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A B S T R A C T

Airlines tend to design their flights schedules with the primary concern of the minimization of
operational costs. However, the recently emerging idea of resilient scheduling defined as staying
operational in case of unexpected disruptions and adaptability should be of great importance
for airlines as well due to the high opportunity costs caused by the flight cancellations and
passenger inconvenience caused by delays in the schedule. In this study, we integrate resilient
airline schedule design, aircraft routing and fleet assignment problems with uncertain non-
cruise times and controllable cruise times. We follow a data-driven method to estimate flight
delay probabilities to calculate the airport congestion coefficients required for the probability
distributions of non-cruise time random variables. We formulate the problem as a bi-criteria
nonlinear mixed integer mathematical model with chance constraints. The nonlinearity caused
by the fuel consumption and CO2 emission function associated with the controllable cruise
times in our first objective is handled by second order conic inequalities. We minimize the total
absolute deviation of the aircraft path variability’s from the average in our second objective to
generate balanced schedules in terms of resilience. We compare the recovery performances of
our proposed schedules to the minimum cost schedules by a scenario-based posterior analysis.

1. Introduction

Airlines are one of the most complex industries which consist of large scale networks. Therefore, they need to schedule their
limited resources effectively. Besides the complexity of the airline scheduling problems, airlines run in an uncertain environment
which causes the airlines to be open to unpredicted changes. So, airlines should also be able to manage disruptions. This situation
forces airlines to create schedules which are capable of adapting or withstanding disruptions.

Different types of schedules are defined in the literature regarding airline scheduling. The most common term that we can use
for an airline schedule is ‘‘robust’’. Cook et al. (2016) define robustness as the resistance to withstand stresses beyond normal limits.
There are several studies available in the literature which aim to create robust airline schedules and aim to increase the robustness
through increasing the passenger connection service levels. As new optimization and prediction techniques are developed, other
terms started to be used in this sector as well. Lufthansa (2018) mentions in their blog that minimizing the delay risks can be
achieved through the use of resilient scheduling rather than robust scheduling. Resilience can be defined as the ability of a system
to withstand and stay operational in the face of an unexpected disturbance or unpredicted change as discussed in Wang et al. (2019).

In fact, resilience is a more comprehensive term than robustness and where they differ is that robust schedule design aims to
accommodate any uncertain future events such that the initially desired future state can still be achieved whereas resilient schedule
design aims to adapt to disruptions by changing its methods while continuing to operate and to be able to return to the original state
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of the system or move to a new desirable state after disruptions. Clearly, resilient schedule design is an emerging area and not much
of a literature has been developed where resilience is considered as an objective besides the total cost or profit of the generated
schedules. This study aims to create resilient airline schedules by considering the trade-off between decreasing the variability of the
system and minimizing the operational cost of the generated schedules.

In our study, we propose an integrated approach to resilient airline scheduling problem to minimize delay risks. In contrary to
he single-criterion approaches which focus on minimizing the total costs of schedules, we follow a bi-criteria framework to increase
he resilience of the system while keeping the operational cost within acceptable limits. To achieve that, we introduce the variability
f the system as an indicator of resilience. We propose that the variability of the system depends on the several factors, such as the
irport congestion, the fleet assignments due to the different characteristics of the aircraft, and also the flight departure times which
ffect the uncertain non-cruise times. Thus, we calculate the variability of an aircraft path based on its characteristics and flight
ssignments. Then, our proposed objective is to minimize total absolute deviation of the variability’s of aircraft paths from their
verage such that the resulting schedule would be as balanced as possible. The motivation behind aiming for balanced schedules is
hat the disruptions that we are aiming to handle are uncertain and which aircraft is going to be affected by them cannot be known
or sure beforehand. This is the key contribution of this study to the resilient airline scheduling literature.

Another important contribution to the related literature is to incorporate empirical techniques to capture the effects of airport
ongestion in the random variables that we use for uncertain non-cruise times. We followed a data-driven methodology to estimate
eparture and arrival delay probabilities of flights which were generally taken as the equal to each other in the existing literature. We
lso contribute to the literature by introducing a data-driven procedure to calculate turnaround times required to prepare aircraft
etween consecutive flights which provides a more thoroughgoing way than normalizing the number of passengers visiting the
irports as it was done in the literature.

We first propose a bi-objective nonlinear mixed-integer mathematical model with chance constraints. Afterwards, we reformulate
t to handle the nonlinearity by using second order conic inequalities, and to handle probabilistic chance constraints by using value-
t-risk risk measure to be able to solve the problem via commercial solvers. We also devise a math-heuristic algorithm for larger
light networks, and develop an integrated flight and passenger recovery algorithm in order to evaluate the performance of our
roposed formulation via a posterior analysis. Finally, we conducted several what if analyses to gain some managerial insight on
he behaviour and performance of our proposed methodology. To summarize, main contributions of this study are as follows:

– In our bi-objective framework, we minimize the variability of the system depending on aircraft characteristics, fleet assignment
and schedule design decisions while keeping the operational cost within acceptable limits.

– We propose a novel data-driven methodology for calculating the parameters required for the probability distributions of non-
cruise time random variables in which delay probabilities occurred in origin and destination airports are distinguished from
each other.

– We utilize value-at-risk risk measure to reformulate the chance constraints.

The remainder of this paper is organized in the following way. In Section 2, we provide a literature review on robust airline
cheduling and airline recovery problems. In Section 3, we introduce the proposed bi-criteria nonlinear mixed-integer mathematical
odel with chance constraints. Section 4 describes the proposed discretized approximation and aircraft swapping algorithm. An

xtensive computational study is provided in Section 5, along with the empirical study that we conducted on the historical airline
n-time performance data. In Section 6, we present the managerial insights gained by the several what if analyses on different
roblem parameters.

. Literature review

Although the term ‘‘resilience’’ has been used in network design problems, this is a relatively new idea in airline scheduling.
herefore, we mainly focus on the robust scheduling literature as well as the pioneering works for resilient airline scheduling. In
flight schedule, block times of flights consist of cruise times which can be controlled by adjusting the speed of the aircraft and

on-cruise times that are uncertain. Majority of the non-cruise times are allocated to taxi-in and taxi-out times of the aircraft which
re subject to high uncertainty so they cause significant delays resulting in passengers missing their flight connections. Because of
his uncertainty, many works in the literature focus on robust airline scheduling in order to satisfy passenger connection service
evels.

AhmadBeygi et al. (2010) aim to minimize the expected value of delay propagation by modifying the flight departure times to
e-allocate the existing slack in the flight networks. Sohoni et al. (2011) develop a comprehensive model that includes block-time
ncertainty where they explicitly model block-time distributions through chance constraints while incorporating network service
evels. Deshpande and Arıkan (2012) propose a newsvendor framework by constructing overage and shortage costs and also show
hat the stochastic non-cruise times fit a symmetric Log-Laplace distribution. Duran et al. (2015) propose a mathematical model
hich inserts slacks into the schedule and speed up the aircraft if necessary as well as using chance constraints on passenger

onnection service levels. Gürkan et al. (2016) use chance constraints on the passenger connection service levels to generate
obust flight sequences together with the aircraft fleeting and routing decisions. Cadarso and De Celis (2017) propose an integrated
pproach for airline planning where the aim is to update flight schedules when a disruption occurs in a way that the robustness
s achieved against demand uncertainty by decreasing the number of mis-connected passengers. Ben Ahmed et al. (2017) propose
hybrid approach to obtain robust decisions for aircraft routing and re-timing through the use of optimization and simulation in

erms of the flight delays and their propagation through the flight network.
2
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Recently, there have been few studies which follow data-driven frameworks focusing on flight delay. Arora and Mathur (2020)
nalyze the impact of delayed departure of flights on their arrivals by multinomial logistic regression. Lambelho et al. (2020)
ropose a machine-learning based mechanism to assess the flight schedules of airlines with respect to their cancellation and delay
redictions. Wang et al. (2021) focus on the importance of the prediction of taxi times, which is important for creating robust
chedules due to being a significant portion of the uncertain non-cruise times. Prakash (2020) focuses on generating reliable routes
n networks where reliability is defined as the probability of on-time arrival at the destination, given a threshold arrival-time. Xu
t al. (2021) propose an integrated robust scheduling approach that decides on the schedule design, fleet assignment, and aircraft
outing, while considering the effects of propagated delays.

Some pioneering works which consider the resilience of the airline networks are as follows: Janić (2015) develops a methodology
o estimate the resilience of the air transport networks and defines resilience as the ability of the network to neutralize the effects of
isruptive events. Clark et al. (2018) consider the resilience of the airport network of the U.S. National Airspace System and propose
n approach to characterize the resilience of the airport systems after disruptive events. More recently, Wong et al. (2020) propose
data-driven approach which utilizes the Mahalanobis distance metric to quantify abnormalities across the flight networks.

Since the aim in this study is to create flight schedules such that the schedule responds to unexpected events well with respect
o certain performance metrics, airline recovery plays an important role on observing the performance of the schedules under
isruptions through posteriori analyses. There is a rich amount of literature on airline disruption management. For an extensive
eview, the recent work by Hassan et al. (2020) can be referred. Petersen et al. (2021) suggest an optimization approach to integrated
irline recovery by decomposing the problem into subproblems such as the schedule recovery problem, the aircraft recovery problem,
he crew recovery problem, and the passenger recovery problem. It is important to note that there is a critical trade-off between the
uel consumption (and its adverse impact on surface air quality) and delay minimization. Although flight time controllability is a
ery popular local recovery strategy in practice to deal with the disruptions, its benefit has been limited because it does not consider
etworkwide integrated effects. Aktürk et al. (2014) was the first study in which the cruise speed was included as a decision variable
n an airline recovery optimization model along with the environmental constraints and cost coefficients. Although optimization
echniques are used quite extensively in the airline industry, this was the first implementation of a conic quadratic optimization
pproach to solve a critical aircraft recovery problem in an optimal manner. Afterwards, Arıkan et al. (2017) extended this study and
roposed a new flight network based representation to capture interdependencies between aircraft, crew members and passengers.
ecently, Evler et al. (2021) propose a resource-constrained project scheduling problem (RCPSP) to obtain recovery actions for
isruptions created due to the unavailability of different resources. They define the resilience as the schedule recovery performance
nd by providing resilient solutions, they claim that the total cost and delay caused by the schedule deviations are minimized. This
tudy is also one of the recent works that include resilience into the airline planning and scheduling problems which in fact is in
ine with the scope of our study.

. Proposed formulation

We consider aircraft routing, fleet assignment and schedule design through flight departure times in an integrated manner while
e also handle uncertainty caused by non-cruise times. Given the set of flights to be operated and the set of available aircraft, the
roblem is to determine the routes of the aircraft, block times of the flights, idle times of the aircraft, and fleet assignments to
he determined routes while minimizing the total operational cost as well as the variability of the system. A typical flight involves
everal stages: taxi-out, takeoff, climb, cruise, descent, final approach, landing, and taxi-in. Although the cruise stage is the most
uel efficient portion of the flight, most of the fuel is burned during this longest stage for a typical flight. There is also little room
or planned compression in other stages because they are generally dictated by local traffic and safety considerations. Airlines could
djust the cruise speed by considering a critical trade-off between the fuel consumption (and its adverse impact on surface air
uality) and delay minimization during the flight planning stage. In order to take full advantage of cruise time controllability, we
eed to consider its system-wide integrated effects. The major difficulty with including cruise speed control into our model is that
he fuel burn and carbon emissions are nonlinear in cruise speed. Therefore, we have taken cruise time as a decision variable (along
ith the inserted idle times, if any) that directly affects the block times and departure times as well. On the other hand, other stages
f the block time, denoted as the non-cruise times, are assumed to be random variables in our study. In sum, the block time of each
light consists of cruise and non-cruise times. Cruise times are controllable in albeit of fuel consumption and CO2 emission costs,

whereas non-cruise times are random variables which are the main source of uncertainty in the system.
The variability of the system depends mainly on the congestion levels of origin and destination airports which affect the non-

cruise times of flights. Since the congestion levels at the airports are significantly affected by the time of the day, scheduled departure
and arrival times of the flights play an important role on the variability of the system. Minimization of the variability level through
the decision of scheduled times requires adjusting the cruise times and idle times of the flights both of which are controllable in our
study. Besides the scheduled times, we also consider the aircraft assignments to the flights while calculating the variability of the
whole system. Then, we aim to distribute the variability contained in the system in a balanced way such that each aircraft path has
a variability value as close to each other as possible. In order to achieve that, in the second objective of our mathematical model,
we minimize the absolute deviation of the aircraft path variability’s from the average.

We claim that minimizing the variability of system and distributing it as equally as possible throughout all the available aircraft
paths increase the resilience of the schedule. We can define increasing the resilience in this context as decreasing the vulnerability
of the schedule to unexpected changes in the non-cruise times. Then, to justify the previous claim, the entire schedule can be
3

considered as a queueing system with multiple queues where each aircraft represents a server and each flight assigned to the
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aircraft is a job in the queue of that aircraft. When we fix the scheduled arrival times of flights, time between the departure of
two consecutive flights is analogous to a deterministic interarrival time. Furthermore, the sum of cruise and non-cruise times is
analogous to a random service time because of the uncertainty in non-cruise time. Then, we notice that adjusting the departures
of flights intelligently enables us to utilize the aircraft more effectively. For instance, inserting idle times increases the interarrival
times, which is equivalent to decreasing the arrival rate for the queue. This clearly decreases the utilization of the server. We know
from the fundamental queueing results that if the server is utilized fully, then the expected waiting time of the jobs grows to infinity
in the long run. In our context, waiting time is analogous to a departure delay. By optimizing the utilization levels of the aircraft,
we avoid having propagated delays in the long run since we can achieve finite expected waiting times. Although we consider a daily
planning horizon, this work can be extended to capture longer horizons which is more in line with the long run expected waiting
time results of queueing theory. Therefore, it decreases the vulnerability of the entire schedule which means that the resilience of
the system can be improved through this method. In addition, distributing the variability among the aircraft paths in a balanced way
prevents us from having some aircraft idle for long duration while some other having long propagated delays due to high utilization
rates. This in fact makes the schedule less vulnerable to unexpected disruptions since it is not known beforehand that which aircraft
or airport is going to be disrupted.

Together with this motivation, we constructed a methodology to capture the aforementioned key points. In the remainder of this
ection; we first introduce the proposed mathematical model, and then the random variable denoting the non-cruise times with its
athematical properties.

Sets:
𝑇 ∶ set of aircraft
𝐹 ∶ set of all flight legs
𝐵 ∶ set of airports
𝐴 ∶ set of all possible consecutive flight pairs

𝑈𝑆 𝑖 ∶ set of flights which can connect to flight 𝑖, 𝑖 ∈ 𝐹

𝐷𝑆 𝑖 ∶ set of flights which can flight 𝑖 can connect to, 𝑖 ∈ 𝐹

𝐹 𝑡
𝑒 , 𝐹

𝑡
𝑠 ∶ set of flights which aircraft 𝑡 can use as the first and last flight in the schedule, 𝑡 ∈ 𝑇

Parameters:
𝐼𝑑𝑙𝑒𝑡 ∶ cost of idle time of aircraft 𝑡 ∈ 𝑇 per minute
𝑐𝑓𝑢𝑒𝑙 ∶ cost of fuel per ton of fuel consumption
𝑐𝐶𝑂2

∶ cost of emission per ton of aircraft CO2 emission
𝐷𝑒𝑚𝑖 ∶ passenger demand of flight 𝑖 ∈ 𝐹

𝐶𝑎𝑝𝑡 ∶ seat capacity of aircraft 𝑡 ∈ 𝑇

𝐶𝑠𝑝𝑙𝑖 ∶ opportunity cost of a spilled passenger of flight 𝑖 ∈ 𝐹

𝑂𝑖, 𝐷𝑖 ∶ origin and destination airports of flight 𝑖 ∈ 𝐹

𝑁𝐶𝑖 ∶ random parameter denoting the non-cruise time of flight 𝑖 ∈ 𝐹

𝑇𝐴𝑖𝑗 ∶ turnaround time needed to prepare aircraft between flights (𝑖, 𝑗) ∈ 𝐴

𝜆𝑡 ∶ total available cruise time of aircraft 𝑡 on a day, 𝑡 ∈ 𝑇

𝑏𝑓𝑡 ∶ base value for aircraft 𝑡 ∈ 𝑇

𝑒𝑏 ∶ airport congestion coefficient of airport 𝑏 ∈ 𝐵

𝑓 𝑙
𝑖 , 𝑓

𝑢
𝑖 ∶ lower and upper time limits on the cruise time of flight 𝑖 ∈ 𝐹

𝑑𝑙𝑖 , 𝑑
𝑢
𝑖 ∶ lower and upper time limits on the departure time of flight 𝑖 ∈ 𝐹

𝛾𝑖 ∶ desired probability level for the chance constraint for flight 𝑖 ∈ 𝐹

Decision Variables:
𝑑𝑖 ∶ departure time of flight 𝑖 ∈ 𝐹

𝑠𝑡𝑖 ∶ idle time of aircraft 𝑡 after flight 𝑖, 𝑡 ∈ 𝑇 , 𝑖 ∈ 𝐹

𝑓 𝑡
𝑖 ∶ cruise time of flight 𝑖 performed by aircraft 𝑡, 𝑖 ∈ 𝐹 , 𝑡 ∈ 𝑇

𝑞𝑖 ∶ scheduled block time of flight 𝑖 ∈ 𝐹

𝑥𝑡𝑖𝑗 ∶ 1 if flight 𝑖 is followed by flight 𝑗 performed by aircraft 𝑡, 𝑖 ∈ 𝐹 , 𝑗 ∈ 𝐹 , 𝑡 ∈ 𝑇 , and 0 o.w.

𝑦𝑡𝑖 ∶ 1 if flight 𝑖 is the first flight performed by aircraft 𝑡, 𝑖 ∈ 𝐹 , 𝑡 ∈ 𝑇 , and 0 o.w.
𝑡

4

𝑧𝑖 ∶ 1 if flight 𝑖 is the last flight performed by aircraft 𝑡, 𝑖 ∈ 𝐹 , 𝑡 ∈ 𝑇 , and 0 o.w.
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We formulate the problem as a bi-criteria nonlinear mixed-integer mathematical model with chance constraints as follows:

min 𝐹1 ∶
∑

𝑖∈𝐹

∑

𝑡∈𝑇
(𝑐𝑓𝑢𝑒𝑙 + 𝑐𝐶𝑂2

) ⋅ 𝐹 𝑡
𝑖 (𝑓

𝑡
𝑖 ) +

∑

𝑖∈𝐹

∑

𝑡∈𝑇
𝑠𝑡𝑖 ⋅ 𝐼𝑑𝑙𝑒𝑡

+
∑

𝑖∈𝐹

∑

𝑡∈𝑇
(𝑦𝑡𝑖 +

∑

𝑗∈𝑈𝑆𝑖
𝑥𝑡𝑖𝑗 ) ⋅ 𝐶𝑠𝑝𝑙𝑖 ⋅max{0, 𝐷𝑒𝑚𝑖 − 𝐶𝑎𝑝𝑡} (1)

min 𝐹2 ∶
1
|𝑇 |

∑

𝑡∈𝑇

|

|

V𝑡 − V̄|
|

(2)

s.t.
∑

𝑗∈𝑈𝑆𝑖
𝑥𝑡𝑗𝑖 + 𝑦𝑡𝑖 −

∑

𝑗∈𝐷𝑆𝑖
𝑥𝑡𝑖𝑗 − 𝑧𝑡𝑖 = 0 ∀𝑖 ∈ 𝐹 , 𝑡 ∈ 𝑇 (3)

∑

𝑖∈𝐹
𝑦𝑡𝑖 ≤ 1 ∀𝑡 ∈ 𝑇 (4)

∑

𝑡∈𝑇
(𝑦𝑡𝑖 +

∑

𝑗∈𝑈𝑆𝑖
𝑥𝑡𝑖𝑗 ) = 1 ∀𝑖 ∈ 𝐹 (5)

∑

𝑖∈𝐹
𝑓 𝑡
𝑖 ≤ 𝜆𝑡 ∀𝑡 ∈ 𝑇 (6)

IF
∑

𝑡∈𝑇
𝑥𝑡𝑖𝑗 = 1 THEN

P{𝑁𝐶𝑖 ≤ 𝑞𝑖 −
∑

𝑡∈𝑇
(𝑓 𝑡

𝑖 + 𝑠𝑡𝑖) − 𝑇𝐴𝑖𝑗} ≥ 𝛾𝑖 ∀(𝑖, 𝑗) ∈ 𝐴 (7)

𝑞𝑖 = 𝑑𝑗 − 𝑑𝑖 ∀(𝑖, 𝑗) ∈ 𝐴 (8)
IF (𝑦𝑡𝑖 +

∑

𝑗∈𝑈𝑆𝑖
𝑥𝑡𝑗𝑖) = 1 THEN

𝑓 𝑙
𝑖 ≤ 𝑓 𝑡

𝑖 ≤ 𝑓 𝑢
𝑖 ∀𝑖 ∈ 𝐹 , 𝑡 ∈ 𝑇 (9)

ELSE

𝑓 𝑡
𝑖 = 0 and 𝑠𝑡𝑖 = 0 ∀𝑖 ∈ 𝐹 , 𝑡 ∈ 𝑇 (10)

𝑑𝑙𝑖 ≤ 𝑑𝑖 ≤ 𝑑𝑢𝑖 ∀𝑖 ∈ 𝐹 (11)

𝑦𝑡𝑖 = 0 ∀𝑡 ∈ 𝑇 , 𝑖 ∈ 𝐹∖𝐹 𝑡
𝑠 (12)

𝑧𝑡𝑖 = 0 ∀𝑡 ∈ 𝑇 , 𝑖 ∈ 𝐹∖𝐹 𝑡
𝑒 (13)

𝑞𝑖 ≥ 0 ∀𝑖 ∈ 𝐹 (14)

𝑠𝑡𝑖 ≥ 0 ∀𝑖 ∈ 𝐹 , 𝑡 ∈ 𝑇 (15)

𝑥𝑡𝑖𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴, 𝑡 ∈ 𝑇 (16)

𝑦𝑡𝑖 ∈ {0, 1} and 𝑧𝑡𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝐹 , 𝑡 ∈ 𝑇 (17)

The first objective function (1) is the operational cost which is the sum of the fuel consumption and CO2 emission costs,
he idle time cost of the aircraft and the opportunity cost of spilled passengers. The second objective function (2) is the total
bsolute deviation of the aircraft path variabilities from the average variability. Constraints (3) are the network balance constraints.
onstraints (4) ensure that each aircraft can be used for at most one path. Constraints (5) ensure that each flight can be performed
y exactly one aircraft. Constraints (6) limit the total time spent by an aircraft on air in a day. The chance constraints (7) require
hat if two flights are performed by the same aircraft, then the probability of the non-cruise time of the earlier flight being less
han or equal to the difference of departure times minus the sum of the cruise, idle, and the aircraft turnaround times should be at
east the desired service level 𝛾𝑖. Constraints (8) ensure that the block times of two flights that are performed by the same aircraft
quals to the difference between their departure times. If flight 𝑖 is performed by aircraft 𝑡 then constraints (9)–(10) limit cruise
ime change; cruise time of a flight cannot exceed the upper and lower bounds, else the corresponding variables 𝑓 𝑡

𝑖 and 𝑠𝑡𝑖 are set to
ero. Constraints (11) put lower and upper bounds on the flight departure times due to the marketing considerations. Constraints
12) and (13) sustain a maintenance policy by preventing some flights from being the first or the last flight that is operated in a day.
n the current study, we limit our domain to a single day scheduling problem, although it can be extended to multi-day scheduling
roblem. In this case, we could use the decision variables 𝑦𝑡𝑖 and 𝑧𝑡𝑖, e.g., denoting the first and last flights performed by aircraft 𝑡,
espectively, along with the additional constraints to ensure the continuity between the days at each airport. Constraints (14)–(17)
re non-negativity and integrality constraints.

In this formulation, the random variable 𝑁𝐶𝑖 denotes the non-cruise time of flight 𝑖 ∈ 𝐹 . According to the study of Deshpande
nd Arıkan (2012), non-cruise times fit a symmetric Log-Laplace distribution. Therefore, 𝑁𝐶𝑖’s are assumed to have Log-Laplace

𝛼

5

istribution where each random variable is associated with two parameters, 𝛼 for scale and 𝛽𝑖 > 0 for shape. Then, 𝑒 is the scale
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Table 1
Description of the variables.

Variable Description

ORIGIN
DEST
TAIL_NUM
CRS_DEP_TIME
CRS_ARR_TIME
DEP_TIME
ARR_TIME
DEP_DEL15
ARR_DEL15
DEP_DEL_NEW
ARR_DEL_NEW
TAXI_OUT
TAXI_IN
AIR_TIME
DISTANCE

Origin Airport
Destination Airport
Tail Number
Planned Departure Time (in local time: hhmm)
Planned Arrival Time (in local time: hhmm)
Actual Departure Time (in local time: hhmm)
Actual Arrival Time (in local time: hhmm)
Departure Delay Indicator: 15 Minutes or More (1 = Yes)
Arrival Delay Indicator: 15 Minutes or More (1 = Yes)
Difference in minutes between scheduled and actual departure time
Difference in minutes between scheduled and actual arrival time
Taxi Out Time, in Minutes
Taxi In Time, in Minutes
Flight Time, in Minutes
Distance between Airports in Miles

parameter and 1∕𝛽𝑖 is the tail parameter. Probability density functions of 𝑁𝐶𝑖 is given as:

𝑓𝑁𝐶𝑖
(𝜂) =

⎧

⎪

⎨

⎪

⎩

1
2𝛽𝑖𝜂

𝑒
ln(𝜂)−𝛼

𝛽𝑖 , if ln(𝜂) < 𝛼

1
2𝛽𝑖𝜂

𝑒
− ln(𝜂)+𝛼

𝛽𝑖 , if ln(𝜂) ≥ 𝛼.
(18)

In order to solve the proposed formulation by a commercial solver, the probabilistic chance constraints (7) can be written as

𝑑𝑗 − 𝑑𝑖 −
∑

𝑡∈𝑇
(𝑓 𝑡

𝑖 + 𝑠𝑡𝑖) − 𝑇𝐴𝑖𝑗 ≥ VaR1−𝛾𝑖 (𝑁𝐶𝑖) (19)

where VaR1−𝛾𝑖 (𝑁𝐶𝑖) represents the value-at-risk at the service level 𝛾𝑖 and it is calculated as

VaR1−𝛾𝑖 (𝑁𝐶𝑖) =

{

(2𝛾𝑖)𝛽𝑖𝑒𝛼 , if ln(𝜂) < 𝛼
𝑒𝛼

(2−2𝛾𝑖)𝛽𝑖
, if ln(𝜂) ≥ 𝛼

(20)

where the parameter 𝛽𝑖 is calculated as 𝛽𝑖 = 𝛽(𝑒𝑂𝑖
)2(𝑒𝐷𝑖

)2 in which 𝛽 is the base shape parameter and 𝑒𝑂𝑖
and 𝑒𝐷𝑖

represent the
congestion coefficients of origin and destination airports of flight 𝑖, respectively. By replacing constraints (7) with inequality (19) in
the mathematical model, chance constraints are handled via the closed-form representation of the quantile function of Log-Laplace
probability distribution.

Airport congestion coefficients are calculated based on the following data-driven methodology. Intuitively, departure and
arrival delay probabilities of flights, and turnaround times of the aircraft are closely related to the congestion levels in airports.
Therefore, we aim to first estimate these probabilities using the historical Airline On-Time Performance Data provided by Bureau of
Transportation Statistics (2021) on each flight operated between major airports in the United Stated by United Airlines in the years
2018 and 2019. The data set contains origin and destination airports of flights, tail numbers of the aircraft that operate these flights,
scheduled and actual arrival and departure times, arrival and departure delays, taxi-in and taxi-out times, air times and distances
of the flights. Tail numbers uniquely identify the aircraft but having only the tail number does not give further information on the
type of the aircraft and its characteristics. Thus, Aircraft Registry Database of U.S. Department of Transportation (2021) is used to
obtain aircraft specific information of the United States. Data set consists of 269,349 observations, one for each flight flown, across
two years covering 21 major U.S. airports. Description of the variables can be found in Table 1.

Delay probabilities of flights are heavily affected by the propagation patterns as suggested by Lambelho et al. (2020). To capture
these propagation effects, position of a flight in the path of an aircraft is considered in their study. We consider using the flight
departure time as a surrogate measure to position of a flight. Indeed, the existing literature provides some studies which take flight
departure times into account when estimating the required parameters. According to Deshpande and Arıkan (2012), airline schedule
planners tend to schedule larger number of flights in the interval of 5 P.M.–6 P.M. to capture the business travel demand. Arora
and Mathur (2020) suggest that afternoon and evening flights are more likely to depart late. These studies clearly indicate that the
flight departure times are affecting the congestion levels in the airports and consecutively the delay probabilities significantly. In
order to use departure time of a flights as a factor in our estimation models, we convert it into a categorical variable based on the
segmentation based on the time intervals that the flights departure times lie in proposed by Şafak et al. (2018) with the addition of
the segment IV to satisfy completeness as shown in Table 2. Therefore, the departure time of flights are used in all of the estimation
models as a factor with four levels. On the other hand, Prakash (2020) assumes that the planned arrival time of a flight also has an
effect on the probability of having a delayed arrival. In our proposed mathematical models, we capture the effect of arrival time on
the delay probabilities of flights by approximating it with the addition of the air time of flights to their departure times. Therefore,
we take flight departure times as factors that affect the estimates of departure and arrival delay probabilities of flights.

Many studies in the literature consider logit models to explain the impact of variables on on-time performance of flight schedules.
In this study, two logistic regression models are constructed to estimate the departure and arrival delay probabilities. To estimate
6
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Table 2
Segmentation for the departure time of flights.

Segment Time Interval

I
II
III
IV

06:00 A.M.–08:59 A.M. and after 05:00 P.M.
09:00 A.M.–11:59 A.M. and 03:00 P.M.–04:59 P.M.
12:00 noon–02:59 P.M.
Before 06:00 A.M.

the departure delay probability of flight 𝑖, denoted as 𝑝𝑑𝑒𝑝𝑖 ∈ (0, 1), the origin airport of the flight and the time segment that the
departure time of the flight lies in are determined to be the variables denoted as 𝑥𝑖,𝑜𝑟𝑖𝑔𝑖𝑛 and 𝑥𝑖,𝑑𝑒𝑝𝑡𝑖𝑚𝑒. Then, the linear predictor
𝜁𝑖 ∈ R is constructed by

𝜁𝑖 = 𝜃0 + 𝜃𝑜𝑟𝑖𝑔𝑖𝑛𝑥𝑖,𝑜𝑟𝑖𝑔𝑖𝑛 + 𝜃𝑑𝑒𝑝𝑡𝑖𝑚𝑒𝑥𝑖,𝑑𝑒𝑝𝑡𝑖𝑚𝑒 (21)

where 𝜃0, 𝜃𝑜𝑟𝑖𝑔𝑖𝑛, and 𝜃𝑑𝑒𝑝𝑡𝑖𝑚𝑒 are the corresponding coefficients. Finally, through the use of the logit link function, 𝑝𝑑𝑒𝑝𝑖 is calculated
by the following characterization in Faraway (2016):

𝜁𝑖 = log

(

𝑝𝑑𝑒𝑝𝑖

1 − 𝑝𝑑𝑒𝑝𝑖

)

. (22)

A similar logistic regression model is constructed for estimating the arrival delay probabilities, denoted as 𝑝𝑎𝑟𝑟𝑖 ∈ (0, 1) for flight
𝑖, where the variable 𝑥𝑖,𝑜𝑟𝑖𝑔𝑖𝑛 is changed to 𝑥𝑖,𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 to capture the effect of the destination airport of a flight on the arrival delays.

After the departure and arrival delay probabilities are estimated, the airport congestion coefficients for flight 𝑖 ∈ 𝐹 are calculated
s follows:

𝑒𝑂𝑖
= (1 + 𝑝𝑑𝑒𝑝𝑖 )2, 𝑒𝐷𝑖

= (1 + 𝑝𝑎𝑟𝑟𝑖 )2. (23)

In addition, for each possible consecutive flight pair (𝑖, 𝑗) ∈ 𝐴, the turnaround time 𝑇𝐴𝑖𝑗 to prepare the aircraft between flights
and 𝑗 is estimated by linear regression as follows:

𝑇𝐴𝑖𝑗 = 𝜇0 + 𝜇𝑜𝑟𝑖𝑔𝑖𝑛𝑥𝑗,𝑜𝑟𝑖𝑔𝑖𝑛 (24)

here 𝜇𝑜𝑟𝑖𝑔𝑖𝑛 is the corresponding coefficient to the variable 𝑥𝑗,𝑜𝑟𝑖𝑔𝑖𝑛 denoting the airport that the aircraft spends its preparation time
etween the flights.

A recent study by Prakash (2020) presents algorithms to determine the most reliable routes on stochastic and time-dependent
etworks, where the measure of reliability is defined as the probability of on-time arrival at the destination, given a threshold
rrival-time. In our study, we have used the probabilistic chance constraints given as constraints (7) in the proposed formulation
uch that if two flights are performed by the same aircraft, then the probability of the non-cruise time of the earlier flight being less
han or equal to the difference of departure times minus the sum of the cruise, idle, and the aircraft turnaround times should be
t least the desired service level 𝛾𝑖. Moreover, in order to solve the proposed formulation by a commercial solver, we utilize value-
t-risk risk measure to reformulate the probabilistic chance constraints (7) as discussed above, and the required airport congestion
oefficients in the new proposed inequality (19) are calculated based on a data-driven methodology, since departure and arrival
elay probabilities of flights, and turnaround times of the aircraft are closely related to the congestion levels in airports.

In the objective function (2), the aircraft path variability of aircraft 𝑡 denoted by V𝑡 is calculated as ∑

𝑖∈𝐹  𝑡
𝑖 (𝑂𝑖, 𝐷𝑖, 𝑑𝑖, 𝑓 𝑡

𝑖 ) where
he variability of a flight leg 𝑖 is calculated as

 𝑡
𝑖 (𝑂𝑖, 𝐷𝑖, 𝑑𝑖, 𝑓

𝑡
𝑖 ) =

{

𝑏𝑓𝑡 ⋅ 𝑉 𝑎𝑟(𝑁𝐶𝑖) if flight 𝑖 is operated by aircraft 𝑡
0 otherwise.

(25)

ote that 𝑏𝑓𝑡 denotes the base value for aircraft 𝑡 which is calculated by normalizing the base turntime of different aircraft provided
y EUROCONTROL (2012) and 𝑉 𝑎𝑟(𝑁𝐶𝑖) denotes the variance value of the Log-Laplace random variable corresponding to the
on-cruise time of flight leg 𝑖 as follows:

𝑉 𝑎𝑟(𝑁𝐶𝑖) = 𝑒2𝛼
(

1
(𝛼 − 2)(𝛽𝑖 + 2)

−
[

1
(𝛼 − 1)(𝛽𝑖 + 1)

]2
)

. (26)

Furthermore, V̄ denotes the arithmetic mean of the aircraft path variabilities V𝑡 over all 𝑡 ∈ 𝑇 which allows us to calculate the
total absolute deviation of the aircraft path variabilities from the average variability. This creates a nonlinearity due to the use of
absolute value and it can be linearized by using the following set of inequalities:

min 𝐹2 ∶
1
|𝑇 |

∑

𝑡∈𝑇
𝜈𝑡

s.t. 𝜈𝑡 ≥ V𝑡 − V̄ ∀𝑡 ∈ 𝑇 (27)

𝜈𝑡 ≥ V̄ − V𝑡 ∀𝑡 ∈ 𝑇 (28)
7
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The other nonlinearity of the model stems from the objective function (1). In the objective, for flight 𝑖 ∈ 𝐹 and aircraft 𝑡 ∈ 𝑇 ,
he fuel consumption function 𝐹 𝑡

𝑖 (𝑓
𝑡
𝑖 ) is represented as

𝐹 𝑡
𝑖 (𝑓

𝑡
𝑖 ) =

⎧

⎪

⎨

⎪

⎩

(

𝑐𝑖𝑡1
1
𝑓 𝑡
𝑖
+ 𝑐𝑖𝑡2

1
(𝑓 𝑡

𝑖 )
2 + 𝑐𝑖𝑡3 (𝑓

𝑡
𝑖 )

3 + 𝑐𝑖𝑡4 (𝑓
𝑡
𝑖 )

2
)

if 𝑦𝑡𝑖 +
∑

𝑗∈𝑈𝑆𝑖 𝑥𝑡𝑗𝑖 = 1

0 if 𝑦𝑡𝑖 +
∑

𝑗∈𝑈𝑆𝑖 𝑥𝑡𝑗𝑖 = 0
(29)

here 𝑓 𝑡
𝑖 denotes the cruise time of flight 𝑖 operated by aircraft 𝑡. The parameters that are required to calculate the fuel consumption

an be found in EUROCONTROL (2012).
For flight 𝑖 ∈ 𝐹 and aircraft 𝑡 ∈ 𝑇 , 𝐹 𝑡

𝑖 (𝑓
𝑡
𝑖 ) is discontinuous and its epigraph 𝐸𝐹 = {(𝑓 𝑡

𝑖 , 𝜏) ∈ R2 ∶ 𝐹 𝑡
𝑖 (𝑓

𝑡
𝑖 ) ≤ 𝜏} is nonconvex. We

ould obtain the convexity of 𝐸𝐹 in the constraint set as follows:

𝜏 ≥ (𝑐𝑓𝑢𝑒𝑙 + 𝑐𝐶𝑂2
) ⋅ (𝑐𝑖𝑡1 𝜅

𝑡
𝑖 + 𝑐𝑖𝑡2 𝛿

𝑡
𝑖 + 𝑐𝑖𝑡3 𝜙

𝑡
𝑖 + 𝑐𝑖𝑡4 𝜗

𝑡
𝑖) (30)

(𝑦𝑡𝑖 +
∑

𝑗∈𝑈𝑆𝑖
𝑥𝑡𝑗𝑖)

2 ≤ 𝜅𝑡
𝑖 ⋅ 𝑓

𝑡
𝑖 (31)

(𝑦𝑡𝑖 +
∑

𝑗∈𝑈𝑆𝑖
𝑥𝑡𝑗𝑖)

4 ≤ (𝑓 𝑡
𝑖 )

2 ⋅ 𝛿𝑡𝑖 ⋅ 1 (32)

(𝑓 𝑡
𝑖 )

4 ≤ (𝑦𝑡𝑖 +
∑

𝑗∈𝑈𝑆𝑖
𝑥𝑡𝑗𝑖)

2 ⋅ 𝜙𝑡
𝑖 ⋅ 𝑓

𝑡
𝑖 (33)

(𝑓 𝑡
𝑖 )

2 ≤ 𝜗𝑡𝑖 ⋅ (𝑦
𝑡
𝑖 +

∑

𝑗∈𝑈𝑆𝑖
𝑥𝑡𝑗𝑖) (34)

Consequently, each inequality (31)–(34) can be represented by a conic quadratic inequality. Therefore, the mathematical model
can be reformulated as a second order cone programming (SOCP) problem by using the conic representation of the fuel consumption
function. Moreover, we implement the 𝜀-constraint approach as discussed in T’kindt and Billaut (2006) to solve the proposed bi-
criteria nonlinear mixed-integer programming problem via a commercial solver. The 𝜀-constraint approach is frequently used in the
literature since it provides the decision maker with flexibility to modify bounds on one objective to analyze the changes on the
other. Therefore, we propose the following 𝜀-constraint mathematical model denoted as (𝜀-CM) by bounding the operational cost
by 𝜀, e.g., constraint (35), to analyze its effects on the total deviation of aircraft path variabilities.

(𝜀-CM) min 1
|𝑇 |

∑

𝑡∈𝑇
𝜈𝑡

s.t. (3)–(17), (27)–(28), and (31)–(34),
∑

𝑖∈𝐹

∑

𝑡∈𝑇
(𝑐𝑓𝑢𝑒𝑙 + 𝑐𝐶𝑂2

) ⋅ (𝑐𝑖𝑡1 𝜅
𝑡
𝑖 + 𝑐𝑖𝑡2 𝛿

𝑡
𝑖 + 𝑐𝑖𝑡3 𝜙

𝑡
𝑖 + 𝑐𝑖𝑡4 𝜗

𝑡
𝑖) +

∑

𝑖∈𝐹

∑

𝑡∈𝑇
𝑠𝑡𝑖 ⋅ 𝐼𝑑𝑙𝑒𝑡

+
∑

𝑖∈𝐹

∑

𝑡∈𝑇
(𝑦𝑡𝑖 +

∑

𝑗∈𝑈𝑆𝑖
𝑥𝑡𝑖𝑗 ) ⋅ 𝐶𝑠𝑝𝑙𝑖 ⋅max{0, 𝐷𝑒𝑚𝑖 − 𝐶𝑎𝑝𝑡} ≤ 𝜀 (35)

4. Discretized approximation and aircraft swapping algorithm

To be able to solve the problem for large-sized instances, we devise a math-heuristic algorithm called discretized approximation
and aircraft swapping algorithm. The main idea of the algorithm is to solve Discretized Approximation Model (DAM) first to get an
initial feasible solution for aircraft routing and fleeting and then to solve the cruise speed control model (CSCM) proposed by Duran
et al. (2015) to obtain the minimum cost schedule. Afterwards, Aircraft Swapping and Search Algorithm (ASSA) is applied in order to
decrease the deviation of the aircraft path variability’s from the average without exceeding the upper limit for the total operational
cost. Flow chart of the proposed algorithm can be found in Fig. 1.

4.1. Discretized approximation model

In our proposed mathematical model, complexity of the formulation is heavily due to the SOCP-representable fuel consumption
and CO2 emission functions. Therefore, in order to solve the problem within reasonable solution times, we first use the discretized
approximation model (DAM) proposed by Gürkan et al. (2016) where the cruise times of flights can only take discrete values from
a pre-determined set instead of continuous values from a range. The following parameters are introduced:

𝑐𝑟𝑠𝑡𝑖𝑘 ∶ the 𝑘th cruise time option of flight 𝑖 ∈ 𝐹 operated by aircraft 𝑡 ∈ 𝑇 , 𝑘 ∈ 𝐾

𝑐𝑜𝑠𝑡𝑡𝑖𝑘 ∶ the cost of 𝑐𝑟𝑠𝑡𝑖𝑘 which is equal to (𝑐𝑓𝑢𝑒𝑙 + 𝑐𝐶𝑂2
) ⋅ 𝐹 (𝑐𝑟𝑠𝑡𝑖𝑘)

Furthermore, the following binary variable is defined for each flight 𝑖 ∈ 𝐹 , aircraft 𝑡 ∈ 𝑇 , and cruise time option 𝑘 ∈ 𝐾:

𝜎𝑡𝑖𝑘 ∶ 1 if cruise time of flight 𝑖 takes the 𝑘th value for aircraft 𝑡, and 0 o.w.

The formulation of DAM is as follows:

min
∑∑ ∑

𝜎𝑡𝑖𝑘 ⋅ 𝑐𝑜𝑠𝑡
𝑡
𝑖𝑘 +

∑∑

𝑠𝑡𝑖 ⋅ 𝐼𝑑𝑙𝑒𝑡 +
∑∑

(𝑦𝑡𝑖 +
∑

𝑥𝑡𝑖𝑗 ) ⋅ 𝐶𝑠𝑝𝑙𝑖⋅max{0, 𝐷𝑒𝑚𝑖 − 𝐶𝑎𝑝𝑡} (36)
8
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Fig. 1. Flow chart of the proposed algorithm.

s.t. (3)–(17)
∑

𝑘∈𝐾
𝜎𝑡𝑖𝑘 = (𝑦𝑡𝑖 +

∑

𝑗∈𝑈𝑆𝑖
𝑥𝑡𝑗𝑖) ∀𝑖 ∈ 𝐹 , 𝑡 ∈ 𝑇 (37)

∑

𝑘∈𝐾
𝜎𝑡𝑖𝑘 ⋅ 𝑐𝑟𝑠

𝑡
𝑖𝑘 = 𝑓 𝑡

𝑖 ∀𝑖 ∈ 𝐹 , 𝑡 ∈ 𝑇 (38)

𝜎𝑡𝑖𝑘 ∈ {0, 1} ∀𝑖 ∈ 𝐹 , 𝑡 ∈ 𝑇 , 𝑘 ∈ 𝐾 (39)

4.2. Cruise speed control model

We could solve the DAM in a reasonable computation time, and it gives an initial feasible solution to aircraft routing, fleet
assignment and schedule generation without any consideration of variability terms. However, since we have discretized cruise time
in DAM, there is still a chance to improve that solution by considering a continuous value of cruise time. Therefore, after fixing
9

fleeting and routing decisions with DAM, in order to decide continuous values of cruise time, we solve the following cruise speed
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m

Table 3
Aircraft parameters.

Aircraft Type B737 500 MD 83 A320 111 A320 212 B767 300 B727 228

Seat Capacity 122 148 172 180 218 134
Mass (kg) 50000 61200 62000 64000 135000 74000
Surface (m2) 105.4 118 122.4 122.6 283.3 157.9
𝐶𝐷0,𝐶𝑅 0.018 0.0211 0.024 0.024 0.021 0.018
𝐶𝐷2,𝐶𝑅 0.055 0.0468 0.0375 0.0375 0.049 0.06
𝐶𝑓1 0.46 0.7462 0.94 0.94 0.763 0.53178
𝐶𝑓2 300 638.59 50000 100000 1430 276.72
𝐶𝑓𝑐𝑟 1.079 0.9505 1.095 1.06 1.0347 0.954
MRC speed 859.2 867.6 855.15 868.79 876.70 867.6
Idle Time Cost ($) 140 142 136 144 147 150
Base Value 1.90 1.65 1.70 1.75 2.00 1.80

control model (hereafter CSCM). CSCM is a nonlinear second order cone programming model that focuses on departure timing, cruise
time control and idle time insertion decisions for each path independently to obtain the minimum cost schedule. In the objective
function of CSCM, the costs of fuel consumption, CO2 emission and idle time insertion are minimized. Since the fleeting and routing
decisions are already fixed by DAM, CSCM only deals with continuous decision variables. Therefore, even if it is a nonlinear model
it can still be solved faster than the integrated model.

In order to use the fleeting and routing decisions obtained by DAM in the Cruise Speed Control Model (CSCM), the following
notation is introduced:

𝑤̄𝑡
𝑖 ∶ 1 if flight 𝑖 is performed by aircraft 𝑡 in the solution of DAM
𝐴̄ ∶ Set of consecutive flight pairs (𝑖, 𝑗) performed by the same aircraft in DAM

The formulation of CSCM is as follows:

min
∑

𝑖∈𝐹

∑

𝑡∈𝑇
𝑤̄𝑡

𝑖 ⋅
((

𝑐𝑓𝑢𝑒𝑙 + 𝑐CO2

)

⋅ 𝐹
(

𝑓 𝑡
𝑖
)

+ 𝑠𝑡𝑖 ⋅ 𝐼𝑑𝑙𝑒𝑡
)

s.t. 𝑑𝑗 − 𝑑𝑖 −
∑

𝑡∈𝑇
𝑤̄𝑡

𝑖(𝑓
𝑡
𝑖 + 𝑠𝑡𝑖) − 𝑇𝐴𝑖𝑗 ≥ VaR1−𝛾𝑖 (𝑁𝐶𝑖) ∀(𝑖, 𝑗) ∈ 𝐴̄

𝑓 𝑙
𝑖 ⋅ 𝑤̄

𝑡
𝑖 ≤ 𝑓 𝑡

𝑖 ≤ 𝑓 𝑢
𝑖 ⋅ 𝑤̄𝑡

𝑖 ∀𝑖 ∈ 𝐹 , 𝑡 ∈ 𝑇

𝑠𝑡𝑖 ≤ 𝑀 ⋅ 𝑤̄𝑡
𝑖 ∀𝑖 ∈ 𝐹 , 𝑡 ∈ 𝑇

(6), (11), (15)

Therefore, we solve DAM and CSCM models sequentially as shown in Fig. 1. We initially solve the DAM and fix the fleeting
and routing decisions, then we solve the CSCM in order to find the minimum sum of idle time, fuel consumption and CO2 emission
costs, e.g. corresponding cruise time and idle time, if any, for a given fleeting and routing decision. In this way, instead of solving
the integrated model, which is a nonlinear MIP model; as a heuristic method we propose to solve first a MIP model, e.g., DAM, and
then a nonlinear model, CSCM, so that total solution time is quite smaller than the integrated model as discussed earlier.

4.3. Aircraft swapping search algorithm

Since we did not consider the aircraft path variability’s in the first step, a search algorithm is proposed in order to decrease the
deviation of aircraft path variability’s from the average variability by swapping the aircraft. Let 𝐸 denote the set of flight blocks
and 𝑆 be the set of flight block pairs whose operating aircraft can be swapped. The set 𝑆 is generated by comparing the block times
of two flight blocks and the idle time contained in them. If the block times can be arranged by adjusting the idle time and cruise
times of the flights so that a flight block fits to the time interval which the other flight block occupies in the path of the aircraft,
then the operating aircraft can be swapped. Then, the new set of parameters and decision variables are introduced as follows:

𝑚𝑖𝑛𝐶𝑜𝑠𝑡 ∶ the minimum cost value of the schedule
𝜚 ∶ the percentage allowance for the cost increase

𝑏𝑙𝑜𝑐𝑘𝑉 𝑎𝑟𝑡𝑖 ∶ variability of block 𝑖 if it is operated by aircraft 𝑡, 𝑖 ∈ 𝐸, 𝑡 ∈ 𝑇

𝑝𝑎𝑡ℎ𝑉 𝑎𝑟𝑡 ∶ variability over the path of aircraft 𝑡, 𝑡 ∈ 𝑇

𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡𝑖 ∶ aircraft assignment of flight block 𝑖, 𝑖 ∈ 𝐸

𝑎𝑖𝑗 ∶ 1 if (𝑖, 𝑗) ∈ 𝑆, and 0 o.w.
𝑤𝑡

𝑖 ∶ 1 if block 𝑖 is performed by aircraft 𝑡, 𝑖 ∈ 𝐸, 𝑡 ∈ 𝑇 , and 0 o.w.
𝑢𝑖𝑗 ∶ 1 if block 𝑖 is swapped with flight block 𝑗, (𝑖, 𝑗) ∈ 𝑆, and 0 o.w.

The idea of the search algorithm is to decide on the flight blocks whose aircraft assignments are swapped in order to have the
10

aximum amount of decrease in the deviation of the aircraft path variabilities from the average while satisfying the upper limit for
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the total operational cost. To be able to achieve that, the swap which gives the maximum decrease in the deviation of variabilities
with the minimum increase in the total operational cost is selected in a knapsack framework. The pseudo-code can be found in
Algorithm 1.
Algorithm 1 Aircraft Swapping Search Algorithm.

1: Initialize: 𝑐𝑜𝑠𝑡𝑂𝑓𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ← 𝑚𝑖𝑛𝐶𝑜𝑠𝑡
2: Set: 𝑚𝑎𝑥𝐶𝑜𝑠𝑡 ← 𝑚𝑖𝑛𝐶𝑜𝑠𝑡 × (1 + 𝜚)
3: for each 𝑡 ∈ 𝑇 do
4: for each 𝑗 ∈ {0,… , |𝐸|} do
5: 𝑝𝑎𝑡ℎ𝑉 𝑎𝑟𝑡 ← 𝑝𝑎𝑡ℎ𝑉 𝑎𝑟𝑡 +𝑤𝑡

𝑗 ⋅ 𝑏𝑙𝑜𝑐𝑘𝑉 𝑎𝑟𝑡𝑗 ⊳ Calculate path variabilities.
6: end for
7: end for
8: for each 𝑗 ∈ {0,… , |𝐸|} do
9: for each 𝑘 ∈ {0,… , |𝐸|} do

10: 𝑣𝑎𝑟𝐶ℎ𝑎𝑛𝑔𝑒𝑗𝑘 ← change in the absolute deviation of path variabilities from average if flight block 𝑗 is swapped with 𝑘.
11: 𝑐𝑜𝑠𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑗𝑘 ← increase in the total operational cost if flight block 𝑗 is swapped with 𝑘.
12: end for
13: 𝑘⋆ ← argmin𝑘∈{0,…,|𝐸|} ∶ 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡𝑗≠𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡𝑘 , 𝑎𝑗𝑘=1{

𝑣𝑎𝑟𝐶ℎ𝑎𝑛𝑔𝑒𝑗𝑘
𝑐𝑜𝑠𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑗𝑘

}
14: if 𝑣𝑎𝑟𝐶ℎ𝑎𝑛𝑔𝑒𝑗𝑘⋆ ≤ 0 and 𝑐𝑜𝑠𝑡𝑂𝑓𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 + 𝑐𝑜𝑠𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑗𝑘⋆ ≤ 𝑚𝑎𝑥𝐶𝑜𝑠𝑡 then
15: 𝑤𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡𝑗

𝑗 ← 0 and 𝑤𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡𝑘⋆

𝑘⋆ ← 0 ⊳ Remove initial aircraft assignments.
16: 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡𝑗 ↔ 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡𝑘⋆ ⊳ Swap the aircraft assignments.
17: 𝑢𝑗𝑘⋆ ← 1 ⊳ Swap flight blocks 𝑗 and 𝑘⋆.
18: 𝑤𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡𝑗

𝑗 ← 1 and 𝑤𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡𝑘⋆

𝑘⋆ ← 1 ⊳ Reassign aircraft to flight blocks 𝑗, 𝑘⋆.
19: 𝑐𝑜𝑠𝑡𝑂𝑓𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 ← 𝑐𝑜𝑠𝑡𝑂𝑓𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 + 𝑐𝑜𝑠𝑡𝐶ℎ𝑎𝑛𝑔𝑒𝑗𝑘⋆ ⊳ Update the cost.
20: end if
21: Re-calculate path variabilities 𝑝𝑎𝑡ℎ𝑉 𝑎𝑟𝑡 for all 𝑡 ∈ 𝑇 (same as in steps 2-6).
22: end for

5. Computational study

In order to obtain sample schedules and generate flight and aircraft sets, we used ‘‘Airline On-Time Performance’’ database
f Bureau of Transportation Statistics (2021). In all of the subsets of the flight legs that we select, Chicago O‘Hare International
irport (ORD) serves as the hub airport. This means that all the available aircraft have to depart first from ORD in the beginning
f the daily planning horizon. We consider six different types of aircraft with different parameters as presented in EUROCONTROL
2012). Seat capacity, mass, wing surface area, fuel consumption coefficients, maximum range cruise (MRC) speed, idle time cost and
ase value parameters are available in Table 3. In our computational experiments, we initially assume unit cost of fuel consumption
s 𝑐𝑓𝑢𝑒𝑙 = 1.2 $/kg and unit cost of CO2 emission as 𝑐𝐶𝑂2

= 0.02 $/kg. In addition, we initially take 𝛽 = 0.01, which is the base
shape parameter of the Log-Laplace random variables denoting the non-cruise times, to calculate the tail parameter 𝛽𝑖 for each
flight 𝑖. Also, the scale parameter 𝛼 is adjusted as 𝑒𝛼 = 20 to have non-cruise times which are deviating from 20 min. Afterwards,
in Section 6, we will evaluate different experimental settings.

All computational experiments are conducted on an AMD Ryzen 7 5800X 8-core 16-thread computer with 3.8 GHz processor
and 32 GB RAM. The problem is implemented in Java programming language with a connection to IBM ILOG CPLEX Optimization
Studio 20.1.0.

5.1. Estimation of airport congestion coefficients

As expected, not all airports have the same level of congestion due to geographical reasons. Intuitively, one can expect the hubs to
be more congested. Since the level of congestion differs in the airports, we assume departure and arrival delays occurred in different
origin and destination airports have different means and variances which have effects on the on-time probabilities. Similarly, flight
departure time has also an effect on the turnaround time required to prepare the aircraft between two flights. Therefore, in our
proposed models, origin and destination airports of flights are taken as factors to estimate both departure and arrival delays, and
also turnaround times. In short, we consider flight departure times, origin and destination airports as the factors that affect our
estimation of the related response variables.

Using logistic regression models as discussed in Section 3, departure and arrival delay probabilities for 269,349 flights operated
by United Airlines across 21 major U.S. airports are estimated. Afterwards, the departure and arrival congestion coefficients are
calculated based on the delay probabilities, separately. We distinguish the departure and arrival delay probabilities of a flight from
each other to see the effects of this difference on the congestion coefficients of airports. As it can be seen from the Table 4, for
a given airport, departure and arrival congestion coefficients are different. For example, departure congestion coefficient of FLL
(Fort Lauderdale-Hollywood Intl. Airport) is up to 1.225 whereas arrival congestion coefficient of FLL is up to 1.553. In the existing
literature, it was assumed that for a flight, having a particular airport as either its origin or destination airport has the same effect
on its congestion level. By distinguishing the departure and arrival delay probabilities, we are able to capture the effects of the
different congestion levels of origin and destination airports of flights.
11
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Table 4
Departure and arrival congestion coefficients of 21 major U.S. airports in four
time segments.

Departure Congestion Coefficient

Airport Time Segment

I II III IV

ATL 1.304 1.311 1.350 1.051
AUS 1.164 1.169 1.190 1.026
BOS 1.214 1.219 1.245 1.034
DCA 1.147 1.151 1.171 1.024
DEN 1.217 1.221 1.250 1.036
DFW 1.232 1.237 1.266 1.038
EWR 1.320 1.327 1.367 1.053
FLL 1.197 1.201 1.225 1.032
LAS 1.186 1.190 1.214 1.030
LAX 1.162 1.166 1.188 1.026
LGA 1.201 1.208 1.232 1.032
MCI 1.117 1.119 1.136 1.018
MIA 1.221 1.228 1.254 1.036
MSP 1.175 1.177 1.201 1.028
ORD 1.261 1.266 1.300 1.042
PHL 1.199 1.203 1.230 1.032
PHX 1.190 1.197 1.221 1.030
SAN 1.175 1.179 1.201 1.028
SFO 1.266 1.272 1.304 1.044
SLC 1.320 1.327 1.367 1.055
STL 1.241 1.248 1.277 1.040

Arrival Congestion Coefficient

Airport Time Segment

I II III IV

ATL 1.378 1.234 1.243 1.277
AUS 1.369 1.228 1.239 1.270
BOS 1.397 1.245 1.257 1.290
DCA 1.383 1.237 1.248 1.279
DEN 1.318 1.195 1.203 1.230
DFW 1.498 1.313 1.327 1.369
EWR 1.395 1.243 1.254 1.288
FLL 1.553 1.350 1.364 1.409
LAS 1.360 1.221 1.232 1.261
LAX 1.350 1.217 1.225 1.254
LGA 1.440 1.275 1.286 1.323
MCI 1.414 1.257 1.268 1.304
MIA 1.476 1.297 1.311 1.350
MSP 1.381 1.237 1.245 1.277
ORD 1.339 1.208 1.217 1.245
PHL 1.397 1.245 1.257 1.290
PHX 1.395 1.243 1.254 1.300
SAN 1.357 1.221 1.230 1.254
SFO 1.383 1.237 1.248 1.279
SLC 1.397 1.245 1.257 1.290
STL 1.332 1.203 1.212 1.241

An important observation, the earlier studies estimated the airport congestion coefficients based on the number of passengers
isiting a particular airport provided in T-100 Domestic Market Data of Bureau of Transportation Statistics (2020) regardless of
eparture or arrival events, that may not be a realistic representation as can be seen from Table 4. For example, MIA (Miami Intl.
irport) has the highest number passengers and consequently assigned the largest airport congestion coefficient in earlier studies,

ollowed by ORD (Chicago O’Hare Intl. Airport), DEN (Denver Intl. Airport) and DFW (Dallas/Fort Worth Intl. Airport). In contrary,
EN has one of the lowest arrival delay occurrence and consequently one of the lowest arrival congestion coefficients according to
ur data analysis. Besides the delay probabilities, base turnaround times needed to prepare the aircraft between consecutive flights
n 21 different airports are estimated by a linear regression model.

.2. Computational analysis on the schedule with 50 flights

We first analyzed the flight network containing 50 flights operated by 10 aircraft in detail. The corresponding minimum cost
chedule 1 and the proposed bi-criteria schedule 2 are given in Table 5. To obtain 2, the allowance for the cost increase is set
12

to 10% of the total operational cost of 1 for the ASSA.
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Table 5
Schedules for the 50 Flight Network.

Tail
No.

Aircraft
No.

Minimum Cost Schedule 1 Proposed Schedule 2

Flight
No.

Origin Dest. Departure
Time

Arrival
Time

Flight
No.

Origin Dest. Departure
Time

Arrival
Time

N678UA 0

0 ORD LGA 08:10 09:52 0 ORD LGA 08:10 09:52
36 LGA ORD 10:45 12:42 36 LGA ORD 10:44 12:42
42 ORD LGA 14:18 16:00 42 ORD LGA 14:17 15:59
8 LGA ORD 17:24 19:21 8 LGA ORD 17:24 19:22
19 ORD BOS 21:30 23:14 14 ORD DEN 21:30 23:20

N802WA 1

30 ORD DFW 07:29 08:59

Same
6 DFW ORD 10:19 11:43
32 ORD AUS 13:50 15:32
33 AUS ORD 17:22 18:59
4 ORD LGA 20:20 22:02

N805WA 2

5 ORD DFW 07:45 09:15

Same
41 DFW ORD 10:23 11:47
2 ORD DFW 13:35 15:05
3 DFW ORD 17:22 18:46
44 ORD SAN 20:00 21:39

N309US 3

15 ORD MSP 07:15 08:19

Same
16 MSP ORD 09:15 10:17
17 ORD SAN 11:49 13:28
18 SAN ORD 16:47 18:10
24 ORD SAN 19:00 20:39

N334NW 4

45 ORD MCI 07:15 08:15 45 ORD MCI 07:15 08:16
11 MCI ORD 09:12 10:11 11 MCI ORD 09:12 10:11
47 ORD DFW 11:22 12:52 47 ORD DFW 11:22 12:52
48 DFW ORD 14:35 15:59 48 DFW ORD 14:35 15:59
49 ORD DEN 17:30 19:20 29 ORD BOS 17:31 19:14

N312US 5

10 ORD MCI 07:15 08:15 10 ORD MCI 07:15 08:16
46 MCI ORD 09:12 10:11 46 MCI ORD 09:12 10:11
12 ORD DFW 11:22 12:52 12 ORD DFW 11:22 12:52
13 DFW ORD 14:35 15:59 13 DFW ORD 14:35 15:59
14 ORD DEN 17:30 19:20 19 ORD BOS 17:31 19:14

N681UA 6

25 ORD DFW 08:45 10:15 27 ORD LGA 08:45 10:27
26 DFW ORD 11:09 12:33 28 LGA ORD 11:20 13:17
7 ORD LGA 14:18 16:00 7 ORD LGA 16:37 18:19
43 LGA ORD 17:24 19:21 43 LGA ORD 19:44 21:41
34 ORD LGA 20:40 22:22 34 ORD LGA 23:00 00:42

N807TR 7

40 ORD DFW 07:45 09:15

Same
31 DFW ORD 10:29 11:53
37 ORD DFW 13:35 15:05
38 DFW ORD 17:22 18:46
39 ORD LGA 20:20 22:02

N695UA 8

35 ORD LGA 08:06 09:48 35 ORD LGA 08:07 09:49
1 LGA ORD 10:41 12:39 1 LGA ORD 10:41 12:39
27 ORD LGA 13:33 15:15 25 ORD DFW 13:34 15:04
28 LGA ORD 16:08 18:06 26 DFW ORD 15:58 17:22
29 ORD BOS 19:01 20:44 49 ORD DEN 19:17 21:07

N422BN 9

20 ORD DFW 09:45 11:15

Same
21 DFW ORD 12:34 13:58
22 ORD STL 15:17 16:49
23 STL ORD 17:42 19:08
9 ORD SAN 20:00 21:39

5.2.1. Posterior analysis on resilience
In order to measure and compare the resilience of the minimum cost schedule 1 and the proposed schedule 2, we generated

disruption scenarios due to the unavailability of the aircraft. Initially, we consider the unavailability periods as equal to the whole
day which means that in total, there are 10 disruption scenarios. In other words, we let 𝜔𝑡 denote that the aircraft 𝑡 = 0,… , 9
is unavailable for the whole day. Then, we applied the Integrated Flight and Passenger Recovery Algorithm, which is available
in Appendix A, to observe the recovery performances. In Table 6, the recovery solutions against each disruption scenario 𝜔𝑡 is
presented. For each scenario, there are multiple recovery solutions with different number of cancelled flights and different amounts
13

of total delay. The recovery solutions which are presented in Table 6 are the ones with the minimum number of cancelled flights
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Table 6
Recovery solutions under each disruption scenario for 50 flights.

Disruption
Scenario

Min. Cost Schedule 1 Proposed Schedule 2 Change

# Cancelled
Flights: 𝜉1

Total Delay:
𝜉2 (mins)

# Cancelled
Flights: 𝜉1

Total Delay:
𝜉2 (mins)

𝜉1 𝜉2

𝜔0
𝜔1
𝜔2
𝜔3
𝜔4
𝜔5
𝜔6
𝜔7
𝜔8
𝜔9

5
3
3
3
3
3
5
3
5
3

–
891
990
905
791
841
–
847
–
581

1
1
1
1
1
1
3
1
3
1

1416
1166
1414
925
892
898
1012
1437
1125
937

−4
−2
−2
−2
−2
−2
−2
−2
−2
−2

–
31%
43%
2%
13%
7%
–
70%
–
61%

Average: 3.6 835 1.4 1122 −2.2 34%

for both of the schedules. If there are multiple recovery solutions with the same number of cancelled flights for a schedule, the
solutions with the shortest total delay is selected.

When we categorize the disruption scenarios according to which type of recovery solution that they yield, we observed that all
he scenarios except 𝜔0, 𝜔6, and 𝜔8 yield non-dominated recovery solutions for our proposed schedule. That means that 2 recovers
rom the disruption with less number of cancelled flights but more time of delay. It is due to the fact that disrupted flights are
ecovered by accommodating them into the paths of the non-disrupted aircraft, which may cause an increase in the total time of
elay in order to prevent flight cancellation.

When the aircraft 1–5, 7, and 9 are disrupted, the proposed schedule is recovered by cancelling only 1 flight whereas the
inimum cost schedule cancels 3 flights. This means that 2 performs 67% ‘‘better’’ than 1 in terms of the number of cancelled

flights. However, in 2, there occurs 31% more time of delay on average since it accommodates more flights instead of cancelling
them. Under disruption scenarios 𝜔0, 𝜔6, and 𝜔8, the minimum cost schedule 1 cancels all of the disrupted flights whereas the
proposed schedule 2 is able to recover from the disruptions with up to 3 cancelled flights. Although cancelling all of the disrupted
flights in 1 creates 0 delay, we classify these scenarios as yielding strongly-dominating recovery solutions.

5.3. Computational analysis on the schedule with 150 flights

In order to test our proposed methodology with a larger sized problem, the network containing 150 flights operated by 30
different aircraft is also analyzed. First, the minimum cost schedule 1 is generated and then, the Aircraft Swapping Search Algorithm
is applied by allowing 10% increase in the total operational cost to obtain the proposed bi-criteria schedule 2. The resulting
schedules 1 and 2 can be found in Appendix B.

The Aircraft Swapping Search algorithm achieves the proposed schedule 2 in 9 iterations and in each iteration, the aircraft
assignments of a pair of flight blocks are swapped. The relationship between the total operational cost and the deviation of aircraft
path variability’s from average for the minimum cost schedule 1, the proposed schedule 2, and the schedules that are obtained
in the intermediate steps of the algorithm can be seen from the Pareto frontier presented in Fig. 2.

As it can be seen in Fig. 2, when we allow the total operational cost to deviate from the minimum by at most 10%, the deviation
of the aircraft path variability’s from the average, i.e. 𝐹2, decreases by 47%. Additionally, we examine different allowance values
for the cost increase as in Fig. 3 and we observed that instead of 10%, if the allowance is 2.5%, 5%, and 7.5% then 𝐹2 decreases
by 23%, 30%, and 41%, respectively.

5.3.1. Posterior analysis on resilience
To measure the resilience of our proposed schedule by comparing the recovery performances of 1 and 2, a posterior analysis is

conducted. For each aircraft, a disruption scenario caused by the unavailability of the aircraft for a whole day is generated. We let
𝜔𝑡 denote that the aircraft 𝑡 ∈ {0,… , 29} is unavailable for the day. Afterwards, for each scenario, we execute the Integrated Flight
and Passenger Recovery Algorithm, and a summary of the recovery solutions for the 30 disruption scenarios is given in Table 7.

Under 22 of the 30 disruption scenarios, the proposed schedule 2 yields strongly-dominating recovery solutions. On the average
of these 22 scenarios, 2 recovers from the disruption by cancelling 2.6 less flights than 1 which corresponds to a 68% improvement
in 𝜉1. Also, 2 recovers with an average of 825 min total delay whereas 1 recovers with 1002 min which corresponds to a 18%
improvement in 𝜉2. We interpret this result as follows. As the number of flights in the schedule increases, the number of possible
recovery actions also increases. Hence, under these scenarios, the recovery algorithm is able to find strategies which are better in
terms of not only one of cancellation or delay but both which is why we introduce the term strongly dominating solutions. This
shows that it may not be necessary to have a strict trade-off between the number of cancelled flights and total delay in the schedules.
Under the remaining 8 disruption scenarios, the proposed schedule 2 yields non-dominated recovery solutions. On the average of
14

these 8 scenarios, 2 recovers by cancelling 2.5 less flights than 1 but more time of delay. It corresponds to a 68% improvement
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Fig. 2. Average variability vs. total operational cost for 150 flights.

Fig. 3. Allowance for the cost increase vs. improvement in 𝐹2 for 150 flights.

Table 7
Summary of recovery solutions for 150 flights.

Recovery Solution
Type

Number of
Scenarios

Performance Measures

𝜉1 𝜉2
1 2 Change 1 2 Change

Strongly-Dominating:
Non-Dominated:

22
8

3.8
3.1

1.2
1

−68%
−68%

1002
751

825
959

−18%
28%

Overall: 30 3.6 1.1 −69% 911 861 −6%

in 𝜉1 whereas 𝜉2 increases by 28%. Overall, the recovery performance of 2 is ‘‘better’’ than 1 by 69% in terms of the number of
cancelled flights and 6% in terms of the total time of delay after recovery against 30 disruption scenarios. Detailed information on
the recovery solutions against each of these scenarios can be found in Table 8.

6. Managerial insights

The conducted computational study intrigues various questions about the behaviour and performance of our proposed schedules.
In this section, some managerial insights into the problem dynamics are given. To observe the effects of the problem parameters on
the generated schedules and their recovery performances, several what if analyses are conducted where the factors such as unit fuel
cost, 𝛽, 𝛼, and the allowance for the cost increase 𝜚 take different values as shown in Table 9. We report our analysis on unit fuel
cost and 𝜚 below since they have a more relevant impact on the recovery performances, whereas the non-cruise time parameters
𝛽 and 𝛼 are given in Appendix C. In addition to the problem parameters, we have also conducted computational experiments by
generating different disruption scenarios, such as the number of disrupted aircraft in a scenario, the aircraft unavailability periods,
or airport closures below, and analyzed their impact on the recovery performance measures of  and  .
15
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Table 8
Recovery solutions under each disruption scenario for 150 flights.

Disruption
Scenario

Min. Cost Schedule 1 Proposed Schedule 2 Change

# Cancelled
Flights: 𝜉1

Total Delay:
𝜉2 (mins)

# Cancelled
Flights: 𝜉1

Total Delay:
𝜉2 (mins)

𝜉1 𝜉2

𝜔0
𝜔1
𝜔2
𝜔3
𝜔4
𝜔5
𝜔6
𝜔7
𝜔8
𝜔9
𝜔10
𝜔11
𝜔12
𝜔13
𝜔14
𝜔15
𝜔16
𝜔17
𝜔18
𝜔19
𝜔20
𝜔21
𝜔22
𝜔23
𝜔24
𝜔25
𝜔26
𝜔27
𝜔28
𝜔29

5
3
3
3
3
3
5
3
4
3
3
3
4
3
5
3
5
3
5
3
5
3
5
3
5
3
3
3
3
3

–
869
1229
1186
733
872
–
1358
–
656
1016
731
785
1006
439
1000
–
1068
–
600
–
1107
–
1050
–
617
1101
927
989
704

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
3
1
3
1
1
1
1
1
1
1
1
1

1168
709
962
720
786
876
1215
905
1190
804
932
350
569
1081
922
1271
1190
800
231
975
259
1037
1151
868
1190
503
918
505
773
956

−4
−2
−2
−2
−2
−2
−4
−2
−4
−2
−3
−2
−2
−2
−3
−2
−4
−2
−2
−2
−2
−2
−4
−2
−4
−2
−2
−2
−2
−2

−
−18%
−22%
−39%
7%
0%
–
−33%
–
23%
−8%
−52%
−28%
7%
110%
27%
–
−25%
–
63%
–
−6%
–
−17%
–
−18%
−17%
−46%
−22%
36%

Average: 3.6 911 1.1 861 −2.5 −6%

Table 9
Factor values of problem parameters.

Factor Levels

Unit fuel cost ($)
𝛽
𝛼
Allowance 𝜚

0.6, 1.2, 1.8
0.01, 0.05
ln(20), ln(25)
0%, 2.5%, 5%, 7.5%, 10%, 15%

Table 10
Effect of unit fuel cost on the schedule generation.

Unit Fuel Cost ($/kg) Min. Cost Schedule 1 Proposed Schedule 2 Improvement
in 𝐹2

𝐹1 ($) 𝐹2 𝐹1 ($) 𝐹2

0.6
1.2
1.8

398147
796294
1194441

6.01
5.32
5.30

422517
874284
1276911

5.19
3.24
3.15

14%
39%
39%

6.1. What if analysis on fuel cost

Let the unit fuel cost and unit CO2 emission cost be an experimental factor denoted by A. We set the fuel cost to 0.6, 1.2, and
1.8 $/kg and correspondingly, we set the CO2 emission cost to 0.01, 0.02, and 0.03 $/kg for these settings. For each case, we first
obtained the minimum cost schedules, and then, to obtain the proposed schedules we allowed a 10% increase in the total operational
cost of the minimum cost schedule as presented in Table 10.

As expected, when the unit fuel consumption cost increases, the total operational cost of the schedule increases as well. As a
result of that, when applying the Aircraft Swapping and Search Algorithm, if the percentage allowance for the cost increase is taken
equal for each schedule, then the schedule with the highest unit fuel cost level has more allowance for making aircraft swaps.
16

Therefore, the improvement in the deviation of aircraft path variability’s is higher when the unit cost value is higher. In order to
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Table 11
Effect of unit fuel cost on the recovery performance.

Disruption Scenario Unit Fuel Cost 0.6 $/kg Unit Fuel Cost 1.2 $/kg Unit Fuel Cost 1.8 $/kg

1 2 1 2 1 2

𝜉1 𝜉2 𝜉1 𝜉2 𝜉1 𝜉2 𝜉1 𝜉2 𝜉1 𝜉2 𝜉1 𝜉2
𝜔0 5 – 1 1540 5 – 1 1416 5 – 1 606
𝜔1 4 660 1 1283 3 891 1 1166 3 974 1 990
𝜔2 3 986 1 1300 3 990 1 1414 4 556 1 1534
𝜔3 3 987 2 573 3 905 1 925 3 886 1 1026
𝜔4 3 935 1 666 3 791 1 892 3 949 1 667
𝜔5 3 841 1 694 3 841 1 898 3 746 1 974
𝜔6 4 631 4 414 5 – 3 1012 3 886 1 583
𝜔7 3 788 1 1213 3 847 1 1437 3 1225 1 1240
𝜔8 5 – 1 1420 5 – 3 1125 5 – 2 1077
𝜔9 3 587 1 784 3 581 1 937 3 1184 1 954

Average: 3.4 802 1.4 989 3.6 835 1.4 1122 3.5 926 1.1 965

Table 12
Minimum cost vs. proposed schedule for unit fuel cost levels.

Unit Fuel Cost ($/kg) Change in the Recovery Performance

# of Cancelled Flights (𝜉1) Total Time of Delay (𝜉2)

0.6
1.2
1.8

−59%
−61%
−69%

23%
34%
4%

Table 13
Effect of allowance for cost increase on the schedule generation.

Percentage Allowance for
the Cost Increase (𝜚)

𝐹1 ($) 𝐹2 # of Swaps Made Inserted Idle
Time (mins)

0% (Min. Cost Schedule) 796294 5.32 – 0
2.5% 796294 5.32 0 0
5% 818284 4.58 1 155
7.5% 845912 3.85 2 355
10% 874284 3.24 3 555
15% 913564 2.50 4 832

find out if this has an effect on the recovery performance of the schedules, we conducted a posterior analysis whose results are
shown in Table 11.

When the recovery solutions are generated against each disruption scenario, it is observed that the proposed schedule is able to
ecover from the disruption with less number of cancelled flights compared to the minimum cost schedule in each of the fuel cost
evels. As a result of that, total delay occurring in the schedule may increase. In addition to that, under some scenarios such as 𝜔3

and 𝜔6, as the unit fuel cost increases, the number of cancelled flights after recovery in the proposed schedule 2 decreases. On the
average, 2 recovers from the disruptions by 2, 2.2, and 2.4 less cancelled flights than the minimum cost schedule 1 in the settings
0.6, 1.2 and 1.8, respectively. Improvements observed in our recovery performance measures 𝜉1 and 𝜉2 can be seen from Table 12
s well, e.g., the number of cancelled flights after recovery is increased from 59% to 69% as the unit fuel cost changes from 0.6
o 1.8 $/kg. Although total time of delay is higher in the proposed schedule compared to the minimum cost schedule in each of
hese settings, as the unit fuel cost increases, the change in the total time of delay decreases from 23% to 4% which is acceptable
onsidering the improvement made in the number of cancelled flights. Our results clearly indicate that the fuel cost has a significant
mpact on the recovery performance. For further insight, the results of the what if analysis on the percentage allowance for cost
ncrease will be examined in Section 6.2.

.2. What if analysis on the allowance for cost increase 𝜚

In the Proposed Discretized Approximation and Aircraft Swapping Algorithm, the total operational cost of the proposed schedule
s allowed to deviate from the minimum cost by at most 𝜚. To observe the effects of the allowance for the cost increase on the
ecovery performances on the proposed schedules, 𝜚 is set to 2.5%, 5%, 7.5%, 10%, and 15%. The total operational cost, 𝐹1, and
he deviation of aircraft path variability’s from the average, 𝐹2, can be seen in Table 13 for each of the corresponding schedules.

When the allowance is equal to 2.5%, the algorithm cannot make any swaps for the 50-flight schedule, and returns exactly the
ame minimum cost schedule. However, as the percentage allowance increases, the algorithm is able to make more swaps and to
nsert more idle time to the schedule. Therefore, when the allowance is equal to 15%, a total of 832 min idle time is inserted into
17

he schedule and the variability level is decreased to 2.50, which corresponds to a 56% improvement in 𝐹2. Fig. 4 shows how the
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Fig. 4. Effects of allowance for cost increase on recovery performance.

Table 14
Impact of 𝜚 on recovery performance measures for each scenario.

Disruption Scenario Number of Cancelled Flights (𝜉1) Total Time of Delay (𝜉2) (mins)

Allowance for Cost Increase (𝜌) Allowance for Cost Increase (𝜌)

0%–2.5% 5% 7.5% 10% 15% 0%–2.5% 5% 7.5% 10% 15%

𝜔0 5 1 1 1 1 - 1438 1438 1416 1237
𝜔1 3 1 1 1 1 891 1520 1441 1166 931
𝜔2 3 1 1 1 1 990 1414 1414 1414 1261
𝜔3 3 1 1 1 1 905 1214 925 925 925
𝜔4 3 1 1 1 1 791 1161 892 892 715
𝜔5 3 1 1 1 1 841 1162 892 898 715
𝜔6 5 3 3 3 1 - 1012 1012 1012 834
𝜔7 3 1 1 1 1 847 1436 1436 1436 1066
𝜔8 5 4 3 3 1 - 173 1282 1125 942
𝜔9 3 1 1 1 1 581 937 937 937 669

Average: 3.6 1.5 1.4 1.4 1 835 1467 1667 1122 930

number of cancelled flights and total time of delay occurred after recovery change when the allowance for the cost increase changes
on the average. As expected, the number of cancelled flights on average decreases as 𝜚 increases. When we compare the cases for
% and 7.5% allowance, the average number of cancelled flights is reduced from 1.5 to 1.4, but this results in an increase in the
otal delay due to accommodating more flights into the schedule. In our proposed recovery algorithm, we have used a hierarchical
valuation of two performance measures such that decreasing the number of cancellations is taken as the primary whereas reducing
he total delay is considered as the secondary criterion, since the opportunity costs of flight cancellation are quite high and also the
assenger convenience and satisfaction are of great importance to airlines. For the 50 flight network schedule, increasing 𝜚 from
.5 to 10% results in the same cancellation performance, but with a significant decrease in total delay performance (as expected)
s shown in Fig. 4, due to the fact that increasing 𝜚 directly corresponds to increasing operational costs, e.g., fuel consumption and
dle time costs.

In addition to the changes in the average of the recovery performance measures, recovery solutions generated for each proposed
chedule having different allowance values under each disruption scenario is presented in Table 14. Under each of the disruption
cenarios, the number of cancelled flights either decreases or stays the same as the percentage allowance increases which is in line
ith our expectations. Similarly, under all disruption scenarios except 𝜔0, 𝜔6, and 𝜔8, total time of delay after recovery decreases

as the allowance increases. Under scenarios 𝜔0, 𝜔6, and 𝜔8, since the schedules with lower allowance values cancel significantly
more flights to recover, less times of delay occur in those schedules as expected.

6.3. What if analysis on the recovery performance measures

Although the proposed schedules are shown to perform better against disruptions in terms of the number of cancelled flights,
they may have longer durations of total delay due to the higher number of flights accommodated into the existing schedule. Because
of that, we also consider the maximum time of delay occurred in a single flight leg as another performance measure. Corresponding
analysis for 50 flights is shown in Table 15. While on the average, the proposed schedule 2 has 61% less number of cancelled
flights with 34% more time of total delay compared to the minimum cost schedule 1, when we consider the maximum time of
delay occurred in a single flight leg, 2 has only 5% more delay than 1.

We also consider this performance measure for the network containing 150 flights in Table 16 on the average of 30 disruption
18

scenarios. While decreasing the number of cancelled flights by 67%, the proposed schedule performs 6% better in terms of the total
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Table 15
Comparison of total delay and maximum delay for 50 flights.

Disruption Scenario # of Cancelled Flights Total Time of Delay Max. Delay in a Flight Leg

1 2 Change 1 2 Change 1 2 Change

𝜔0 5 1 −80% – 1416 – – 262 –
𝜔1 3 1 −67% 891 1166 31% 214 241 13%
𝜔2 3 1 −67% 990 1414 43% 260 213 −18%
𝜔3 3 1 −67% 905 925 2% 199 220 11%
𝜔4 3 1 −67% 791 892 13% 256 212 −17%
𝜔5 3 1 −67% 841 898 7% 213 213 0%
𝜔6 5 3 −40% – 1012 – – 267 –
𝜔7 3 1 −67% 847 1437 70% 214 259 21%
𝜔8 5 3 −40% – 1125 – – 262 –
𝜔9 3 1 −67% 581 937 61% 214 214 0%

Average: 3.6 1.4 −61% 835 1122 34% 224 236 5%

Table 16
Changes in the recovery performance measures for 150 flights.

# of Cancelled
Flights

Total Time
of Delay

Max. Delay in
a Flight Leg

Min. Cost Schedule 1 3.6 911 221
Proposed Schedule 2 1.1 861 210
Change: −67% −6% −5%

Table 17
Comparison of total delay and maximum delay for 150 flights.

Disruption Scenario # of Cancelled Flights Total Time of Delay Max. Delay in a Flight Leg

1 2 Change 1 2 Change 1 2 Change

𝜔0 5 1 −80% – 1168 – – 212 –
𝜔1 3 1 −67% 869 709 −18% 212 214 1%
𝜔2 3 1 −67% 1229 962 −22% 212 149 −30%
𝜔3 3 1 −67% 1186 720 −39% 253 212 −16%
𝜔4 3 1 −67% 733 786 7% 213 257 21%
𝜔5 3 1 −67% 872 876 0% 213 216 1%
𝜔6 5 1 −80% – 1215 – – 248 –
𝜔7 3 1 −67% 1358 905 −33% 253 216 −15%
𝜔8 5 1 −80% – 1190 – – 263 –
𝜔9 3 1 −67% 656 804 23% 213 208 −2%
𝜔10 4 1 −75% 1016 932 −8% 291 254 −13%
𝜔11 3 1 −67% 731 350 −52% 213 97 −54%
𝜔12 3 1 −67% 785 569 −28% 165 165 0%
𝜔13 3 1 −67% 1006 1081 7% 212 235 11%
𝜔14 4 1 −75% 439 922 110% 230 246 7%
𝜔15 3 1 −67% 1000 1271 27% 224 280 25%
𝜔16 5 1 −80% – 1190 – – 263 –
𝜔17 3 1 −67% 1068 800 −25% 245 226 −8%
𝜔18 5 3 −40% – 231 – – 145 –
𝜔19 3 1 −67% 600 975 63% 213 250 17%
𝜔20 5 3 −40% – 259 – – 174 –
𝜔21 3 1 −67% 1107 1037 −6% 252 213 −15%
𝜔22 5 1 −80% – 1151 – – 235 –
𝜔23 3 1 −67% 1050 868 −17% 234 210 −10%
𝜔24 5 1 −80% – 1190 – – 263 –
𝜔25 3 1 −67% 617 503 −18% 157 122 −22%
𝜔26 3 1 −67% 1101 918 −17% 208 208 0%
𝜔27 3 1 −67% 927 505 −46% 220 122 −45%
𝜔28 3 1 −67% 989 773 −22% 212 194 −8%
𝜔29 3 1 −67% 704 956 36% 213 214 0%

Average: 3.6 1.1 −69% 911 861 −6% 221 210 −5%

delay in the schedule than the minimum cost schedule, and 5% better for the maximum time of delay occurred in a single flight
leg. We present the detailed results for these three measures under each disruption scenario in Table 17.

6.4. What if analysis on the number of disrupted aircraft

In order to observe the recovery performances of the minimum cost and the proposed schedules against disruptions caused by
he unavailability of multiple aircraft, the number of disrupted aircraft is set to 2 and 45 disruption scenarios are generated in total.
19
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Table 18
Effect of having two disrupted aircraft on the recovery performance.

Disrupted Aircraft # of Cancelled Flights Total Time of Delay Max. Delay in a Flight Leg

1 2 Change 1 2 Change 1 2 Change

0, 1 8 2 −75% 1005 2421 141% 213 262 23%
0, 2 8 2 −75% 876 3064 250% 214 262 22%
0, 3 8 2 −75% 824 2657 222% 220 262 19%
0, 4 8 2 −75% 908 2632 190% 202 302 50%
0, 5 8 2 −75% 704 2631 274% 212 302 42%
0, 6 9 2 −78% 600 2795 366% 214 280 31%
0, 7 8 2 −75% 961 2920 204% 213 262 23%
0, 8 10 2 −80% – 3145 – – 261 –
0, 9 8 2 −75% 695 2833 308% 213 254 19%
1, 2 6 2 −67% 2018 2992 48% 229 259 13%
1, 3 6 2 −67% 1998 2379 19% 232 259 12%
1, 4 6 2 −67% 1869 2719 45% 229 233 2%
1, 5 6 2 −67% 1869 2360 26% 229 259 13%
1, 6 7 2 −71% 1778 2863 61% 232 369 59%
1, 7 6 2 −67% 2196 2892 32% 242 232 −4%
1, 8 8 2 −75% 1005 2962 195% 213 262 23%
1, 9 6 2 −67% 1988 2514 26% 228 259 14%
2, 3 6 2 −67% 1885 2449 30% 220 257 17%
2, 4 6 2 −67% 1869 2431 30% 213 257 21%
2, 5 6 2 −67% 1860 2431 31% 213 257 21%
2, 6 7 2 −71% 1780 2879 62% 249 261 5%
2, 7 6 2 −67% 2164 2960 37% 258 213 −17%
2, 8 8 2 −75% 990 2988 202% 213 261 23%
2, 9 6 2 −67% 1993 2585 30% 260 257 −1%
3, 4 6 2 −67% 1732 2003 16% 212 220 4%
3, 5 6 2 −67% 1732 2003 16% 212 220 4%
3, 6 7 2 −71% 1643 2407 47% 203 261 29%
3, 7 6 2 −67% 1914 2304 20% 242 220 −9%
3, 8 8 2 −75% 827 2174 163% 220 262 19%
3, 9 6 2 −67% 1840 2178 18% 220 214 −3%
4, 5 6 2 −67% 1613 1950 21% 212 212 0%
4, 6 7 2 −71% 1570 2374 51% 242 261 8%
4, 7 6 2 −67% 1795 2339 30% 242 213 −12%
4, 8 8 2 −75% 707 2163 206% 212 262 24%
4, 9 6 2 −67% 1839 2158 17% 212 215 1%
5, 6 7 2 −71% 1529 2374 55% 256 261 2%
5, 7 6 2 −67% 1795 2339 30% 242 213 −12%
5, 8 8 2 −75% 707 2163 206% 212 262 24%
5, 9 6 2 −67% 1835 2158 18% 212 215 1%
6, 7 7 2 −71% 1698 2728 61% 214 262 22%
6, 8 9 2 −78% 600 2757 360% 214 280 31%
6, 9 7 2 −71% 1709 2401 40% 241 261 8%
7, 8 8 2 −75% 847 2992 253% 214 262 22%
7, 9 6 2 −67% 1914 2441 28% 242 235 −3%
8, 9 8 2 −75% 581 2510 332% 214 261 22%

Average: 7 2 −71% 1461 2543 74% 224 255 13%

In each of these scenarios, 10 flights are disrupted and needed to be recovered. The performances of 1 and 2 can be seen in
Table 18.

Under each of these scenarios, the number of cancelled flights is significantly lower in 2 compared to 1. In addition to that,
under the disruption scenario where aircraft 0 and 8 are unavailable, 2 is able to recover by cancelling only 2 flights while 1
cancels all of the 10 flights. However, since there is a significant difference between the number of cancelled flights in 1 and 2,
the corresponding total times of delay in 2 are significantly higher than 1. That is why we also look at the maximum time of
delay occurred in a flight leg in the schedule as another recovery performance as shown in Table 18. As a result, in the case of two
disrupted aircraft, on the average, the proposed schedule 2 can recover from the disruption with 71% less cancellation than the
minimum cost schedule 1 while the maximum time of delay occurred in a flight leg is increased by only 13% which corresponds
to approximately 30 min.

6.5. What if analysis on the aircraft unavailability periods

Until now, we assumed that the aircraft are unavailable for the whole day to generate different disruption scenarios. In order to
gain an insight on how the proposed schedules perform against shorter disruptions, we conducted a what if analysis on the aircraft
20

unavailability periods by changing the durations of the aircraft unavailability periods in Table 19. When the aircraft unavailability



Transportation Research Part C 141 (2022) 103734D. Şimşek and M.S. Aktürk
Table 19
Description of the aircraft unavailability periods.

Period No. Time Interval Duration of Unavailability (hrs)

I 09:00 A.M.–01:00 P.M. 4
II 09:00 A.M.–03:00 P.M. 6
III 09:00 A.M.–05:00 P.M. 8
IV 09:00 A.M.–07:00 P.M. 10
V 09:00 A.M.–09:00 P.M. 12
VI Whole Day 24

Table 20
Average recovery measures for each unavailability period.

Unavailability
Period No.

# of Disrupted Flights # of Cancelled Flights Total Time of Delay

1 2 1 2 1 2

I
II
III
IV
V
VI

2.6
3.8
4
4.3
4.9
5

2.6
3.6
4
4.2
5
5

0.2
0.2
0.3
0.5
2.9
3.6

0
0
0
0.2
1.4
1.4

761
1100
1113
1106
886
835

628
882
941
1002
1122
1122

Fig. 5. Effects of aircraft unavailability periods on recovery performance.

period is different than the whole day, the number of disrupted flights in schedules 1 and 2 might differ. Therefore, we use the
ratio of the number of cancelled flights to the number of disrupted flights as our criterion instead of using only the number of
cancelled flights.

In Fig. 5, the effects of the unavailability period on the recovery performances of the 50-flight schedules of 1 and 2 are
shown. The results are for the average of the 10 disruption scenarios where each of them denotes the unavailability of one aircraft.
For the unavailability periods I and II, the minimum cost schedule 1 cancels 5% of the disrupted flights. However, for the same
unavailability periods together with the period III, the proposed schedule 2 is able to recover all disrupted flights. Similarly, for
the remaining unavailability periods, cancellation ratio in 2 is significantly less than 1. Moreover, the number of disrupted and
cancelled flights as well as the total time of delay can be seen in Table 20 for the average of 10 disruption scenarios for each
unavailability period. It is important to note that for shorter unavailability periods, the proposed schedule 2 could reduce both the
number of cancelled flights and total delay simultaneously.

6.6. What if analysis on the airport closures

We first generated disruption scenarios for the 50-flight network where each airport is closed for a certain duration due to
an unexpected event. Tables 21–23 report the disruption scenarios that are found to be significant among the airports, namely
ORD, DFW and MCI. To observe the recovery performance of the proposed schedules compared to the minimum cost schedules, we
evaluate two measures: (1) percentage of the cancelled flights to the disrupted flights and (2) total delay occurred in the schedule
21

after recovery.
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Table 21
Airport closure 16:00–17:00.

Time
Interval

Airport Min. Cost Schedule Proposed Schedule

#
disrupted
flights

#
cancelled
flights

%
cancelled

Total
Delay
(mins)

#
disrupted
flights

#
cancelled
flights

%
cancelled

Total
Delay
(mins)

16:00–17:00
ORD 18 10 56% 78 36 12 33% 117
DFW 8 4 50% 213 18 0 0% 213
MCI 4 2 50% 0 4 0 0% 184

Table 22
Airport closure 17:00–20:00.

Time
Interval

Airport Min. Cost Schedule Proposed Schedule

#
disrupted
flights

#
cancelled
flights

%
cancelled

Total
Delay
(mins)

#
disrupted
flights

#
cancelled
flights

%
cancelled

Total
Delay
(mins)

17:00–20:00
ORD 40 30 75% 108 40 19 48% 166
DFW 18 9 50% 192 17 0 0% 205
MCI 4 2 50% 0 4 0 0% 184

Table 23
Airport closure 12:00–18:00.

Time
Interval

Airport Min. Cost Schedule Proposed Schedule

#
disrupted
flights

#
cancelled
flights

%
cancelled

Total
Delay
(mins)

#
disrupted
flights

#
cancelled
flights

%
cancelled

Total
Delay
(mins)

12:00–18:00
ORD 36 26 72% 118 46 22 48% 114
DFW 18 9 50% 192 18 0 0% 213
MCI 4 2 50% 0 4 0 0% 184

In Table 21, the airports are closed for one hour. Even though the duration of the closure is only one hour, number of flights
isrupted due to the closure is considerable high in ORD since it is the hub airport. The number of disrupted flights is calculated by
ounting the number of flights whose assigned flight block time intersects with the closure period. Note that, since the minimum
ost and proposed schedules are different from each other in terms of both the routing and the departure and arrival times, the
umber of disrupted flights varies. That is why the percentage of cancelled flights is used as a performance measure.

In Table 21, half of the disrupted flights are cancelled in the minimum cost schedule when the airports ORD, DFW, and MCI
re closed for one hour. However, the proposed schedule cancels 33% of the disrupted flights in ORD and is able to recover all
isrupted flights in DFW and MCI. When ORD or MCI is cancelled, we observed a weakly dominating solution for the proposed
chedule since the total delay is longer compared to the minimum cost schedule. However, in case of DFW’s closure, the proposed
chedule performs better or at least the same in terms of both measures.

When the duration of the airport closure is increased, the number of disrupted flights has increased in all three airports, as
xpected. Tables 22 and 23 show that the proposed schedule is able to recover most of the disrupted flights when ORD, DFW and
CI are closed for longer durations whereas in the minimum cost schedule, over 50% of the flights that are disrupted end up

eing cancelled. Similarly, we observed longer delays in the proposed schedule as a possible result of the high recovery rates of the
isrupted flights. However, we also observed that the proposed schedule yields strongly dominating solution when ORD is closed
etween 12:00–18:00.

Therefore, it is concluded that the proposed schedules perform better than the minimum cost schedules in terms of the
ancellation of the flights and the delay after recovery in case of airport closure as well.

. Conclusion and future work

We aim to create resilient schedules which are adaptable to uncertain challenges while continuing to stay operational. In addition
o the most common goal of the minimization of the operational costs of the airlines, as a significant contribution, we also incorporate
he variability into our formulation as a surrogate measure to the resilience. To this end, we formulate the problem as a bi-criteria
onlinear mixed-integer mathematical model with chance constraints. To handle the nonlinearity, we utilize second order cone
rogramming and to handle the chance constraints, we use value-at-risk measure, so that the resulting formulation could be solved
y commercial solvers. We also develop a novel math-heuristic algorithm to handle problems with larger flight networks.

As an important contribution, we propose a data-driven methodology to estimate departure and arrival delay probabilities of
lights and turnaround times of the aircraft. Through the empirical techniques that we introduce, we are able to capture the trends
22
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in the historical data in our parameter calculations which were previously done in the existing literature in more traditional ways.
Moreover, we devise an integrated flight and passenger recovery algorithm to evaluate the performance of our proposed schedules
under disruption scenarios in a posterior analysis. Another important contribution is that in case of disruptions caused by the
unavailability of the aircraft or airport closures, we provide the decision maker with flexible recovery strategies having different
characteristics due to the bi-criteria nature of our recovery performance evaluation.

In our proposed approach, we are not only re-timing the departure times as a result of adjusting the cruise speeds and/or inserting
dle times, but also change the flight sequences (that could involve aircraft swapping decisions for different aircraft types) aimed
o achieve a balanced distribution of the variability over the aircraft paths in the schedule. Therefore, distributing the variability
ver the whole schedule increases the resilience of the system to a greater extent than what only idle time insertion can do, since
t enlarges the solution space so that different recovery actions could be generated. We observe that the schedules that we propose
an recover from the disruptions with less number of flight cancellations compared to the minimum cost schedules. This is another
rucial contribution of this study since airlines avoid cancelling flights since the opportunity costs of flight cancellation are high and
lso the passenger convenience and satisfaction are of great importance to them. We show that by allowing a small deviation from
he minimum cost schedule at the schedule generation phase, the potential recovery costs in the future can be reduced significantly.
his is a result of the trade-off between the total operational costs and the deviation of the aircraft path variability’s which is what

nitially motivated this study.
In our posterior analysis, we do not consider cancellation and delay in monetary terms, since the results will be quite sensitive to

he selected cost parameters. Instead, we focus on the number of flights cancelled and the time of delay occurred (in minutes) as a
i-criteria problem, instead of unifying them into a single criterion in terms of monetary units. For most of the disruption scenarios
nalyzed in our computational experiments, the schedules that we propose can recover from the disruptions more effectively, and
e are able to find strategies which are better in terms of not only one of the performance measures of cancellation or delay
ut both which is why we introduce the term strongly dominating solutions. As a future research direction, how these measures
ould be represented in a common unifying function in terms of monetary units for the non-dominated recovery solutions could
e investigated. By considering the probability of disruption, additional operational cost, if any, and the estimated costs of flight
ancellation and delays, an airline company could assess the benefits of the proposed approach in terms of monetary values for the
on-dominated recovery solutions.

The contributions of this study can be extended with several possible future research directions. We assume that the non-
ruise time random variables follow Log-Laplace distribution. One possible research idea would be considering other probability
istributions which have closed form representations for the random variables. In another possible future study, different data
stimation models could be used to estimate the problem parameters. Finally, the performance of our proposed method can also
e tested using other recovery algorithms from the literature that captures our bi-criteria formulation with the corresponding
perational cost terms that we have used in the proposed mathematical model.
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ppendix A

Integrated Flight and Passenger Recovery Algorithm: To be able to quantify resilience of the schedules and compare the
recovery performances of minimum cost schedules and the proposed schedules with each other, a bi-criteria framework is followed.
The first performance indicator 𝜉1 is the number of cancelled flights after the schedule is recovered from a disruption and the second
ndicator 𝜉2 is the total time of delay occurred after the recovery. Therefore, for a flight schedule  , under the disruption scenario
𝜔 which is caused by the availability of an aircraft, we have

𝑛( , 𝜔) ∶ number of disrupted flights in schedule  under scenario 𝜔

𝜉1( , 𝜔) ∶ number of cancelled flights in schedule  after recovered from disruption 𝜔

𝜉2( , 𝜔) ∶ total time of delay occurred in schedule  after recovered from disruption 𝜔.

To generate recovery solutions for flight schedules against disruptions, the Integrated Flight and Passenger Recovery Algorithm is
proposed. The main idea of the algorithm is to solve Flight Recovery Model (FRM) first to minimize the number of cancelled flights
and then to solve Re-Routing Model (RRM) to route each of the aircraft considering cruise time controllability to minimize the total
delay iteratively. In each iteration, eligibility for swapping or accommodating disrupted flights is evaluated to obtain alternative
solutions and the algorithm terminates if it cannot find an alternative solution. The pseudo-code can be found in Algorithm 2 in
more detail. Sets and parameters that the algorithm utilizes are as follows:

Sets and Parameters:
𝐸𝐷 ∶ set of disrupted flight blocks
𝐸𝑁 ∶ set of existing, i.e., non-disrupted flight blocks
𝐸 ∶ set of flight blocks, i.e., 𝐸 ∪ 𝐸
23
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𝐹𝑖 ∶ set of flights in flight block 𝑖 ∈ 𝐸

𝑡𝑖 ∶ aircraft operating the flight block 𝑖 ∈ 𝐸

𝑐𝑖 ∶ number of flights in the flight block 𝑖 ∈ 𝐸

𝑎𝑡𝑖 ∶ 1 if flight block 𝑖 ∈ 𝐸𝐷 can be accommodated in the path of aircraft 𝑡 ∈ 𝑇 ∖𝑡𝑖, and 0 o.w.
𝑏𝑖𝑗 ∶ 1 if flight blocks 𝑖 ∈ 𝐸𝐷 and 𝑗 ∈ 𝐸𝑁 can be swapped, and 0 o.w.

𝑐𝑡
𝑖
𝑖 ∶ 1 if flight block 𝑖 ∈ 𝐸𝐷 can be recovered with delay in the path of aircraft 𝑡𝑖, and 0 o.w.

Algorithm 2 Integrated Flight and Passenger Recovery Algorithm (IAPRA)
1: INITIALIZATION:
2: Define the set of problems as  ∶= ∅ and the set of solutions as  ∶= ∅.
3: Take 𝐸𝐷, 𝐸𝑁 and 𝐹𝑖 as input. Calculate the matrices [𝑎]𝑡𝑖 and [𝑏]𝑖𝑗 .
4: Denote the problem with these matrices as 𝑃0 and let the problem set  ← {𝑃0}.
5: STEP 1: Solve (FRM) for problem𝑃𝑘 ∈  . Update  ← ∖𝑃𝑘.
6: Let 𝑆 represent the solution. Update  ←  ∪ 𝑆.
7: In the solution S:
8: for each 𝑖 ∈ 𝐸𝐷 do
9: for each 𝑡 ∈ 𝑇 do
0: if 𝑎𝑐𝑐𝑜𝑚𝑡

𝑖 = 1 then
1: Create problem 𝑃 by updating 𝑎𝑡𝑖 ← 0 and let  ←  ∪ {𝑃 }.
2: else if 𝑠𝑤𝑎𝑝𝑖𝑗 = 1 then
3: Create problem 𝑃 by updating 𝑏𝑖𝑗 ← 0 and let  ←  ∪ {𝑃 }.
4: end if
5: end for
6: end for
7: Go to Step 2.
8: STEP 2: Solve (RRM) for solution 𝑆. Report the solution.
9: if  ≠ ∅ then
0: Go to Step 1.
1: else
2: Stop. Report  as the set of recovery solutions.
3: end if

A.1. Flight recovery model

The parameters 𝑎𝑡𝑖 and 𝑏𝑖𝑗 , which denote the eligibility for accommodating and swapping a flight block, are calculated by simply
hecking if the disrupted flight block can be compressed by speeding up the assigned aircraft if necessary and accommodated into
he existing schedule by utilizing the idle times and by compressing the other existing flights. The detailed explanations can be
ound in Algorithms 3 and 4. We introduce the following new decision variables:

𝑐𝑎𝑛𝑐𝑒𝑙𝑖 ∶ 1 if flight block 𝑖 is cancelled, 𝑖 ∈ 𝐸𝐷, and 0 o.w.
𝑠𝑤𝑎𝑝𝑖𝑗 ∶ 1 if flight blocks 𝑖 ∈ 𝐸𝐷 and 𝑗 ∈ 𝐸𝑁 are swapped, and 0 o.w.
𝑎𝑐𝑐𝑜𝑚𝑡

𝑖 ∶ 1 if flight block 𝑖 ∈ 𝐸𝐷 is accommodated in the path of aircraft 𝑡 ∈ 𝑇 ∖𝑡𝑖, and 0 o.w.

𝑑𝑒𝑙𝑎𝑦𝑡
𝑖
𝑖 ∶ 1 if flight block 𝑖 ∈ 𝐸𝐷 is recovered with delay in the path of aircraft 𝑡𝑖, and 0 o.w.

Flight Recovery Model (FRM):

𝜉1 = min
∑

𝑖∈𝐸𝐷

𝑐𝑖 × 𝑐𝑎𝑛𝑐𝑒𝑙𝑖 +
∑

𝑖∈𝐸𝐷

∑

𝑗∈𝐸𝑁

𝑐𝑗 × 𝑠𝑤𝑎𝑝𝑖𝑗 (40)

s.t. 𝑐𝑎𝑛𝑐𝑒𝑙𝑖 +
∑

𝑗∈𝐸𝑁

𝑠𝑤𝑎𝑝𝑖𝑗 +
∑

𝑡∈𝑇 ∖𝑡𝑖
𝑎𝑐𝑐𝑜𝑚𝑡

𝑖 + 𝑑𝑒𝑙𝑎𝑦𝑡
𝑖
𝑖 = 1 ∀𝑖 ∈ 𝐸𝐷 (41)

∑

𝑖∈𝐸𝐷

𝑠𝑤𝑎𝑝𝑖𝑗 ≤ 1 ∀𝑗 ∈ 𝐸𝑁 (42)

∑

𝑖∈𝐸𝐷

𝑎𝑐𝑐𝑜𝑚𝑡
𝑖 ≤ 1 ∀𝑡 ∈ 𝑇 ∖𝑡𝑖 (43)

𝑎𝑐𝑐𝑜𝑚𝑡
𝑖 ≤ 𝑎𝑡𝑖 ∀𝑖 ∈ 𝐸𝐷, 𝑡 ∈ 𝑇 ∖𝑡𝑖 (44)

𝑠𝑤𝑎𝑝𝑖𝑗 ≤ 𝑏𝑖𝑗 ∀𝑖 ∈ 𝐸𝐷, 𝑗 ∈ 𝐸𝑁 (45)

𝑑𝑒𝑙𝑎𝑦𝑡
𝑖
𝑖 ≤ 𝑐𝑡

𝑖
𝑖 ∀𝑖 ∈ 𝐸𝐷 (46)
24

𝑠𝑤𝑎𝑝𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐸𝐷, 𝑗 ∈ 𝐸𝑁 (47)
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𝑎𝑐𝑐𝑜𝑚𝑡
𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝐸𝐷, 𝑡 ∈ 𝑇 ∖𝑡𝑖 (48)

𝑑𝑒𝑙𝑎𝑦𝑡
𝑖
𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝐸𝐷 (49)

The objective function (40) minimizes the number of cancelled flights. Constraints (41) ensure that a disrupted flight block can
either be cancelled, swapped with a non-disrupted flight block, recovered in the path of its originally assigned aircraft with a delayed
departure or accommodated into the existing path of another aircraft. Constraints (42) ensure that a non-disrupted flight block can
be swapped with at most one disrupted flight block. Constraints (43) ensure that the existing path of an aircraft can accommodate
at most one disrupted flight block. Constraints (44)–(46) make sure that accommodating and swapping a disrupted flight block are
possible if the corresponding parameters are equal to one. Constraints (47)–(49) are binary constraints. Note that it is not necessary
to have binary constraints for variable 𝑐𝑎𝑛𝑐𝑒𝑙𝑖 due to the constraints (41) and (47)–(49).

A.2. Re-routing model

After (FRM) is solved to obtain the minimum number of flight cancellations and the corresponding recovery decisions, for each
aircraft 𝑡 ∈ 𝑇 with changed flight block assignments, we define the following updated notation associated with the re-routing model:

Sets and Parameters:
𝐹 𝑡 ∶ set of flights assigned to aircraft 𝑡
𝐴𝑡 ∶ set of all possible flight pairs assigned to aircraft 𝑡

𝑈𝑆 𝑖, 𝐷𝑆 𝑖 ∶ upstream and downstream flights of flight 𝑖 ∈ 𝐹 𝑡

𝑇𝐴𝑖𝑗 ∶ turnaround time needed to prepare aircraft between (𝑖, 𝑗) ∈ 𝐴𝑡

𝑑𝑚𝑖𝑛𝑖 ∶ departure time of flight 𝑖 obtained in 𝜀-CM, 𝑖 ∈ 𝐹 𝑡

𝑑𝑚𝑎𝑥𝑖 ∶ upper bound for departure time of flight 𝑖 ∈ 𝐹 𝑡

𝑓 𝑙
𝑖 , 𝑓

𝑢
𝑖 ∶ lower and upper bounds for cruise time of flight 𝑖 ∈ 𝐹 𝑡

Decision Variables:
𝑑𝑖 ∶ departure time of flight 𝑖 ∈ 𝐹 𝑡

𝑠𝑖 ∶ idle time of aircraft after flight 𝑖 ∈ 𝐹 𝑡

𝑓𝑖 ∶ cruise time of flight 𝑖 ∈ 𝐹 𝑡

𝑥𝑖𝑗 ∶ 1 if flight 𝑖 is followed by flight 𝑗, (𝑖, 𝑗) ∈ 𝐴𝑡, and 0 o.w.
𝑦𝑖 ∶ 1 if flight 𝑖 is the first flight performed by aircraft 𝑡, 𝑖 ∈ 𝐹 𝑡, and 0 o.w.
𝑧𝑖 ∶ 1 if flight 𝑖 is the last flight performed by aircraft 𝑡, 𝑖 ∈ 𝐹 𝑡, and 0 o.w.

Algorithm 3 Algorithm to Check Eligibility for Swapping Disrupted and Existing Flight Blocks.
1: for each 𝑖 ∈ 𝐸 do
2: Let 𝑏𝑙𝑜𝑐𝑘𝑖 ∶= ∑

𝑘∈𝐹𝑖 𝑓
𝑙
𝑘 denote the block time of flight block 𝑖.

3: Let 𝑐𝑟𝑢𝑖𝑠𝑒𝑖 ∶= ∑

𝑘∈𝐹𝑖 𝑓𝑘 denote the total cruise time of flight block 𝑖.
4: Let 𝑖𝑑𝑙𝑒𝑖 ∶= ∑

𝑘∈𝐹𝑖 𝑠𝑘 denote the total idle time in flight block 𝑖.
5: if 𝑐𝑖 = 1 then
6: Let 𝑠𝑙𝑎𝑐𝑘𝑖 denote the time until midnight after flight block 𝑖.
7: end if
8: end for
9: for each 𝑖 ∈ 𝐸 do

10: for each 𝑖 ∈ 𝐸 do
11: if 𝑡𝑖 = 𝑡𝑗 then
12: 𝑏𝑖𝑗 ← 0
13: else if 𝑐𝑗 = 2 and 𝑏𝑙𝑜𝑐𝑘𝑖 ≤ 𝑐𝑟𝑢𝑖𝑠𝑒𝑗 + 𝑖𝑑𝑙𝑒𝑗 then
14: 𝑏𝑖𝑗 ← 1
15: else if 𝑐𝑗 = 1 and 𝑏𝑙𝑜𝑐𝑘𝑖 ≤ 𝑐𝑟𝑢𝑖𝑠𝑒𝑗 + 𝑖𝑑𝑙𝑒𝑗 + 𝑠𝑙𝑎𝑐𝑘𝑗 then
16: 𝑏𝑖𝑗 ← 1
17: else
18: 𝑏𝑖𝑗 ← 0
19: end if
20: end for
21: end for
25
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Algorithm 4 Algorithm to Check Eligibility for Accommodating a Disrupted Flight Block into an Existing Path.
1: for each 𝑖 ∈ 𝐸 do
2: Let 𝑏𝑙𝑜𝑐𝑘𝑖 ∶=

∑

𝑘∈𝐹𝑖
𝑓 𝑙
𝑘 denote the block time of flight block 𝑖.

3: Let 𝑐𝑟𝑢𝑖𝑠𝑒𝑖 ∶=
∑

𝑘∈𝐹𝑖
𝑓𝑘 denote the total cruise time of flight block 𝑖.

4: Let 𝑖𝑑𝑙𝑒𝑖 ∶=
∑

𝑘∈𝐹𝑖
𝑠𝑘 denote the total idle time in flight block 𝑖.

5: if 𝑐𝑖 = 1 then
6: Let 𝑠𝑙𝑎𝑐𝑘𝑖 denote the time until midnight after flight block 𝑖.
7: end if
8: end for
9: for each 𝑡 ∈ 𝑇 do
0: Let 𝑠𝑙𝑎𝑐𝑘𝐼𝑛𝑃𝑎𝑡ℎ𝑡 denote the slack time that can be created in the path of aircraft 𝑡.
1: 𝑠𝑙𝑎𝑐𝑘𝐼𝑛𝑃𝑎𝑡ℎ𝑡 ← 0
2: for each 𝑖 ∈ 𝐸 do
3: if 𝑡𝑖 = 𝑡 then
4: if 𝑐𝑖 = 2 then
5: 𝑠𝑙𝑎𝑐𝑘𝐼𝑛𝑃𝑎𝑡ℎ𝑡 ← 𝑠𝑙𝑎𝑐𝑘𝐼𝑛𝑃𝑎𝑡ℎ𝑡 + 𝑖𝑑𝑙𝑒𝑖 + 𝑐𝑟𝑢𝑖𝑠𝑒𝑖 − 𝑏𝑙𝑜𝑐𝑘𝑖

6: else if 𝑐𝑖 = 1 then
7: 𝑠𝑙𝑎𝑐𝑘𝐼𝑛𝑃𝑎𝑡ℎ𝑡 ← 𝑠𝑙𝑎𝑐𝑘𝐼𝑛𝑃𝑎𝑡ℎ𝑡 + 𝑖𝑑𝑙𝑒𝑖 + 𝑠𝑙𝑎𝑐𝑘𝑖 + 𝑐𝑟𝑢𝑖𝑠𝑒𝑖 − 𝑏𝑙𝑜𝑐𝑘𝑖

8: end if
9: end if
0: end for
1: end for
2: for each 𝑖 ∈ 𝐸 do
3: for each 𝑡 ∈ 𝑇 do
4: if 𝑡𝑖 = 𝑡 then
5: 𝑎𝑡𝑖 ← 0
6: else if 𝑐𝑗 = 2 and 𝑏𝑙𝑜𝑐𝑘𝑖 + 𝑡𝑢𝑟𝑛𝑇 𝑖𝑚𝑒 ≤ 𝑠𝑙𝑎𝑐𝑘𝐼𝑛𝑃𝑎𝑡ℎ𝑡 then
7: 𝑎𝑡𝑖 ← 1
8: else
9: 𝑎𝑡𝑖 ← 0
0: end if
1: end for
2: end for

Re-Routing Model:

𝜉2 = min
∑

𝑖∈𝐹 𝑡

(

𝑑𝑖 − 𝑑𝑚𝑖𝑛𝑖
)

(50)

s.t.
∑

𝑗∈𝑈𝑆𝑖
𝑥𝑗𝑖 + 𝑦𝑖 −

∑

𝑗∈𝐷𝑆𝑖
𝑥𝑖𝑗 − 𝑧𝑖 = 0 ∀𝑖 ∈ 𝐹 𝑡 (51)

∑

𝑗∈𝑈𝑆𝑖
𝑥𝑗𝑖 + 𝑦𝑖 = 1 ∀𝑖 ∈ 𝐹 𝑡 (52)

∑

𝑖∈𝐹 𝑡
𝑦𝑖 ≤ 1 (53)

𝑓 𝑙
𝑖 ≤ 𝑓𝑖 ≤ 𝑓 𝑢

𝑖 ∀𝑖 ∈ 𝐹 𝑡 (54)

𝑑𝑚𝑖𝑛𝑖 ≤ 𝑑𝑖 ≤ 𝑑𝑚𝑎𝑥𝑖 ∀𝑖 ∈ 𝐹 𝑡 (55)
IF 𝑥𝑖𝑗 = 1 THEN

𝑑𝑗 − 𝑑𝑖 − 𝑇𝐴𝑖𝑗 − 𝑓𝑖 − VaR1−𝛾𝑖 (𝑁𝐶𝑖) − 𝑠𝑖 = 0 ∀(𝑖, 𝑗) ∈ 𝐴𝑡 (56)
∑

𝑖∈𝐹 𝑡
𝑓𝑖 ≤ 𝜆𝑡 (57)

𝑠𝑖 ≥ 0 ∀𝑖 ∈ 𝐹 𝑡 (58)

𝑥𝑖𝑗 ∈ {0, 1} ∀(𝑖, 𝑗) ∈ 𝐴𝑡 (59)

𝑦𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝐹 𝑡 (60)

The objective function (50) minimizes the total delay occurred in the schedule by summing the differences between the departure
times of the flights and the published departure times over all flights. Constraints (51) are the network balance constraints and
together with the constraints (52), they determine the aircraft routes and assign individual aircraft to those routes. Constraint
(53) ensures that there is at most one aircraft route is assigned to an aircraft. Constraint sets (54) and (55) limit the cruise time
controllability and the departure times for each flight, respectively. Constraints (56) are the chance constraints which are the same
as in 𝜀-model. Constraint (57) is the maintenance feasibility constraint. Constraints (58)–(60) are domain constraints for the idle
26

time variables and binary variables.
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Table 24
Schedules for 150 flight network.

Tail
No.

Aircraft
No.

Minimum Cost Schedule 1 Proposed Schedule 2

Flight
No.

Origin Dest. Departure
Time

Arrival
Time

Flight
No.

Origin Dest. Departure
Time

Arrival
Time

N678UA 0

100 ORD BOS 07:38 09:22

Same
101 BOS ORD 10:15 12:18
27 ORD LGA 13:24 15:06
58 LGA ORD 17:16 19:13
114 ORD EWR 20:20 22:49

N802WA 1

125 ORD DFW 09:45 11:15 87 ORD DFW 09:45 11:15
71 DFW ORD 12:34 13:58 143 DFW ORD 12:34 13:58
127 ORD STL 15:17 16:50 127 ORD STL 17:22 18:55
23 STL ORD 17:42 19:08 23 STL ORD 19:47 21:13
84 ORD LGA 20:40 22:22 84 ORD LGA 22:46 00:28

N805WA 2

65 ORD MSP 07:15 08:19 65 ORD MSP 07:15 08:20
66 MSP ORD 09:15 10:16 66 MSP ORD 09:16 10:17
47 ORD DFW 11:23 12:53 47 ORD DFW 11:23 12:53
98 DFW ORD 14:35 15:59 98 DFW ORD 14:34 15:58
49 ORD DEN 17:30 19:20 109 ORD LGA 17:29 19:11

N309US 3

15 ORD MSP 07:15 08:19 15 ORD MSP 07:15 08:20
16 MSP ORD 09:15 10:16 16 MSP ORD 09:16 10:17
12 ORD DFW 11:23 12:53 12 ORD DFW 11:23 12:53
63 DFW ORD 14:35 15:59 63 DFW ORD 14:34 15:58
99 ORD DEN 17:30 19:20 104 ORD DFW 17:29 18:59

N334NW 4

45 ORD MCI 07:15 08:15 45 ORD MCI 07:15 08:16
46 MCI ORD 09:12 10:12 46 MCI ORD 09:12 10:11
97 ORD DFW 11:22 12:52 97 ORD DFW 11:21 12:51
48 DFW ORD 14:35 15:59 48 DFW ORD 14:34 15:58
14 ORD DEN 17:30 19:20 4 ORD LGA 17:29 19:11

N312US 5

80 ORD DFW 07:29 08:59

Same
136 DFW ORD 10:29 11:53
2 ORD DFW 13:34 15:04
88 DFW ORD 17:00 18:24
74 ORD SAN 19:15 20:54

N681UA 6

50 ORD LGA 07:48 09:30 50 ORD LGA 07:47 09:29
1 LGA ORD 10:23 12:20 1 LGA ORD 10:22 12:20
102 ORD LGA 13:15 14:57 115 ORD LAX 13:14 15:14
133 LGA ORD 15:56 17:53 116 LAX ORD 16:14 17:56
29 ORD BOS 19:00 20:44 29 ORD BOS 20:44 22:28

N807TR 7

135 ORD DFW 07:29 08:59

Same
91 DFW ORD 10:18 11:43
32 ORD AUS 13:49 15:31
83 AUS ORD 17:21 18:58
144 ORD LGA 20:20 22:02

N695UA 8

85 ORD LGA 08:10 09:52

Same
36 LGA ORD 10:45 12:42
77 ORD LGA 13:37 15:19
78 LGA ORD 16:13 18:10
19 ORD BOS 21:30 23:14

N422BN 9

20 ORD DFW 09:45 11:15

Same
126 DFW ORD 12:20 13:44
147 ORD ATL 14:36 15:56
148 ATL ORD 16:58 18:27
94 ORD SAN 20:00 21:39

N966UA 10

120 ORD MIA 08:45 10:22 120 ORD MIA 08:45 10:22
121 MIA ORD 11:52 13:36 121 MIA ORD 11:53 13:37
7 ORD LGA 14:32 16:14 7 ORD LGA 14:32 16:14
93 LGA ORD 17:25 19:22 93 LGA ORD 17:25 19:23
109 ORD LGA 21:00 22:42 49 ORD DEN 21:01 22:51

(continued on next page)

Appendix B
27
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Table 24 (continued).
Tail
No.

Aircraft
No.

Minimum Cost Schedule 1 Proposed Schedule 2

Flight
No.

Origin Dest. Departure
Time

Arrival
Time

Flight
No.

Origin Dest. Departure
Time

Arrival
Time

N305FA 11

105 ORD MCI 06:45 07:45

Same
61 MCI ORD 09:01 10:01
62 ORD DFW 11:21 12:51
13 DFW ORD 14:35 15:59
64 ORD DEN 17:30 19:20

N573UA 12

95 ORD MCI 07:15 08:15 95 ORD MCI 07:15 08:16
11 MCI ORD 09:13 10:13 11 MCI ORD 09:13 10:13
107 ORD MSP 12:19 13:24 107 ORD MSP 12:19 13:24
108 MSP ORD 17:06 18:07 108 MSP ORD 17:06 18:07
104 ORD DFW 19:00 20:30 99 ORD DEN 19:01 20:51

N438BN 13

25 ORD DFW 08:06 09:36

Same
81 DFW ORD 10:30 11:54
117 ORD SAN 12:45 14:23
68 SAN ORD 17:06 18:29
89 ORD LGA 20:20 22:02

N335NW 14

115 ORD LAX 06:46 08:46 102 ORD LGA 06:46 08:28
116 LAX ORD 09:40 11:22 133 LGA ORD 09:21 11:19
67 ORD SAN 12:15 13:53 67 ORD SAN 12:28 14:07
118 SAN ORD 16:51 18:14 118 SAN ORD 17:05 18:28
119 ORD MIA 20:20 21:57 119 ORD MIA 20:34 22:11

Table 25
Cont.’d from Table 24.

Tail
No.

Aircraft
No.

Minimum Cost Schedule 1 Proposed Schedule 2

Flight
No.

Origin Dest. Departure
Time

Arrival
Time

Flight
No.

Origin Dest. Departure
Time

Arrival
Time

N317US 15

40 ORD DFW 07:45 09:15 132 ORD LGA 07:45 09:27
56 DFW ORD 10:23 11:47 28 LGA ORD 10:35 12:32
37 ORD DFW 13:34 15:04 37 ORD DFW 16:48 18:18
53 DFW ORD 17:21 18:45 53 DFW ORD 20:35 21:59
44 ORD SAN 20:00 21:39 44 ORD SAN 23:14 00:53

N967UA 16

140 ORD LGA 08:10 09:52 140 ORD LGA 08:10 09:52
51 LGA ORD 10:45 12:42 51 LGA ORD 10:44 12:42
92 ORD LGA 14:17 15:59 92 ORD LGA 14:17 15:59
43 LGA ORD 17:17 19:15 43 LGA ORD 17:17 19:15
4 ORD LGA 20:20 22:02 14 ORD DEN 20:20 22:10

N801WA 17

5 ORD DFW 07:45 09:15 142 ORD DFW 07:45 09:15
76 DFW ORD 10:49 12:13 38 DFW ORD 10:49 12:13
137 ORD AUS 13:49 15:31 137 ORD AUS 17:38 19:20
138 AUS ORD 17:21 18:58 138 AUS ORD 21:10 22:47
34 ORD LGA 20:40 22:22 34 ORD LGA 00:29 02:11

N969UA 18

145 ORD EWR 07:24 09:53 145 ORD EWR 07:24 09:53
146 EWR ORD 10:45 13:25 146 EWR ORD 10:45 13:25
122 ORD FLL 15:45 17:28 82 ORD AUS 15:45 17:27
123 FLL ORD 18:20 20:12 33 AUS ORD 18:19 19:56
149 ORD EWR 21:03 23:32 149 ORD EWR 21:40 00:09

N727YK 19

75 ORD DFW 08:32 10:02

Same
31 DFW ORD 10:55 12:19
22 ORD STL 15:17 16:50
128 STL ORD 17:42 19:08
54 ORD LGA 20:20 22:02

N821AU 20

110 ORD EWR 07:24 09:53

Same
111 EWR ORD 10:45 13:25
57 ORD LGA 14:26 16:08
8 LGA ORD 17:24 19:22
69 ORD BOS 21:30 23:14

(continued on next page)
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Table 25 (continued).
Tail
No.

Aircraft
No.

Minimum Cost Schedule 1 Proposed Schedule 2

Flight
No.

Origin Dest. Departure
Time

Arrival
Time

Flight
No.

Origin Dest. Departure
Time

Arrival
Time

N319US 21

55 ORD DFW 07:45 09:15 55 ORD DFW 07:45 09:15
41 DFW ORD 10:23 11:47 41 DFW ORD 10:23 11:47
82 ORD AUS 13:49 15:31 122 ORD FLL 13:50 15:32
33 AUS ORD 17:18 18:55 123 FLL ORD 17:20 19:12
59 ORD SAN 20:00 21:39 59 ORD SAN 22:20 23:58

N240AT 22

35 ORD LGA 08:07 09:49 35 ORD LGA 08:07 09:49
141 LGA ORD 10:41 12:39 141 LGA ORD 10:41 12:39
132 ORD LGA 13:34 15:16 40 ORD DFW 13:34 15:04
28 LGA ORD 16:09 18:06 56 DFW ORD 15:57 17:21
79 ORD BOS 19:01 20:44 79 ORD BOS 18:38 20:22

N164TS 23

90 ORD DFW 07:45 09:15 90 ORD DFW 07:45 09:15
131 DFW ORD 10:47 12:11 131 DFW ORD 10:47 12:11
87 ORD DFW 13:36 15:06 125 ORD DFW 13:37 15:07
143 DFW ORD 17:21 18:45 71 DFW ORD 17:22 18:46
39 ORD LGA 20:20 22:02 39 ORD LGA 21:14 22:56

N656CS 24

0 ORD LGA 08:10 09:52

Same
86 LGA ORD 10:45 12:42
42 ORD LGA 14:00 15:42
103 LGA ORD 16:35 18:32
134 ORD BOS 19:27 21:11

N784CK 25

10 ORD MCI 07:15 08:15 10 ORD MCI 07:15 08:16
106 MCI ORD 09:08 10:08 106 MCI ORD 09:09 10:08
142 ORD DFW 13:34 15:04 5 ORD DFW 13:35 15:05
38 DFW ORD 17:21 18:45 76 DFW ORD 17:23 18:47
124 ORD ATL 22:00 23:20 124 ORD ATL 23:29 00:49

N320US 26

130 ORD DFW 08:45 10:15 52 ORD DFW 08:45 10:15
26 DFW ORD 11:09 12:33 3 DFW ORD 11:09 12:33
112 ORD ATL 13:30 14:50 112 ORD ATL 14:33 15:53
113 ATL ORD 16:51 18:20 113 ATL ORD 17:54 19:23
9 ORD SAN 20:00 21:39 9 ORD SAN 21:03 22:41

N336NW 27

60 ORD MCI 07:15 08:15

Same
96 MCI ORD 09:13 10:13
17 ORD SAN 11:49 13:27
18 SAN ORD 16:46 18:10
24 ORD SAN 19:00 20:39

N353PA 28

30 ORD DFW 07:29 08:59 30 ORD DFW 07:29 08:59
6 DFW ORD 10:18 11:43 6 DFW ORD 10:19 11:43
52 ORD DFW 13:34 15:04 130 ORD DFW 13:35 15:05
3 DFW ORD 17:00 18:24 26 DFW ORD 17:08 18:32
129 ORD SAN 19:15 20:54 129 ORD SAN 19:30 21:08

N355PA 29

70 ORD DFW 09:45 11:15

Same
21 DFW ORD 12:34 13:58
72 ORD STL 15:17 16:50
73 STL ORD 17:42 19:08
139 ORD LGA 20:40 22:22

Appendix C. Posteriori analysis on non-cruise time parameters

C.1. What if analysis on 𝛽

Increasing the value of 𝛽 significantly increases the variance values of our Log-Laplace random variables and the deviation of
he path variabilities. To observe whether the recovery performance of the schedules is affected by the value of 𝛽, a posterior
nalysis is conducted as summarized in Table 26. In each of the scenarios and levels for 𝛽, the proposed schedule 2 yields either

strongly-dominating or non-dominated recovery solutions. In summary, 2 is ‘‘better’’ by 61% and 69% in terms of the number of
cancelled flights for 𝛽 = 0.01 and 𝛽 = 0.05, respectively. However, it faces 34% and 36% more time of delay compared to 1 in each
etting.
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Table 26
Effect of 𝛽 on the recovery performance.

Disruption Scenario 𝛽 = 0.01 𝛽 = 0.05

1 2 1 2

𝜉1 𝜉2 𝜉1 𝜉2 𝜉1 𝜉2 𝜉1 𝜉2
𝜔0 5 – 1 1416 5 – 2 1618
𝜔1 3 891 1 1166 3 1121 1 1442
𝜔2 3 990 1 1414 3 1003 1 1414
𝜔3 3 905 1 925 3 1008 1 925
𝜔4 3 791 1 892 3 879 1 1188
𝜔5 3 841 1 898 3 961 1 892
𝜔6 5 – 3 1012 4 600 1 1221
𝜔7 3 847 1 1437 3 847 1 1470
𝜔8 5 – 3 1125 5 – 1 1192
𝜔9 3 581 1 937 3 959 1 1136

Average: 3.6 835 1.4 1122 3.5 922 1.1 1250

Table 27
Effect of 𝛼 on the schedule generation.
𝛼 Min. Cost Schedule 1 Proposed Schedule 2 Imp. in

𝐹2

𝐹1 ($) 𝐹2 𝐹1 ($) 𝐹2 Inserted Idle
Time (mins)

ln(20)
ln(25)

796294
796270

5.32
6.75

874284
861300

3.24
4.25

555
459

39%
37%

Table 28
Effect of 𝛼 on the recovery performance.

Disruption Scenario 𝛼 = ln(20) 𝛼 = ln(25)

1 2 1 2

𝜉1 𝜉2 𝜉1 𝜉2 𝜉1 𝜉2 𝜉1 𝜉2
𝜔0 5 – 1 1416 5 – 1 1266
𝜔1 3 891 1 1166 3 1163 1 785
𝜔2 3 990 1 1414 3 903 1 1127
𝜔3 3 905 1 925 3 702 1 739
𝜔4 3 791 1 892 3 702 1 739
𝜔5 3 841 1 898 3 739 1 791
𝜔6 5 – 3 1012 3 905 1 867
𝜔7 3 847 1 1437 4 560 1 740
𝜔8 5 – 3 1125 5 – 1 1342
𝜔9 3 581 1 937 3 838 1 917

Average: 3.6 835 1.4 1122 3.5 814 1 913

C.2. What if analysis on 𝛼

Increasing the value of 𝛼 increases the average duration of the non-cruise times, and results in less idle time insertion possibility
due to the limited time of the aircraft on a day as shown in Table 27. When 𝛼 = ln(20), the algorithm is able to insert a total of
55 min idle time to the minimum cost schedule to obtain 2, whereas when 𝛼 = ln(25), the inserted idle time drops to 459 min.

In order to find out whether increasing 𝛼 increases the recovery performance or not, we conducted a posterior analysis and the
results against each disruption scenario can be found in Table 28. Although the recovery performance of the schedules is expected
to be improved as the idle time insertion increases, the results show that when 𝛼 = ln(25), the difference between the recovery
performances of the proposed schedule and the minimum cost schedule is higher. On the average, when 𝛼 = ln(25), 2 is able to
ecover from the schedules by cancelling 2.5 less flights than 1, whereas this value is 2.2 if we have 𝛼 = ln(20). Similarly, total
ime of delay in 2 is significantly lower if 𝛼 = ln(25). The reason for the schedules with high setting for 𝛼 performing better against
isruptions is due to the better placement of idle times into the flight schedule by considering the variability of each flight leg.
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