5)

and

∀t ≥ 0 : ∂ Hi,t(·)
∂ei,t

= βt
(

∂ Pi(e1,t, e2,t)

∂ei,t
V − ∂Ci(Ei,t, ei,t)

∂ei,t

)
+ λt+1(1 − ri) = 0; (6)

while the transversality conditions are given by

∀h ≥ 1 : lim
t→∞λt

t−1∏
s=h

∂ Ei,s+1

∂ Ei,s
= lim

t→∞λt

t−1∏
s=h

(1 − ri)

= lim
t→∞λt(1 − ri)

t−h = 0. (7)

Substituting (6) into (5), we obtain the following Euler equa-
tion:

∂ Pi(e1,t, e2,t)

∂ei,t
V − ∂Ci(Ei,t, ei,t)

∂ei,t
=

β(1 − ri)

(
∂ Pi(e1,t+1, e2,t+1)

∂ei,t+1
V − ∂Ci(Ei,t+1, ei,t+1)

∂ei,t+1

+ ∂Ci(Ei,t+1, ei,t+1)

∂ Ei,t+1

)
. (8)

The steady state is characterized by the requirement

Ei,t+1 = Ei,t = Ei for every i ∈ {1,2}
imposed into equations (1), (7), and (8). This brings us to our first 
result.

Proposition 1. In the dynamic contest game studied here, the steady 
state is implicitly characterized by

Ei = 1 − ri

ri
ei (9)

and

(1 − β(1 − ri))

(
∂ Pi(e1, e2)

∂ei
V − ∂Ci(Ei, ei)

∂ei

)

= β(1 − ri)
∂Ci(Ei, ei)

∂ Ei
(10)

for every i ∈ {1, 2}.

Proof. See the arguments above. �
To continue our analysis, for every i ∈ {1, 2}, we now consider 

specific functional forms for Pi and Ci functions. Let

Pi(e1,t, e2,t) = ei,t

e1,t + e2,t
. (11)

Moreover, letting ci(e) = eα for some α > 1, we assume that

Ci(Ei,t, ei,t) = (
Ei,t + ei,t

)α − Ei,t
α. (12)
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The next result presents an explicit characterization of steady-state 
efforts.

Proposition 2. In the dynamic contest game studied here, if Pi and Ci

are as assumed above, the steady state is characterized by

E∗
i = 1 − ri

ri
e∗

i

and

e∗
i =

⎛
⎜⎜⎜⎜⎜⎝

(
φi

φ j

) 1
α

φi

(
1 +

(
φi

φ j

) 1
α

)2

⎞
⎟⎟⎟⎟⎟⎠

1
α

,

where

φi = αr1−α
i

(
1 − β(1 − ri)

α
)

(1 − β(1 − ri))V
(13)

for every i ∈ {1, 2}.

Proof. Plugging (11) and (12) into (10), and then using (9), we 
obtain

(1 − β(1 − ri))

(
e j

(ei + e j)
2

V − α

(
ei

ri

)α−1
)

= β(1 − ri)α

((
ei

ri

)α−1

−
(

1 − ri

ri
ei

)α−1
) (14)

for j �= i. A series of algebraic operations return

eie j

(ei + e j)
2

= αr1−α
i

(
1 − β(1 − ri)

α
)

(1 − β(1 − ri))V
ei

α.

Using the symmetric version of the equation above for player j �= i, 
and dividing the two equations side-by-side, we obtain

e∗
i =

(
φ j

φi

) 1
α

e∗
j (15)

where φi is given by (13). Substituting (15) into (14), we find

e∗
i =

⎛
⎜⎜⎜⎜⎜⎝

(
φi

φ j

) 1
α

φi

(
1 +

(
φi

φ j

) 1
α

)2

⎞
⎟⎟⎟⎟⎟⎠

1
α

. �

In the symmetric case, i.e., when r1 = r2, the steady-state effort 
equation reduces to

e∗
1 = e∗

2 =
(

1

4φ

) 1
α =

(
(1 − β(1 − r))V

4αr1−α (1 − β(1 − r)α)

) 1
α

. (16)

The symmetric efforts indicate that players have the same win-
ning probability in each battle. Further note that if ri = r j = 1, 
the fatigue never accumulates for either player, so that the model 
reduces to a version where the same one-shot contest game is re-
peated infinitely many times. In the corresponding equilibrium, the 
equilibrium efforts are(

V
) 1

α

,

4α

271
which is greater than e∗
i reported in (16). This implies that the 

accumulating nature of fatigue discourages players, leading them 
to exert lower efforts in the steady state.

Under asymmetry, however, one player ends up in an advan-
taged position in the steady state, exerting a higher steady-state 
effort, which results in a higher winning probability in each battle 
after the steady state is reached. Without loss of generality, assume 
that ri > r j . Then, using (15), we have e∗

i > e∗
j if φ j > φi , i.e., if(

ri

r j

)α−1

>

(
1 − β(1 − r j)

)
(1 − β(1 − r j)

α)

(
1 − β(1 − ri)

α
)

(1 − β(1 − ri))
.

This inequality is always true, since starting from the same value 
when ri = r j , the left-hand-side rises faster as ri increases. Hence, 
having a higher recovery rate than the other player is an advantage 
in the steady state.

The stability analysis confirms that the steady state cannot be a 
“source” and that it is mostly saddle-path stable for a wide range 
of parameter values. The details of the stability analysis are omit-
ted due to space limitations and are available upon request from 
the corresponding author.

Given that the steady state is stable, the following compara-
tive static results apply. For the following, we focus on the ratio of 
steady-state efforts:

ε = e∗
i

e∗
j

=
(

φ j

φi

) 1
α

.

Taking its derivative with respect to ri , we find that

β <
(α − 1)(1 − ri)

1−α

α + ri − 1

is a sufficient condition for ε to increase as ri increases. This con-
dition is always satisfied when α ≥ 2. This implies that a higher 
recovery rate has an encouragement effect, so that the player be-
comes more advantaged in the steady state.

When α increases, a graphical analysis reveals that ε increases 
if ri > r j and decreases if ri < r j (see Fig. 2(a)). Furthermore, we 
see that ∂ε/∂ri increases as α does (see Fig. 2(b)). The former 
observation indicates that the cost function’s curvature gives an 
advantage to the faster-recovering player. The latter observation 
shows that as the cost function’s curvature increases, the advan-
tage gained from having a higher recovery rate increases. Finally, 
as α → 1, the importance of ri vanishes, since the fatigue’s impact 
on the cost function disappears, as such the model reduces to the 
version with ri = r j = 1 in equilibrium.

4. Further remarks

We studied a dynamic contest model where efforts exerted in 
previous periods accumulate as fatigue. We were interested in the 
analysis of the trade-off between exerting high efforts today to col-
lect winning prizes sooner and exerting low efforts today to have a 
potential to be more successful in the future. We characterized the 
steady state conditions for open-loop equilibrium in an infinite-
horizon model with two asymmetric players. We presented the 
extent to which having a higher fatigue recovery rate turns out 
to be an advantage in the steady state and how that advantage is 
influenced by the curvature of the effort cost function.

In our concluding remarks, we aim to give further insights on 
the equilibrium dynamics inherent in our model. In that regard, 
we first provide the analysis of the speed of convergence to the 
steady state.

Following Stokey and Lucas [24, p. 147–153], the speed of 
convergence is defined as 1 − |λ̄| where λ̄ is the largest charac-
teristic root of the respective Jacobian matrix that is less than one 
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Fig. 2. The illustrations of how ε and ∂ε/∂ri change in response to a change in α [r j = 0.5, β = 0.95, and ri = 0.3 (Blue), ri = 0.6 (Orange), ri = 0.9 (Green)]. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)
Fig. 3. The speed of convergence to the steady state as a function of ri [α = 2, 
β = 0.95, and r j = 0.3 (Blue), r j = 0.6 (Orange), r j = 0.9 (Green)].

in absolute value. This indicates that the closer the largest stable 
eigenvalue of the linearized system is to zero, the faster a player’s 
equilibrium effort and fatigue levels converge to their steady state 
values. Under the assumption that α = 2, β = 0.95, and V = 1, 
Fig. 3 considers three different values for r j and illustrates the 
speed of convergence as a function of ri . It can be observed that as 
ri or r j increases, i.e., as either player has a higher recovery rate, 
which means that there is less fatigue effect for the player, the 
equilibrium strategies tend to converge to their steady state values 
faster. The figure also reveals a point where there is a substantial 
change in the evolution of the speed of convergence with respect 
to ri . This happens when ri = r j . The respective observation is that 
when ri < r j , i.e., when player i is in a disadvantaged position in 
terms of recovery rate, an increase in his recovery rate increases 
the speed of convergence to a great extent; whereas when ri > r j , 
i.e., when it is player i who has the recovery rate advantage, an 
increase in his recovery rate slightly increases the speed of con-
vergence.

Given the tractability problems encountered in the identifica-
tion of the equilibrium efforts before the steady state is reached, 
we now turn our attention to a finite-horizon model, aiming to 
give additional insights on how equilibrium efforts evolve from one 
period to another. Accordingly, we consider a two-period version 
of our model. All model assumptions are preserved except that we 
now have t ∈ {1, 2} and β = 1. For simplicity, we also assume that 
V = 1 and α = 2. Analyzing subgame perfect Nash equilibrium, in 
the second period, player i ∈ {1, 2} maximizes
272
Fig. 4. The equilibrium efforts
(

e∗
i,1, e∗

j,1

)
and

(
e∗

i,2, e∗
j,2

)
as a function of ri .

ei,2

e1,2 + e2,2
− (

Ei,2 + ei,2
)2 + Ei,2

2, (17)

where Ei,2 = (1 − ri) 
(
ei,1

)
is player i’s fatigue level at the begin-

ning of period 2. It can be calculated that the equilibrium effort 
level is

e∗
i,2 = 1 + Ei,2(E1,2 + E2,2)

2
√

2 + (
E1,2 + E2,2

)2
− Ei,2

2

for each player. Writing e∗
1,2 and e∗

2,2 into (17) returns player i’s 
equilibrium expected payoff in period 2:

EU∗
i,2 = 1

4

⎛
⎜⎝2 + 4Ei,2

2 + 2
(

E j,2 − Ei,2
)

√
2 + (

E1,2 + E2,2
)2

−
⎛
⎜⎝Ei,2 + 1 + Ei,2

(
E1,2 + E2,2

)
√

2 + (
E1,2 + E2,2

)2

⎞
⎟⎠

2 ⎞
⎟⎠ .

Then, in the first period, player i ∈ {1, 2} maximizes
ei,1

e1,1 + e2,1
− ei,1

2 + EU∗
i,2.

Given that Ei,2 is a function of ei,1, the rest of the equilibrium 
analysis turns out to be intractable, mostly due to the asymmetry 
in players’ recovery rates. At this point, we continue with a nu-
merical analysis. Assuming that r j = 0.5, we let ri change between 
0 and 1. The respective equilibrium efforts are illustrated in Fig. 4.
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It can be seen that when ri > r j , we have e∗
i,1 > e∗

j,1 and
e∗

i,2 > e∗
j,2, so that a player with a higher recovery rate has an 

advantage in the equilibrium, similar to what is observed in the 
steady state of the infinite-horizon version. An increase in ri mo-
tivates both players, but it motivates player i more, which gives 
him an edge in each battle. Further note that for sufficiently high 
values of ri , a decrease in e∗

j,1 is observed. This signals that an 
increase in ri may have a discouragement effect for the disadvan-
taged player j, if there is a sufficiently large difference between 
their recovery rates.

As for the equilibrium efforts across periods, we see that a play-
er’s effort in the second period is not further apart from his effort 
in the first period. However, the direction of change is different 
for the two players. For instance, when ri < r j , player i has a rel-
atively lower recovery rate, and his second period effort is lower 
than his first period effort, whereas player j exerts a higher effort 
in the second period compared to his own first period effort. This 
can be interpreted as follows: Knowing the recovery rates for both 
players, player i is aware that he would be in a disadvantaged po-
sition in the second period. This is because his fatigue level will be 
higher than his opponent’s in most cases, which is even possible 
when he exerts less effort than what player j exerts in the first pe-
riod. Anticipating this, player i is more motivated to exert effort in 
the first period, where both players have the same marginal costs 
since the fatigue effect is not present. Conversely, it can be argued 
that player j chooses to save his energy in the first period, so that 
he will have a better chance of winning the second period battle.

In earlier works, we are not aware of any paper reporting re-
sults on asymmetric players except for [13]. These authors find 
that a weak player exerts more effort in the first stage, but a 
strong player chooses to save his effort to have a better chance 
of winning the second stage game. This is similar to what we ob-
serve in equilibrium efforts across periods, although in the first 
period of our model, the equilibrium effort exerted by the advan-
taged player is greater than what is exerted by the disadvantaged 
player. It seems that this difference is caused by how efforts are 
modeled: we assume costly efforts with no boundary conditions, 
whereas they assume effort budgets such that if a player increases 
his effort in a stage, his effort in the other stage should decrease.
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