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Fractional Fourier Transform in
Time Series Prediction

Emirhan Kog

Abstract—Several signal processing tools are integrated into
machine learning models for performance and computational cost
improvements. Fourier transform (FT) and its variants, which are
powerful tools for spectral analysis, are employed in the predic-
tion of univariate time series by converting them to sequences in
the spectral domain to be processed further by recurrent neural
networks (RNNs). This approach increases the prediction perfor-
mance and reduces training time compared to conventional meth-
ods. In this letter, we introduce fractional Fourier transform (FrFT)
to time series prediction by RNNs. As a parametric transformation,
FrFT allows us to seek and select better-performing transformation
domains by providing access to a continuum of domains between
time and frequency. This flexibility yields significant improvements
in the prediction power of the underlying models without sacrificing
computational efficiency. We evaluated our FrFT-based time series
prediction approach on synthetic and real-world datasets. Our
results show that FrFT gives rise to performance improvements
over ordinary FT.

Index Terms—Fourier transform, fractional Fourier transform,
time series, recurrent neural networks, encoder, decoder.

I. INTRODUCTION

EURAL network-based machine learning methods are
N ubiquitously used in a wide range of application areas
such as time series/sequence prediction, image processing, com-
puter vision, and natural language processing (NLP) [1], [2],
[3]. Although deep neural networks (DNNs) ensure increased
performances with sophisticated algorithms, they are also open
to further improvements through integration with classical signal
processing tools and ideas. Recently, there has been a thriving
tendency towards deep neural network models relying on more
theoretical and analytical foundations. To this end, utilization of
several classical signal processing tools, mainly in convolutional
neural networks (CNNSs) and recurrent neural networks (RNNs),
has become prevalent and provided considerable performance
improvements [4], [5], [6], [7], [8], [9], [10].

In [6], wavelet scattering transforms are combined with CNNs
to address text-independent speaker identification, where fea-
tures extracted from wavelet scattering are used as the first layer
of CNNs, and the remaining layers are learned with supervi-
sion. The reported experiments show that the wavelet scattering
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transform offers efficient feature extraction for speaker iden-
tification tasks. In [5], fractional wavelet scattering network
(FrScatNet) is used for gland segmentation task on colon histol-
ogy images, where corresponding features are extracted by frac-
tional wavelet transform and used to train CNNSs. [7] constructs
a mathematical model for FrScatNet and reaches outperforming
results compared to ordinary CNNs in image classification tasks.
In [8], Fourier-Bessel series expansion (FBSE)-based empirical
wavelet transforms are proposed for better time-frequency rep-
resentations (TFR) of non-stationary signals. Motivated by [8],
a new TFR method based on Fourier-Bessel decomposition for
the classification of sleep stages using CNNss is also proposed
in [9]. [10] proposes a TFR method using improved eigen-
value decomposition of the Hankel matrix and Hilbert transform
(IEVDHM-HT) for the classification of epileptic seizures using
least-square support vector machines (SVM).

Fourier Transform (FT) is also deployed in machine learning
mostly to reach computational accelerations. In [11], [12], [13],
the convolution property of FT is leveraged such that convolution
operations in layers of DNNs are replaced with Hadamard
point-wise products in FT domain [13]. Since convolutions are
computationally costly, the proposed approach enables signifi-
cant speed-up without considerable degradation in model perfor-
mance. FT is also deployed in machine learning models for the
NLP domain. In [14], replacing costly self-attention sub-layers
in the transformer encoders with the FT yields comparable accu-
racy with remarkable computational efficiency as FT is a linear
and non-parametric transform with fast implementations. [15]
proposes the introduction of FT into autoencoders to detect
anomalies with less noisy features. The proposed model yields
competitive performances with the state-of-the-art. FT is also
used in RNNs to address vanishing/exploding gradient problems
and learn hidden-state information [16].

Time series prediction is a fundamental task in numerous
applications from various domains such as weather forecasting,
electricity market design, and traffic management [17], [18].
Machine learning methods, especially RNNs, have also gained
overwhelming preference against statistical methods in time
series prediction [19]. Following the trend of combining signal
processing with machine learning, [20] has recently presented
a method that combines short-time Fourier transform (STFT)
and RNNs in time series prediction. In [20], as a comparative
method, complex-gated recurrent units (cgGRU) [21] are uti-
lized to handle back-propagation with complex-valued signals.

Fractional Fourier Transform (FrFT) is the generalized ver-
sion of the ordinary FT with a real fraction order a [22].
FrFT can be considered a rotation in the time-frequency plane
and allows us to observe the representation of signals in a
continuum of infinitely many intermediate domains between
time and frequency, controlled by a single parameter. Being
the direct generalization of FT, FrFT inherits FT’s power and
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provides an additional degree of freedom such that a continuum
of alternative transformations is accessible. These alternatives
lead to different information flows and feature extractions in
neural networks, and the most representative signal domain
that works best in the underlying neural network can be cho-
sen. Equally importantly, FrFT also has a well-established
O(N log N) time-efficient computational algorithm [23], mak-
ing it possible to enjoy its advantages without paying for addi-
tional computational costs. Motivated by these advantages, FrFT
is very recently introduced to the state-of-the-art deep learning
architectures by two pioneering works [24] and [25] for vision
and NLP transformers, respectively.

In this work, we introduce FrFT to the machine learning
domain by combining it with RNNSs for the time series prediction
problem with the motivation of utilizing a generalized transform
capable of implementing infinitely many transformations to
increase model performance. We present a model where FrFT
is applied to each segment of windowed time-series signals in
the time domain by replacing STFT-based sequence predictions
with fractional orders by changing neither the number of compu-
tation steps nor the computational costs of these steps. In other
words, FrFT is computed in our proposed method the same
number of times as the FT is computed in the FT-based time
series prediction, and a fast computation algorithm for FrFT
([23]) can also be used. We show that FrFT-based RNN models
give better prediction performances than those based on either
time and frequency domain. Moreover, we also use a mechanism
that incorporates the FrFT order a as a learnable parameter and
learns its optimal value by training. This contribution adds an
attribute to our method that refrains us from manually selecting
the fraction order by incorporating a into the network as a
learnable weight similar to the remaining standard weights.
We demonstrated the superiority of our approach with several
experiments conducted on domain-general time series data from
a wide range of areas, such as nonlinear differential equations,
finance, and electric energy consumption.

II. PRIMER ON FRACTIONAL FOURIER TRANSFORM

For a € R, the ath order FrFT F* of a function or signal
f(t) € L2(R) is defined as follows [22]:

/Kut (t)dt,

u? cot p—2utcscop-+t2 cot qb)

Falu) = FH{f()

K,(u,t) = A¢e”

=+/1—1icoto, ¢ =an/2,

A¢€iﬂ(u2 cot p—2utcscop+t2 cot ¢) ifa 75 2%
Ko(u,t) =< do(u—t) ifa =4k —2
O(u—+t) ifa =4k + 2,

where k is an integer. FrFT operates with period 4 such that
F* = Fb where a = b mod 4. In other words, F* = F4kta
where a can be evaluated in the intervals [—2, 2] or [0, 4]. The
inverse FrFT for a certain fraction is (F¢)~! = F . Further
information on FrFT can be found in [22], [26], [27].

One needs to emphasize that the discrete version of FrFT is
also established [28], [29], and it is readily possible to represent
discrete-time signals in fractional Fourier domains. Similar to
the discrete Fourier transform (DFT), which can be computed
via a matrix-vector multiplication, the discrete fractional Fourier
transform (DFrFT) can also be expressed as matrix-vector
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multiplication [28]. Similarly, there are established fast com-
putation algorithms [23] for FrFT that have the same order of
computational cost as the famous fast Fourier transform (FFT).

Let X,, = {zo, 21,.....,x1—1} is a sequence of length L and
the formal definition for DFrFT of &, is given as a matrix
multiplication:

XF“ = WaXna (1)
where X, is manifested as a column vector, and W isthe L x L

DFrFT matrix with order a as given below:
L

k=0,k#(L—1+(L)2)

where (L)2 = L mod 2 and uy is the kth discrete Hermite-
Gaussian function [28]. Further implementation details and
derivations can be found in [23], [28], [30].

Wem,n] =

III. TIME SERIES PREDICTION USING FRACTIONAL FOURIER
REPRESENTATIONS

Our proposed method consists of two major stages. The
first stage (feature extraction) comprises the series of cascaded
operations that generate feature vectors from sequential time
series data. Similar to the STFT [31], [32], any univariate data
sequence X,, = {x1,x2,x3,...,21} of length L is multiplied
with a sliding window w,, of length 7 and split into M segments.
Resulting segments are stacked to create Xy € RM*7_ Subse-
quently, we apply FrFT to each row vector of Xy, by multiplying
its transpose with DFrFT matrix of order a, and X g« € Cc™M

is obtained. Finally, {x7 } , which are the columns of X,
are extracted as features as the followmg

Xn[m] = wp[n — Sm]X,[n], 3)
Xy = W(&,) € RM*7, )

Xpa = WX, (5)

Xpa € CTM s [xpIM e, (6)

where W is a mapping from a sequence to matrix of where each
row is a windowed segment X, [m] and W® € C™*7 is a DFrFT
matrix of a.

The second stage (encoder-decoder) of our proposed method
comprises a many-to-many encoder-decoder architecture with
Gated Recurrent Units (GRU) or basic RNNs cells [20], [33],
yielding two proposed variants. The features produced by the
first stage are fed into the encoder block of the second stage,
while the decoder part processes only the original time-domain
data. Our overall model is illustrated in Fig. 1.

The model is then trained using the training set of the se-
quential information that is being studied. The feature extraction
procedure is applied to only encoder training sequences, and the

features {X;}Zl are generated. These features are then fed
to the encoder block GRU (or basic RNNs) units sequentially
such that x} goes to the first encoder unit, and x'% goes to the
nth one. In the training procedure’s forward pass, the encoder’s
hidden state is initialized to zero, and weights are initialized with
Xavier initializer [34]. In each cell along the encoder, a new
hidden state is produced using the current input and previous
state and passed to the next cell. The state information of the
last cell is transferred to the decoder to initialize the decoder’s
hidden states. Similarly, hidden state information is produced
and propagated as in the encoder. Along the decoder, the output
vector of each cell is calculated as the multiplication of hidden

Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on January 30,2023 at 09:48:54 UTC from IEEE Xplore. Restrictions apply.



2544 IEEE SIGNAL PROCESSING LETTERS, VOL. 29, 2022
ENCODER
( A
h [ Y1
GRU/RNN > ‘GRU/RNN GRU/RNN > GRU/RNN
A .
Ix}r ‘x} Ixfé’ ! Ix'p"
N 5 J hM
_0
DECODER ha
X e CEme (L2, M ) k-t . «
' GRU/RNN < GRU/RNN ~ -==== GRU/RNN <« GRU/RNN
N\ | |
_ axT )
Xpa= WXy vk l & *l 3 vk
i ’ 4
X,y € RMXT ‘ (u) where u:=yp; me{12,..,K}
tw
..................................... X1-1Xp, DD p— e YaY3Y2 )1
time time
FEATURE EXTRACTION
Fig. 1. Feature vectors are extracted from the univariate time series using 3 cascaded operations. The proposed feature extraction method is applied to a sequence

of encoder blocks and fed into GRU/RNN cells. The prediction sequence of length P is generated at the decoder block.

state vector hg with output weights W7, and passed through
tanh activation function. The output vectors are multiplied
with DFrFT of order —a to calculate the inverse FrFT, then
converted to one-dimensional sequences as in the case with the
inverse STFT [31], [32]. The resulting sequence is finally used
to perform the prediction. It is also necessary to mention that the
length of the decoder block can differ from that of the encoder.

In the backward pass, the mean-squared error (MSE) between
the predicted and the decoder training sequences is calculated,
and weights are updated via back-propagation using RMSProp
optimizer [35]. After the training phase, model parameters and
weights are stored for the inference phase with unseen test data.

Finally, the stored parameters and weights are used to ini-
tialize the test model in the inference phase. Features extracted
from encoder test sequences are fed to the encoder network, and
the last hidden state is transferred to the decoder. In each cell
along the decoder, output vectors are calculated to generate a
prediction sequence for decoder test data.

IV. EXPERIMENTS & RESULTS

We conducted experiments on one synthetic dataset and two
real-world datasets to demonstrate our proposed approach.

A. Datasets

1) Mackey-Glass Chaotic Time Series: It is generated from
a nonlinear, time delay differential system that is described by
the following differential equation [36]:

dz Bx(t —T)

where 5 = 0.2,y =0.1,dt = 0.1, and T" = 17. Starting values
up to T-th second are initialized as 1 + u[—0.1, +0.1] where u
stands for the uniform distribution.

2) TRY Currency Exchange Ratio: Currency exchange ratio
data between USD and Turkish lira (TRY) from Jan. 1, 2007
to Jan. 1, 2020 are used [37]. In recent years, the USDTRY
exchange ratio has shown rapid fluctuations, which makes this
data challenging to predict the series of future values based on
past information. We filled in missing days data in this dataset
with the average data from the previous and following days.

3) University of California - Irvine (UCI) Electricity Load
Dataset: UCI dataset in [38] contains the electricity consump-
tion of 370 customers from Jan. 1, 2011, to Jan. 1, 2015, in

Algorithm 1: Learning Sequential Information Using
FRFT Representations. ® Stands for Hadamard Point-Wise
Multiplication.

. iV F
Input: Encoder feature vectors: {x% }izl
Output: Model weights: W ¢4
1:  Parameters: £ and D (encoder-decoder sequence lengths), T'iep
(iteration number)
2: Initialize: W, h0 =0
3: fort =110 Tjte, do
4: Forward Pass:
5: fori =1to E do
6: if GRU then ) )
7 2l = 0y (Weoxh + Wiy hi 1)
8 Tl = 0g(Wyraxt + Wy, -hi )

9: h;ﬁ = tanh(me% + Whh(ré ® hﬁ;l))
10: hi=z0hi+(1-z)ohi!
11: else if RNN then
12: hZ = aq(Wm;xF + I/thhZ 1)
13: end 1f
14: end for

15 kY« h?
16: for j = 1to D do

17: if GRU then -

18: Zd—aq(thhJ_ )

19: r; = gg(Whehl ")

20: h) = tanh(Whh(rd ohl )
21: hé_zdohéJr(lfze)vhJ !
22: else if RNN then

23: b = og(Wiph! )

24: end 1f

25: V7> = tanh(Wyy b, )

26: end for

27: {yp }p:1 — {}7} }j: ) (inverse fractional Fourier Transform and
sequence reconstruction)

28: Backward Pass

290 Luse@y) =5 Z —yi)?

30: Update welghts Wi ‘%Vt 1

31: end for

32: return Wz 0

15 min. resolution, and values are in kW. Due to many missing
values, data before 2011 is not utilized. Each value is divided by
4 (since 15 minutes is one-fourth of an hour) to convert energy
consumption into kWh. Daily total energy consumption is then
used instead of 15 minutes resolution. Data is also normalized
using min-max normalization for each customer.
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TABLE I
MACKEY-GLASS FOR VARIOUS ARCHITECTURES AND ORDERS a

a GRU64 RNN64 GRU64,, p, RNN64[ p,; cgGRU64 cgGRU32

0.5 0.030 0.022 71.84 71.63 0.005  0.022
0.6 0.021 0.034 64.14 64.20 0.010  0.020
0.7 0.026 0.026 47.14 47.55 0.011 0.032
0.8 0.020 0.017 2.256 3.614 0.006  0.054
0.9 0.024 0.013 0.039 0.027 0010 0.039
[T00.023 0.034 0.044 0.012 0015 0.175 ]
1.1 0027 0.031 0.040 0.041 0.004  0.078
1.2 0033 0.023 0.942 2.556 0.011 0.029
1.3 0.018 0.019 46.85 46.91 0.009  0.013
1.4 0024 0.016 64.13 64.19 0.009  0.014
1.5 0.016 0.017 71.71 71.81 0013 0.035
TABLE II
TRY/USD FOR VARIOUS ARCHITECTURES AND ORDERS a
Model

a GRU64 RNN64 GRU64, p, ; RNN64,p,, cgGRU64 cgGRU32
05 933 978 63.22 63.31 9.07 8.81
06 972 932 49.01 48.95 8.95 7.65
0.7 9.61 10.17 43.43 43.05 9.03 8.48
0.8 984 928 10.08 10.40 8.84 8.49
0.9 999 872 9.91 10.39 9.23 9.10
[1.0_9.74 8.15 10.74 10.92 8.57 9.73 ]
1.1 954 9.03 10.08 10.39 9.33 8.94
12 943 9389 10.83 10.92 8.84 8.48
13 970 1044 44.55 44.58 8.06 8.15
14 10.13  10.05 49.08 48.89 9.38 8.23
15 9.05  10.17 62.70 62.96 9.22 8.68

B. Implementation Details

In our experiments, the initial state of the encoder block is
set to zero. A learning rate of 0.001 is used in training where
the number of iterations for each dataset is 30,000, 10,000, and
30,000, respectively. The learning rate is exponentially decayed
by 0.9 in every 1,000 steps. The Gaussian window is used with
a length of 64 samples for currency and electric consumption
datasets and 128 samples for the Mackey-Glass.

C. Results

We consider six variants of our proposed FrFT-based time
series prediction method in our experiments. Each variant is
designed to process features in fractional Fourier domains.
GRU64 and RNN64 stand for GRU and RNN architectures with
hidden state sizes of 64. Similarly, GRU64, p,, and RNN64,p, .
are GRU and RNN architectures with a hidden state size of
64. However, they are fed with feature vectors filtered using a
low-pass filter where the cutoff frequency is 1/16 of the orig-
inal signal bandwidth. cgGRU32 and cgGRU64 architectures
stand for complex-gated GRUs with hidden sizes of 32 and 64,
respectively. Complex-gated GRU [21] is an advanced architec-
ture capable of being trained with complex-valued weights.

We use normalized mean-squared percentage error (NMSPE)

as our evaluation metric. It is defined as 100 x SN (y; —

9:)?%/ Efi 1(y;)? and expressed as a percentage, where y; is
the target value and ; is the predicted value. In Tables I-III, the
performances of various methods are reported for different FrFT
orders and architectural differences for all three datasets. In the
tables, results for the special case of the ordinary FT (order
a = 1) are boxed as baselines, and better-performing results
concerning their corresponding baselines are emboldened.

We also perform experiments involving the fraction order a to
the parameter learning stage. The fraction order a is considered
a learnable weight similar to the remaining learnable network
parameters. Instead of manually searching for the optimal value,
a is randomly initialized from the uniform distribution U ~
(0.5,1.5) and learned in the network iteratively to minimize
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TABLE III
ELECTRIC CONSUMPTION FOR VARIOUS ARCHITECTURES AND ORDERS a

a GRU64 RNN64 GRU641, p, ; RNN64 1 p,, ceGRU64 cgGRU32

0.5 2854 11.98 79.52 71.43 17.25 22.30
0.6 21.26 10.92 59.73 55.93 19.39 20.30
0.7 20.62 11.58 56.78 47.2 16.27 19.78
0.8 26.65 10.34 12.98 14.33 15.14 21.71
0.9 1995 10.36 12.47 7.51 18.41 19.00
[1.0 19.00 10.54 10.12 8.38 16.98 20.63 |
1.1 17.24 11.52 12.94 8.03 16.86 20.62
1.2 18.58 10.40 11.89 8.65 17.18 19.70
1.3 2538 10.64 53.55 47.26 18.68 25.65
1.4 18.82 10.42 61.86 56.41 19.72 18.38
1.5 21.54 12.19 85.71 7143 18.41 20.31
TABLE IV

BEST MODEL PERFORMANCES OF THE PROPOSED METHOD ARE COMPARED TO
BASELINES THAT USE GRU/RNN

Dataset Model NMSPE (%)
RNN64 (2,=0944) 00035

Mackey-Glass cgGRU64 (a=1.1) 0.004
GRU64pqscline 0.23
RNN64p4scline 5.48

N cgGRU32 (q;=1277) 659

TRY-USD cgGRUG4 (a=1.3) 8.06
GRU64p45e1ime 1030
RNN64jq5cline 12,01

GRUG64 (,=0.858) 6.20
RNN647,p,, (a=09)  7.51
GRU64pqccline 10.84
RNN64)q5cline 14.76

Electric Consumption

training loss. We denote the learned fraction orders as a; in
order to discriminate them from manually selected fraction
orders a that are tabulated in Tables I-III. The performances
of the best model with the value of learned fraction order
a; are tabulated in Table IV. We also compare our proposed
methods with GRU64,sc1ine and RNN64y,sciine, Which are
conventional time series prediction methods that do not use
Fourier analysis, and the results can be found in Table IV.

In each experiment, the best model performance of the pro-
posed method based on manually-selected fraction order a
significantly improves the baseline methods at fraction orders
different than @ = 1.0. Moreover, the proposed method based
on learned fraction order a; both automatizes the parameter
search stage and significantly improves the model performance.
These promising results show that the FrFT-based time series
prediction improves the conventional baseline methods and the
ordinary FT-based time series prediction.

V. CONCLUSION

We introduced the FrFT to the time series prediction problem,
which is new to its classical application areas. The parametric
nature of FrFT helps us to reach and select from infinitely many
signal domains to represent signals for better prediction. We
made the fraction order a a learnable parameter, which alleviates
and accelerates the process of finding the most representative
signal domains. This property can also be extended to create
custom pre-trained and fine-tuned models to tune models only
for the learnable fractional order as future work.

We demonstrated the proposed method on domain-general
signals from a wide range of areas. An immediate future di-
rection is to make an in-depth analysis to determine what
kind of signals is more suitable for the FrFT-based approaches
in the proposed new application domain of FrFT. FrFT-based
time series prediction can open up further future develop-
ments where the flexibility of FrFT can be leveraged to
improve the performances of several neural network-based
architectures.
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