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In this review, we discuss the data-driven systems and their effects on the implementation of the in- 

ventory theory. After overviewing the theory briefly, we group the data-driven approaches to simplify 

exposition. We consider the use of available data to estimate the parameters of more complex models, 

and propose developing the theory in that direction, as well. As a pedagogical example, an extension 

of the standard EOQ model with heterogenous customers is presented. The review proposes a research 

agenda for inventory problems and concludes with discussing challenges for the future. 
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. Background and motivation 

We consider environments with similar (if not the same) inven- 

ory/production decisions made repeatedly over time. Two charac- 

eristics of such environments are prevalent: A methodology for 

upporting the final decision (possibly leaving some room for the 

ecision maker’s own experience) and the existence of information 

n the current status of the operations, including some data. The 

ethodology of making inventory decisions can include the find- 

ngs of a related theory or be driven by the data. In other words, 

he theory and data-driven systems can attack the same decision 

roblem. 

In this overview, we discuss the developments in data acqui- 

ition, data processing and data-driven systems and the effects 

hey are likely to have on implementing the theory. In specific, 

e consider decision-making environments where inventory the- 

ry may be implementable. The discussion is not restricted to re- 

ults directly used in practice but includes the intuition gained 

rom learning the theory. 

The overview excludes discussing the statistical and economet- 

ical methods or their mechanics. The growth of the research on 

he quality of estimators, structural estimation methods and like- 

ise areas deserve a separate review article. Furthermore, the ap- 

lication of those methods to inventory-related problems with spe- 

ific research questions is not covered in this review. Note that 

ny decision problem will require knowledge of the statistical and 
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conometrical methods and their mechanics at different levels of 

ophistication. 

What we aim in this review is first to discuss theoretical 

nd data-driven approaches. More specifically, for theoretical ap- 

roaches, we summarize characteristics of the research work on 

he theory to support inventory decisions. For the data-driven 

trategies, we group the literature into main categories and dis- 

uss the elements of the suggested approaches. The second aim of 

he review is to point out the possibility of working with more 

ophisticated inventory-theoretic models. Note that these models 

ould not have much practical relevance if there were no data 

or validation. The last objective of the review is to discuss the 

hallenges and suggest possible research directions for inventory- 

elated problems. 

For the purposes outlined above, we define data acquisition and 

ata-driven systems to possess at least one of the following char- 

cteristics: 

1. Availability of direct and features data related to system inputs: 

In other words, relevant data is analogous to big data. 

2. Availability of knowledge and techniques to process data in 

various ways and knowhow on meaningful interpretations: We 

presume that we can implement the statistical and economet- 

rical methods. 

Section 2 presents a historical sketch of inventory theory 

starting with the 1950s), followed by a relatively shorter part 

hat describes extensions of the classical theory under various 

ata/information levels. These subsections do not intend to contain 

 thorough literature review. The section ends with a brief dis- 

ussion on how the theory has been implemented (or presumed 
under the CC BY-NC-ND license 
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or implementation) to solve real-life problems. In Section 3 , we 

resent data-driven approaches applicable for inventory-related 

ecision-making. This part will be a kind of literature review with- 

ut a claim on the exhaustiveness. The following section consid- 

rs more general representations of the theoretical inventory mod- 

ls as another path to utilize the available, abundant data. As a 

edagogical example, the derivation of the classical EOQ prob- 

em under backorders and heterogeneous customers is presented. 

ection 5 presents an overview of challenges for the future re- 

ated to the development of data-driven approaches. The last sec- 

ion proposes a research agenda for inventory-related problems. 

. Inventory theory 

.1. A personal overview of the classical theory 

Arrow (2002) gives a summary of the history of mathematical 

nventory theory. Of course, Arrow being one of the most impor- 

ant characters in the development of the theory, the document 

s more than a personal history; it is an account of the establish- 

ents (see Girlich & Chikan, 2001 for a review on inventory theory 

eveloped in earlier years). One can follow the original work in 

everal different books and edited books published in the 1950s, 

nd 60s, see Whitin (1953) , Karlin, Scarf, & Arrow (1958) , Arrow, 

arlin, & Suppes (1960) , Karlin, Scarf, & Arrow (1962) , Hadley & 

hitin (1963) , Scarf, Daniel, Gilford, & Shelly (1963) . Many stud- 

es followed the pioneering ones, as reported by two early review 

apers published around the same time, which consider the the- 

ry developed from two perspectives of decision making: Wagner 

1980) takes a systems perspective and overviews past research 

ork within the directions it specifies. The second review article 

s an account based on different environmental assumptions and 

argets an audience who will pursue research to develop mod- 

ls in possible known directions Silver (1981) . It is interesting to 

ote that their perspectives for future work have clear similari- 

ies with consequent research in inventory theory in the follow- 

ng years (there are reviews and OR/OM handbooks that summa- 

ize the state-of-the-art and are important guides for further use. 

ee for example Balcik, Bozkir, & Kundakcioglu (2016) , Basten & 

an Houtum (2014) , Bijvank & Vis (2011) , de Kok et al. (2018) ,

ngebrethsen & Dauzère-Pérès (2019) , as well as several chapters 

n Graves, Kan, & Zipkin (1993) , Graves & de Kok (2003) , Cochran,

ox, Keskinocak, Kharoufeh, & Smith (2010) . 

.2. Broadening foundations with data/information 

Of course, there have been many studies on inventory theory 

n the last few decades. In this subsection, we mention the ones 

ifferent from the classical theory regarding data/information re- 

uirements. 

Even in the early development days, researchers were inter- 

sted in including additional features into the models to explain 

andomness better. However, those models did not constitute the 

ainstream at the time. We believe it is most likely because of 

heir relative complexity and difficulty in implementation. Price- 

ependent demand as a natural extension of the neo-classical 

conomic theory by Karlin & Carr (1962) , backorder-dependent 

emand structure including empirical justification by Schwartz 

1970) and inventory dependent demand considerations by Baker & 

rban (1988) , Urban (2005) are examples of specific features con- 

idered. Following the start of the e-commerce era in the 90s, re- 

earchers started to model inventory planning problems with ad- 

itional feature information. Models used features in a variety of 

ays Hariharan & Zipkin (1995) use of advanced demand infor- 

ation, Tan, Güllü, & Erkip (2007) for advanced and uncertain 

emand information, Gavirneni, Kapuscinski, & Tayur (1999) , and 
2 
ava ̧s aneril & Erkip (2010) for the structural use of information 

ade available by use of VMI and other similar approaches. Note 

hat these studies presume that such data/information is either 

vailable or possible to collect. 

A different line of research that does not require estimates of 

istributions or demand parameters is robust optimization, another 

pproach to broaden the foundations. An early example of this 

ype of work was named the min-max problem, a solution can be 

ound in Scarf (1958) and two more recent robust optimization ex- 

mples in Jackson, Muckstadt, & Li (2019) , Shapiro & Xin (2020) . 

or the remaining paper, we concentrate on models that explicitly 

equire demand data to operate. 

.3. Theory developed and implementation 

In this subsection, we characterize the theory developed and 

nally ended up with the assigned role of data for implementation. 

n the classical theory development, the connection of the theory 

eveloped and data is hierarchical; data is used to satisfy the input 

equirements of the models. 

Problem environments are mostly “stylistic,” as researchers em- 

hasize main tradeoffs rather than details. Of course, the other side 

f the coin in having stylistic models is the motivation to keep the 

nvironments as general as possible, rather than letting peculiari- 

ies drive the results. One can also call these models “fundamental 

uilding blocks.” The problems considered are the abstractions of 

ecision situations that repeat over time. Usually, the modeling en- 

ironment excludes part of the system and only finds the “signif- 

cant” parts as observed or hypothesized. Researchers made some 

implifying assumptions regarding parameter structures to ease the 

olution, such as linearity of costs. Additionally, they used the stan- 

ard premise of representing demand as a random variable. Nev- 

rtheless, no specific distribution or specific parameters represent- 

ng distribution and no restrictions on the parameter values are 

ssumed. 

The purpose of academic research has been to find structural 

esults. Sometimes these structural results paved the way for pol- 

cy structures such as (s, S) , (R, Q ) , optimal in their respective en-

ironments. In some cases, solutions are found in closed form, or 

n algorithm is proved to converge to obtain the optimal solution, 

eading to engineering applications. Another line of research for 

ore complex problems has emerged: By analyzing relatively more 

ncomplicated structures, researchers showed that some bounds 

xist on the worst possible performance of these complex prob- 

ems. The bound can be either on the objective function or pol- 

cy parameters. Finally, researchers working on the partial char- 

cterization of the optimal policy (inserting conditions where the 

tructural properties hold) is a final resort for difficult situations. 

ote that the significant influence is generalization via portability 

f structures to more complex environments in all these findings. 

Structural properties may not necessarily yield efficient compu- 

ational algorithms. Research on computational algorithms comple- 

ents the style mentioned above. The scientific work on the com- 

lement becomes especially crucial when one expands the scale of 

he problem to multiple items. Similarly, when computation be- 

omes expensive, more efficiently computable heuristic methods 

re utilized, likely to use some of the structural properties men- 

ioned above and any other knowledge or intuition available. 

When implementing the theory in practical decision-making 

ituations, two distinct ways can be observed: The first and the 

bvious one is implementing the theoretical results in a practical 

ase with minor adjustments. When minor adjustments are inad- 

quate, one can still use the accumulated knowledge, but using 

he intuition gained becomes essential. The second one is statis- 

ical modeling, assuming sufficient data is available. Data process- 

ng in its classical meaning requires empirical modeling and sta- 
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istical analysis research. For applying inventory theory, the work 

eeded includes the estimation of parameters and demand distri- 

utions (first family and then family parameters), all performed us- 

ng available data and information. 

Hence, one can think of the approach for solving inventory- 

elated decisions in two stages: the first stage is collecting and us- 

ng the available data to estimate various input parameters. The 

econd stage uses the estimated data structures in the first stage 

o optimize for the decision variables of the model. In short, we 

ame this approach “estimate then optimize” (with the abbrevia- 

ion EtO), indicating that we have two different stages. 

. Inventory problems: Data-driven methods 

21st century marks many things for different scientific fields. 

ne common feature is the advance of information technologies. 

here are numerous references - a few review-type related arti- 

les are Arunachalam, Kumar, & Kawalek (2018) , Choi, Wallace, & 

ang (2018) , Hazen, Skipper, Boone, & Hill (2018) , Mortenson, Do- 

erty & Robinson (2015) , Nguyen, Li, Spiegler, Ieromonachou, & Lin 

2018) and Wang, Gunasekaran, Ngai, & Papadopoulos (2016) . 

In OR, we tend to name these developments with different 

hases of analytics: Descriptive analytics, the use of the technol- 

gy for monitoring and storing data, and visualizing data. In pre- 

ictive analytics, we can further assess the effects of the cur- 

ent decision structure in the future follow demand changes, fol- 

ow state changes, and observe anomalies. Statistics, data mining, 

nd machine learning are among the essential methods to enable 

uch predictions. Prescriptive analytics is after understanding what 

ill happen under “optimized” decisions and working on what 

hould have been the decision. Prescriptive analytics, in this re- 

pect, is more dynamic and interested in the evolution of deci- 

ions. Therefore, traditionally known as complex problem struc- 

ures with multiple objectives, multiple decision-makers fall into 

his category. There are several advancements in this analytics cat- 

gory, even if limitations on the frequency of decision-making and 

artial availability of relevant information make real-time imple- 

entation challenging. 

These developments have increased the use of methodologies 

hat implement the so-called data-driven approaches. The studies 

verviewed in this section use data as an interface. There are var- 

ous definitions of “data-driven”: Here, we use it as the defining 

art of a context where decisions are based predominantly on the 

vailable data. In other words, data is the primary interface used 

o arrive at decisions. However, as we see in this section, there 

re various conceptualizations either in nonparametric models or 

hrough structural assumptions driving the use of data. 

To review data-driven approaches, we categorize the studies on 

nventory problems into five groups. We use the term “inventory”

asually, as some of the work cited may contain work on different 

ecisions. There is no claim concerning the non-jointness of the 

roups. However, we think the central assertion representing the 

pproaches is reasonably distinct in different groups. The groups 

re defined and studied further below: 

Application of Artificial Intelligence approaches with no policy 

estriction 

Artificial Intelligence (AI) plays an important role in trans- 

orming business practices (See Brynjolfsson & Mcafee, 2017 and 

rynjolfsson, Hui, & Liu, 2019 as examples). AI, in this review, rep- 

esents a set of technologies and tools that can process and analyze 

vailable information and “optimize” actions to achieve prespeci- 

ed goals and perform tasks. AI has been around for some time. 

owever, only recently have the advances in machine learning be- 

ome a tool, fueled by the developments in computing power and 

he acquisition of digitized data. 
3

Here, we consider using AI techniques to solve non-recurring 

nventory-related problems. In other words, we delay the discus- 

ion of learning to a later group. 

These methods do not explicitly estimate demand distribution 

r use any structural property of the optimal solution (or optimal 

olution structure for a more straightforward problem). They uti- 

ize the available data (which may include feature data); hence, the 

ormulation becomes similar to robust optimization with the data 

nput. 

Bertsimas & Thiele (2006a) is one of the essential early ex- 

mples of this group of approaches. They use robust optimization 

deas to build an equivalent model without any uncertainty. Un- 

er some mild conditions, structural properties are investigated 

egarding the policies obtained. Bertsimas & Thiele (2006b) re- 

ort more results for environments other than the newsvendor. 

an & Rudin (2019) (also mentioned in the next group, “Nonpara- 

etric approaches under a policy”) consider the newsvendor prob- 

em with features data. Utilizing empirical risk minimization algo- 

ithms and kernel optimization method, they show that they ob- 

ain the same objective function for the newsvendor problem. The 

pproach resembles Liyanage & Shanthikumar (2005) which will 

lso be mentioned in the next group, although it is more general 

nd uses practically no information on the structure of demand. 

Nonparametric approaches under a policy 

These methods use at least one property of the “optimal” so- 

ution obtained under some assumptions. A good example would 

e the newsvendor problem with the optimal percentile of the cu- 

ulative demand distribution. The aim is not to explicitly estimate 

his distribution but to use the data to develop the decision vari- 

ble values sought. 

A subgroup of such studies is related to applying more tradi- 

ional mathematical programming models with the knowledge of 

 policy that drives the decision-making. Iyer & Schrage (1992) is 

n early example of such data-driven approaches. It is well-known 

hat a time-dependent (s, S) policy is optimal for the determin- 

stic multi-period dynamic inventory problem. Using this struc- 

ural property as the starting point for data-driven optimization, 

ne can construct a mathematical model to find time-dependent 

olicy parameters. Beutel & Minner (2012) propose a linear pro- 

ramming formulation where newsvendor problem with features 

ata is solved. The implication is that the standard percentile so- 

ution for the newsvendor problem is now a function of the fea- 

ures and hence dependent on features. Features do not need to 

e identified, as they will likely be problem-dependent. They con- 

ider service level benchmarks to compare models that solve the 

ame problem. The LP problem solves the demand model’s or- 

er quantity decision and regression coefficients as a function of 

eatures (independent) data. van der Laan, Teunter, & Romeijn- 

ers (2019) further consider a service level approach with chance- 

onstrained formulation (part of robust optimization) to prevent 

ver-fitting with a smaller-sized data sample. Turgut, Taube, & 

inner (2018) consider a very detailed retail inventory problem 

ith multiple items, joint ordering, backroom considerations, and 

ase pack-size limitations. The well-known can-order point poli- 

ies with the case pack size limitations are the implemented 

olicy. A mixed-integer program is formulated to minimize to- 

al cost over known demand incidences to determine the policy 

arameters. 

A second subgroup of the nonparametric approaches uses sta- 

istical tools to solve for the policy parameters. We start with 

tudies on the newsvendor problem. For the newsvendor problem, 

ertsimas & Thiele (2005) proposes a ranking procedure called em- 

irical quantile to find the historical demand value that satisfies 

he desired percentile. Levi, Roundy, & Shmoys (2007) generalize 

he approach by suggesting the use of the “sample average ap- 

roximation” (SAA) method to estimate the demand value corre- 
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ponding to the percentile of the empirical demand distribution. 

hey also provide some bounds on the quality of the solution. 

evi, Perakis, & Uichanco (2015) present improved bounds on the 

ame problem. Ban & Rudin (2019) consider the newsvendor prob- 

em with features data. Liu, Letchford, & Svetunkov (2022) extends 

an & Rudin (2019) to non-linear objective function forms. Under 

ensored demand data, there are few studies available; please re- 

er to Huh, Levi, Rusmevichientong, & Orlin (2011) that uses the 

aplan-Meier estimator. Neghab, Khayyati, & Karaesmen (2022) ex- 

ends Ban & Rudin (2019) when features are not observable. There 

s a limited number of studies for environments other than the 

ewsvendor. Levi et al. (2007) propose a dynamic programming 

rocedure to deal with multi-period inventory problems, this time 

sing the knowledge of optimal base stock policies. They also 

how some bounds on the quality of the solution obtained. Ban 

2020) shows the existence of objective function bounds for lim- 

ted data (finite sample size) for the general multi-period inven- 

ory problems, using (s, S) policy structure as the basis. Huh & Rus- 

evichientong (2009) considers a multi-period lost sales problem. 

hey propose using a stochastic gradient method under the policy 

tructure that utilizes newsvendor-like percentiles. 

We end this subsection by stating the significance of using fea- 

ures data in addition to demand or sales data, as is the case in

eutel & Minner (2012) . All the above methods can be extended 

o utilize feature data. Note that a combination of statistical and 

lassical mathematical programming approaches is used simulta- 

eously to solve the formulated problem. 

Parametric approaches: Focus on the final operational objective 

unction 

The approach focuses on defining a measure and operating on 

hat measure. The measure corresponds to a function of the devi- 

tion from the optimization solution. The idea was presented by 

iyanage & Shanthikumar (2005) proposes using a function that 

ombines the estimation and optimization tasks and optimizes this 

unction to find a decision rule. Of course, one needs to make as- 

umptions on the statistic’s functional form to use and proceed; 

n this work, they confine themselves to statistical estimators of 

he “optimal” solution. In their study, they implemented the ap- 

roach for the newsvendor problem with exponentially distributed 

emand. Finally, they consider two approaches: Estimating the pa- 

ameter of the exponential distribution from data and obtaining 

he empirical distribution of the data and using SAA. Then they 

ompare these two with the approach using operational statistics 

nd show that the a priori expected profit is better than the other 

wo approaches. 

Chu, Shanthikumar, & Shen (2008) propose a more general op- 

imization function so that the restrictive character of the statis- 

ical estimation function is removed. However, knowledge of the 

hape parameter is still required. To follow the same line of work, 

amamurthy, Shanthikumar, & Shen (2012) first suggests a heuris- 

ic based on the previous work and corrects the results to consider 

he shape parameter. Besbes, Phillips, & Zeevi (2010) use a demand 

unction derived from customers’ perspective in a newsvendor set- 

ing and approach finding optimal decision (purchasing quantity) 

tatistically using the individual consumer’s utility function, as 

ell as the available data. A more recent work, Siegel & Wagner 

2021) uses an asymptotically unbiased estimate of the expected 

rofit function. The approach requires the use of an adjustment 

erm derived from the distribution. In general, an approximate ad- 

ustment term is obtained by the Taylor series analysis. In a par- 

icular case of demand being exponentially distributed, an exact 

djustment term can be specified. 

Note that one can generalize the approach, and some of the 

ork mentioned in the previous subsections may also fit the 

ramework mentioned here. Beutel & Minner (2012) is an example 

hat combines statistical estimation under the original problem’s 
4 
bjective function. Nevertheless, the approach to defining an “op- 

rational objective” function is more general, although all the work 

escribed here uses the newsvendor model as the basis. Further 

ork is needed to extend the results to other environments. 

Approaches with learning 

Traditionally, Bayesian learning was the main tool for learning 

he unknown demand distribution. The procedure starts with a 

rior distribution and improves the prior with incoming new data. 

hese methods are parametric, as at least one parameter is learned 

nd used for implementation. Azoury (1985) is one of the early 

orks that implements the Bayesian approach for a general in- 

entory problem. More recent studies are Chen & Chao (2019) and 

ing, Puterman, & Bisi (2002) for the censored data case. 

On the other hand, the new trend is to use search mecha- 

isms with updates (updating corresponds to machine learning). 

hen demand distribution is unknown, a learning algorithm pro- 

ides policies that depend on the observed information and cur- 

ent time. Hence, one may call this “policy learning” compared to 

arameter learning. The policy is then updated with the previous 

eriod’s information. The objective function used for such learning 

ill vary, but it is often represented as a function of regret. There 

re usually two main streams of techniques: Reinforcement Learn- 

ng and Statistical Learning. Here we focus on the implementation 

f these approaches for inventory models. 

Bertsimas & Kallus (2020) applies machine learning methods 

or a general optimization problem. The data may include feature 

ata over the standard demand data. The newsvendor problem is 

sed as an example in the study. Chen, Chao, & Ahn (2019) propose 

 nonparametric learning algorithm that considers ordering and 

ricing decisions in a multi-period environment. Gijsbrechts, Boute, 

an Mieghem, & Zhang (2022) implement a deep reinforcement 

earning algorithm for the dual-sourcing and dual-mode problems, 

hich are known to have high dimensionality issues while solving 

ith classical dynamic programming. 

Combination of approaches 

There are several studies where combinations of the techniques 

escribed above are implemented. The basic idea is to use a ben- 

ficial approach under a circumstance to improve another ap- 

roach’s performance. Here we report a few of those studies: 

Saghafian & Tomlin (2016) study a problem where some infor- 

ation on the moments or tail of the demand distribution is avail- 

ble. Under these conditions, an enhanced algorithm with Bayesian 

earning works well for the newsvendor problem. This study is par- 

icular as it may pave the way for most of the earlier approaches 

o be improved by such information. Huber, Müller, Fleischmann, 

 Stuckenschmidt (2019) propose novel approaches to solve the 

ata-driven newsvendor problem based on machine learning and 

uantile regression. Oroojlooyjadid, Snyder, & Takáč (2020) imple- 

ent a deep learning algorithm for a newsvendor problem when 

eatures data for the demand is available. Hence, forecasting de- 

and using features and inventory decisions are embedded into 

 single problem, which is then tackled by a deep learning algo- 

ithm with the knowledge that the newsvendor problem’s optimal 

olution is a percentile of the demand distribution. De Moor, Gi- 

sbrechts, & Boute (2022) consider a deep learning approach for 

erishable inventory problems. However, they “reinforce” the al- 

orithm by using existing well-performing heuristics. Yuan, Luo, 

 Shi (2021) consider a periodic review single product inventory 

ystem with fixed cost under censored demand. Note that the ex- 

stence of fixed cost results in loss of joint convexity of the ex- 

ected cost function over the decision parameters, in this case, 

s, S) policy parameters. A stochastic gradient descent algorithm 

s employed in an algorithm that minimizes regret. Huber et al. 

2019) combines AI-type learning with optimization models and 

mplements it to the newsvendor problem with features data avail- 

ble. 
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The premise for implementation: When it comes to implementa- 

ion, the methods outlined in this section may vary in terms of the 

etails. The following characteristics are common in almost all the 

pproaches: 

1. Data processing and optimization are performed either simul- 

taneously or iteratively. This characteristic is what some au- 

thors name as the “integrated” approach, though environments 

and what is meant by integration varies (see Goltsos, Syn- 

tetos, Glock, & Ioannou, 2022; Huber et al., 2019; Liu et al., 

2022; Neghab et al., 2022; Syntetos, Babai, Boylan, Kolassa, & 

Nikolopoulos, 2016 as examples). 

2. The objective function selected for the optimization may not 

necessarily be the objective function that will be utilized by the 

corresponding inventory problem as described in the classical 

theory. 

These studies, when compared to the “estimate then optimize”

EtO) approach mentioned before, are different as they attempt to 

andle the two stages (estimation and optimization) simultane- 

usly. We name this approach “estimate & optimize” (with the ab- 

reviation EO). EO is almost similar to the “predict-and-optimize”

dea in Elmachtoub & Grigas (2022) . The idea is the same, though 

e prefer to use EO as inventory problems may have other param- 

ters to estimate, and the outcome of the process may not always 

e used for prediction. Note that this similarity in approaches is a 

ood indication of a possible cross-fertilization of available knowl- 

dge. 

. Inventory problems: Better representation of uncertainty 

Traditionally, demand and possible uncertain quantities have 

een modeled in the simplest possible fashion: an outcome set 

ith an accompanying probability distribution. However, in an- 

ther area of operations management forecasting - we analyze un- 

ertain factors using several techniques which investigate the ef- 

ects of possible features selected to be related to the uncertain 

henomenon we are studying. The critical assumption is that all 

hese features are exogenous to the decision-making environment 

nd are represented in the demand distribution in an aggregate 

ay. In the previous section, data-driven methods made use of 

hese features, and here we suggest establishing analytical models 

hich include these features. The models are expected to be more 

omplex and harder to solve. Nevertheless, with the available data, 

alidation of such models may be possible, a situation that did not 

xist at the early stages of the theory development. 

This section considers an essential subset of such models: de- 

and to be a function of the decisions, rather than exogenous 

see Huang, Leng, & Parlar, 2013 for a general discussion of de- 

and functions in decision modeling). We confine ourselves to 

ingle-location inventory models in the following subsection. Note 

hat the literature on competitive inventory problems also mod- 

ls the exogeneity of the demand. Those models reflect a natural 

onsequence of the competition rather than a result of the cus- 

omer choice. Hence research work on competition is not consid- 

red here. We conclude the section by presenting a simple model 

o demonstrate the idea. 

.1. Endogenous demand inventory problems 

Hotelling (1929) is one of the earlier works which considers a 

ingle additional feature “distance” affecting the decision of an in- 

ividual consumer. In this way, “demand” is represented as a func- 

ion of distance and a random component. Of course, adding such 

eatures is attractive conceptually but complex in implementation 

s one requires to find relevant data on the feature and a repre- 

enting metric of the feature to support the decision-making pro- 
5 
ess. Another way of observing the same phenomenon is to con- 

ider a subset of these features as additional decision variables 

or the same situation. The exogenous demand concept is then 

eplaced by endogenous demand decisions directly affect the de- 

and. A well-known example is a relation between price and de- 

and. Dana Jr. & Petruzzi (2001) and Wang (2022) consider en- 

ogenous demand as affected by pricing. In recent years, the rev- 

nue management area has grown as it has been possible to store 

nd utilize vast data to realize the requirements of such data- 

ungry models. 

These models can also be considered under the title of con- 

umer choice models. The assumption that demand is exogenous 

s removed in such models, and decisions affect the demand in a 

efined (regardless of being deterministic or stochastic) way. There 

re many such examples, especially in service industries. For some 

ecent work on the general consumer choice modeling, we refer 

he reader to Gallego & Topaloglu (2019) and Feng, Li, & Wang 

2017) . The inventory literature with consumer choice is more lim- 

ted, but there are some recent work; see Farahat & Lee (2018) , 

ranschel, Buisman, & Haijema (2022) and Martínez-de Albéniz & 

unnumkal (2021) as examples. 

Implementing such models is comparable to the classical in- 

entory models, with an additional load for the estimation work 

nd the increasing difficulties in obtaining practical structural char- 

cterizations. More recently, a lot of researchers considered new 

pproaches for the estimation problem (see, Ak ̧s in, Ata, Emadi, & 

u, 2013; Gallino, Karacaoglu, & Moreno, 2022; Hathaway, Emadi, 

 Deshpande, 2022; Hu, Allon, & Bassamboo, 2022; Jagabathula, 

usmevichientong, Venkataraman, & Zhao, 2022 and Musalem, Oli- 

ares, & Schilkrut, 2021 ). Note that all are very recent examples 

hat show the richness of the research in the area. Nevertheless, 

hese efforts may be worthwhile as it is likely to learn more with 

ess stylization. 

The models specified above represent situations with data used 

o feed the model, as described with EtO in Section 2 . 

A model with simple assumptions is presented in the next sub- 

ection to illustrate the idea. This example shows the possible use 

f consumer choice models for the classical EOQ problem environ- 

ent. We model this case and obtain a set of meaningful structural 

esults. We name the model pedagogical since it is based on the 

OQ model, the first model in inventory taught in related courses. 

t is interesting to note that the properties obtained for the classi- 

al EOQ model will be a part of the structural results. 

.2. A simple inventory model with backorders and heterogeneous 

ustomers 

There is fixed ordering cost K and inventory holding cost 

 /unit/unit time. Backorders are allowed with a positive backorder 

ost p/unit/unit time. Lead-time for procurement is assumed to be 

ero. The total available demand rate is defined as �. Let Q de- 

ote the ordering quantity and b denote the maximum number of 

ackorders we allow. In this standard problem average total cost, 

enoted by ATC( Q, b), is minimized. The optimal solution for this 

roblem is given by two equations: 

 

∗ = 

√ 

2 K�

h 

√ 

h + p 

p 
(1) 

 

∗ = 

h 

h + p 
Q 

∗ (2) 

urthermore, the optimal average total cost is given by 

TC (Q 

∗, b ∗) = 

√ 

2 K�h 

√ 

p 

p + h 

(3) 
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f course these solutions are only valid with the below implicit 

ssumptions additional to the ones present in the standard EOQ 

odel: 

Assumption 1: Total profit margin received from sales is larger 

han the cost of operation. Hence if r is defined as the revenue per 

nit sold and c as the unit cost, the following condition holds: 

(r − c) ≥
√ 

2 K�h 

√ 

p 

p + h 

(4) 

f course, we expect this to hold in general, so at this point, it 

eems like a technicality. However, also notice that given all pa- 

ameters are constants, there is a minimum demand rate below 

hich is no longer economical to operate. Call this min demand as 

min . Hence the following equality can be found for this minimum 

emand. 

min = 

2 Kh (p/ (p + h )) 

(r − c) 2 
(5) 

urthermore, we can also specify the p min as the minimum value 

f backorder cost per unit per unit time, to ensure the profitability 

f satisfying all demand, as: 

p min = 

h 

2 Kh 
�(r−c) 2 

− 1 

(6) 

Assumption 2: Presume that if there is a lost sale, the profit 

argin per unit (r − c) is lost. Under these circumstances, we 

ould not consider any lost sales in this system as selling means 

rofit and hence it is not economical to have lost sales. This fol- 

ows the result in Assumption 1 and Eq. (4) presented above. 

Assumption 3: All the customers have the same sensitivity (or 

nsensitivity) towards backorders. In other words, they are homo- 

eneous. Furthermore, they accept any delay for their order to be 

ulfilled as the maximum waiting time is dictated by the seller. Let 

f be defined as the maximum delay dictated by the seller for de- 

and fulfillment. According to the described model this term is 

iven by the following equation: 

f = 

b ∗

�
= 

√ 

2 Kh 

�(h + p) p 
(7) 

ow, we are ready to remove Assumption 3 and present a model 

or heterogeneous customers. Before proceeding, we note that 

hen we have heterogeneous customers, Assumption 2 is still valid 

or the seller, but some customers may prefer not to buy the item. 

ence there may be lost sales. Similarly, Assumption 1 will be valid 

s long as rate of satisfied demand is not below �min . 

We define a utility structure for each customer. We use the fol- 

owing utility function: 

(t, d) = u − r + d − f (t) − η (8) 

here: 

U(t, d) is the utility that a customer will get from buying this 

item, as a function of two parameters, as we presume all the 

other parameters of the environment are already discussed 

and set: t, is the maximum backorder duration that a cus- 

tomer will observe, and d is the discount that the seller is 

willing to give to the customer to ensure that she is willing 

to buy even with a delay. We assume without loss of gener- 

ality that the utility of not buying the product is zero. 

f (t) is any non-decreasing function of time t, representing the 

disutility of any customer with the delay. 

v is the valuation of the customer for the product received; we 

assume this term to be the same for all customers. However, 

we differentiate customers by a random taste parameter, η. 
6 
η is the taste parameter, defined as a uniformly distributed ran- 

dom variable representing the disutility of being a buyer in 

this monopolistic environment and is a reaction that can be 

attributed partly to the possible delay in satisfying the de- 

mand. We consider η ∼ U(0 , B) . 

Without loss of generality, we assume that v − r is always pos- 

tive. Hence using the distribution of η, one may come up with 

he probability of any customer demanding the item, as described 

elow. 

rob { No demand } = 1 , if v − r + d − f (t) ≤ 0 (9) 

Prob { No demand } = 1 − v − r + d − f (t) 

B 

, 

if 0 ≤ v − r + d − f (t) ≤ B (10) 

Prob { Demand } = 

v −r + d− f (t) 

B 

, if 0 ≤ v − r + d − f (t) ≤ B 

Prob { Demand } = 1 , if v − r + d − f (t) ≥ B (11) 

efine t 1 to be the maximum value for the maximum delay such 

hat for all t ≤ t 1 condition defining Eq. (11) holds. Similarly, define 

 2 to be the minimum value for the maximum delay such that for 

ll t ≥ t 2 condition defining Eq. (9) holds. More specifically, we can 

rite the following identities: 

f (t) ≥ v − r + d − B, if t ≤ t 1 (12) 

f (t) ≤ v − r + d, if t ≥ t 2 (13) 

s a result, we determine the behavior of any heterogeneous cus- 

omer as follows: 

• If the maximum delay in satisfying demand is greater than or 

equal to t 1 , demand is 0. 
• If the maximum delay in satisfying demand is less than or 

equal to t 2 , demand is 1. 
• For any maximum delay in satisfying demand is in the range 

[ t 1 , t 2 ] , we have positive probabilities for both to have demand

and no demand. 

We employ a standard equilibrium analysis to find possible so- 

utions where the customers and the seller would agree. 

The final step of the derivation is to bring two sides of the 

ransaction together: On one hand, we determined the operational 

olicy of the seller. On the other hand, we determined the behavior 

f each customer, of course dependent on the random taste param- 

ter with the distribution assumed. Now to initiate the analysis we 

ake the following assumptions: 

Assumption 4: Customers are independent, and do not collude. 

ence total demand for a given maximum delay to satisfy de- 

and and discount can simply be defined as the total available 

ustomers multiplied by the expected demand of a customer. 

Assumption 5: We assume that even if some part of the de- 

and is lost, the remaining demand still has a constant rate. This 

eans that the rate becomes slower but still constant. 

Assumption 6: We assume that Assumption 1 still holds. We 

urther assume that the minimum demand defined in Eq. (5) is 

ever observed as t 1 prevents those cases. Of course, this assump- 

ion is just to make things simpler and avoid a trivial solution. 

Now we can further analyze the joint model: Define ATP λ(Q, b) 

s the average total profit function for a given demand rate λ af- 

er introducing unit revenue and unit cost values. Using Eq. (3) we 

btain 

TC λ(Q 

∗, b ∗) = (r − c) λ −
√ 

2 Kλh 

√ 

p 

p + h 

(14) 
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imilarly, we can write the following equation representing the 

aximum backorder duration dictated by the seller for demand 

ulfillment for a given demand rate λ, t f λ following Eq. (7) . 

f λ = 

√ 

2 Kh 

λ(h + p) p 
(15) 

TP �( Q 

∗, 0 ) defines the average total profit function of EOQ with 

he original demand rate. We then find t 3 , which is the maximum 

alue for the delay seller will permit as otherwise average total 

rofit of operating an EOQ is greater. To find t 3 we use Eq. (15) ,

q. (14) , and ATP �( Q 

∗, 0 ) . A quadratic function of t 3 is obtained 

nd can be solved for a unique positive t 3 , as it has one positive

nd one negative root. 

Now, we can determine the behavior of seller as follows: 

• For a given demand rate λ, if the associated t f λ value given by 

Eq. (15) is more than t 3 seller prefers not to backorder and use 

EOQ as it yields a better average total profit value. 
• For a given demand rate, if the associated t f λ value given by Eq. 

(15) is less than t 3 seller prefers to use the backorder model as 

it yields a better average total profit value. 

Bringing all the above together and assuming that f (t) defined 

n the utility function is an arbitrary function, one can show that 

he equilibrium value for the maximum delay to satisfy customer 

emand, t E is one of the below: 

• t E = min { t 1 , t 3 } − this is the case where the seller decides not 

to backorder at all. None of the demand is lost. 
• t E = t 2 − this is the case where the seller operates with backo- 

rders and still none of the demand is lost. 
• t E ∈ ( t 2 , min { t 1 , t 3 } ) − There might be multiple equilibrium 

points depending on the functional form of f (t) . In this case 

among the equilibrium points the one which yields the maxi- 

mum average total profit for the seller will be enforced. Note 

that any of these solutions will yield some lost customers. 

As a special case, if f (t) is defined as a quadratic function of t,

hen one can show that there is a unique equilibrium. 

What do we learn from this exercise? 

The classical EOQ model gives two critical messages: The first 

s that it simply outlines the trade-off in an inventory system. The 

econd one regards the robustness of the solution concerning av- 

rage total cost: any reasonable mistake that one makes in esti- 

ating one of the model’s parameters results in a relatively more 

inor effect on the average total cost term. Nevertheless, the in- 

uition gained is critical. On the other hand, all the above state- 

ents are likely applicable to the model derived in this subsection. 

n the developed model, the waiting time preferences of the cus- 

omers dictate the possible equilibrium solutions. Nevertheless, the 

odel requires additional effort in estimating parameters (tradi- 

ionally challenging to estimate). New techniques have been devel- 

ped to increase the chances of having reasonable and consistent 

stimates for those parameters. 

One significant finding is that the EOQ model of describing a 

eller is still valid in the new environment, as the seller’s struc- 

ural properties will still be the same for a given demand level. Of 

ourse, the model presented is more complicated, and the demand 

s the outcome of an equilibrium imposed by the customers’ sen- 

itivity to the waiting time. Another observation is that a few of 

he individual results for the EOQ come together to describe the 

iven equilibrium - in this case, the EOQ model with no backo- 

ders allowed, EOQ with backorders and finally, EOQ with partial 

ackorders and lost sales. 

There are challenges in the presented model. We presumed a 

iscount given to customers to ensure that some will be willing 

o buy even with a delay. All the results are for a given discount 
7 
alue assumed to be set initially. One may wish to analyze further 

o find the “optimal” discount to offer. However, this issue might 

e tricky as the discount is considered part of the backorder cost, 

nd there is a minimum backorder cost stated by equation (6) that 

llows the system with backorders to be economically viable for an 

rbitrary demand level. Hence optimization over possible discount 

alues which are economical and, at the same time, feasible may 

e a complicated issue. 

. Challenges for the future 

Most scientific fields are faced with the challenges brought by 

ata-driven systems. Many studies are available to discuss various 

spects of these challenges. We mention some of these aspects be- 

ow. 

Operations Management Field 

There are several recent overviews regarding future expecta- 

ions of the OM field. As inventory theory is a part of the field, 

e believe these overviews are essential sources of future out- 

ook. Cachon, Girotra, & Netessine (2020) emphasize the impor- 

ance of impactful OM and interestingly advocate generality of re- 

ults with more actively engaging with diverse audiences. One may 

nterpret this expectation as favorable for data-driven and theoret- 

cal works, as the expectations are not for a method but the span 

f impact. Nevertheless, state-of-the-art for data-driven methods is 

till far from being sufficiently general. Olsen & Tomlin (2020) re- 

iew Industry 4:0 idea, which combines the physical with digital 

orlds. Hopefully, the data obtained from the physical world will 

e exploited by data-driven methods and theoretical models with 

ore features. Miši ́c & Perakis (2020) presents a summary of ap- 

lications of data-driven systems and pinpoints several future di- 

ections. Most of those directions are covered in this paper, ex- 

ept for the idea of interpretability. Interpretability is the possi- 

ility of a human quickly seeing and understanding how the data- 

riven model maps an observation to a prediction. Hence, an in- 

erpretable model is a model where the user can explicitly learn 

ts operation logic. Interpretability is desirable as it becomes part 

f the knowledge and hence is portable to other problems. Finally, 

ong, van Houtum, & Van Mieghem (2020) clearly states that hu- 

an decision-making should still be in the center and can be aug- 

ented by data-driven decision models in various settings. 

Analytics Age and Businesses 

Mortenson, Doherty & Robinson (2015) presents a historical 

ketch of the developments in the OR field, bringing to the current 

nalytics age. A research agenda is then outlined to emphasize that 

he OR community should internalize these developments. Further- 

ore, OR community is expected to develop research directions 

hat will consider areas like significant data volumes, new data 

rchitectures, incorporating unstructured data in decision making, 

isualizing data for decision making and using real-time analytics. 

indle, Kunc, Mortensen, Oztekin, & Vidgen (2020) in their intro- 

uction for a special issue emphasizes the critical role of business 

nalytics for the OR community. They present a review of the in- 

ensity of these topics within OR-related fields and other fields. 

hese two reviews strongly advocate that researchers “jump into 

he wagon” of data-driven models. In support of the ideas dis- 

ussed in the above studies, the following two papers give exam- 

les using cases. Zhan & Tan (2020) use a case study to show the 

ole of building an infrastructure to harvest big data to enhance 

erformance. Kraus, Feuerriegel, & Oztekin (2020) approach to a 

ase using deep neural networks to solve operational problems and 

how that they can enhance the performance. They conclude that 

ata-driven models still need much customization, implying that a 

ull generic model is still far away. 

Several researchers emphasize the role of data-driven ap- 

roaches within business models. The advance of companies that 
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enter on data as the focal point of their business models brings 

ew research problems to the field. Sorescu (2017) present some 

f the aspects of data-driven business models and state that far 

ore effective research is needed to relate data-driven issues with 

he structural aspects of businesses. 

Effects on Decision-makers 

Most of the paper is devoted to overviewing approaches re- 

ated to decision-making. However, one would expect that the type 

f support would influence the decision-makers. Brynjolfsson & 

cElheran (2016) devise a survey responded to by about 40 0 0 0 

S manufacturers. One of the main findings is the reluctance of 

 more significant proportion of companies not fully utilize the 

ata-driven approaches. Haller & Satell (2020) , on the other hand, 

ecommends decision-makers to be cautious concerning data. A 

ecision-maker must ask four questions on various issues before 

mploying such techniques: the source of the data, the approach 

sed in analyzing the data, the aspects not told by the data, and 

nally, is it possible to use data to redesign products and business 

odels. Of course, this might be why most decision-makers still 

elieve in the concept of intuition rather than passive obedience 

o data. 

. What is the takeaway? Proposing a research agenda 

It is essential to understand what the new possibilities bring 

or research. On one side, the more classical EtO is still valid, as 

esearchers thrive on approaching complex problems with some 

igor, where the structure of the problem is the focus. On the 

ther hand, the approaches we see in Section 3 are robust when 

he problem is more complex than the ones which could be struc- 

urally analyzed. Most methods combine these two steps and han- 

le them simultaneously, using the EO approach. Of course, de- 

ending on the method, what they optimize is not usually what 

s optimized for the corresponding problem in the EtO approach. 

ence, it leaves a vital area for research. Both approaches are valid 

nd can be utilized in practice. Nevertheless, analysts need to ap- 

roach each style cautiously. 

To wrap up the overview, we address the following research 

genda: 

1. Research to compare data-driven methods is needed. We 

can give three such comparisons. Lim, Shanthikumar, & Shen 

(2006) uses structural properties for comparison. Ban & Rudin 

(2019) , on the other hand, uses both structural properties and 

numerical data sets for comparison. Finally, Meller, Taigel, & 

Pibernik (2018) compares the performance of methods under 

a controlled simulation environment. We believe all these ap- 

proaches are valuable and can be used simultaneously. 

2. Another dimension is comparing data-driven approaches 

with conventional ones. Feldman, Zhang, Liu, & Zhang 

(2022) is an exciting study comparing the models described in 

Section 4 with those in Section 3 . The comparison is compli- 

cated and requires severe preparation if it is performed with 

the actual data. 

3. Classical theory is limited to less complex inventory problems. 

Hence, new approaches should be implementable for more 

complex situations. Several such studies have been published 

recently. For example, for non-stationary newsvendor situa- 

tions, see Meller et al. (2018) , Keskin, Min, & Song (2021b) and 

Huber et al. (2019) . Perishable inventory problems constitute 

another such challenge for the classical approach. Three re- 

cent studies, Li, Tang, Zhou, & Fan (2021) , Keskin, Li, & Song 

(2021a) and De Moor et al. (2022) show that it is possible 

to use the new data-driven paradigm for reasonable solutions. 

Gijsbrechts et al. (2022) considers structurally difficult problems 

and proposes deep reinforcement learning to improve perfor- 
8 
mance. Of course, other challenging problems are still open for 

investigation. Another fruitful line of research is exemplified by 

Boute, Gijsbrechts, van Jaarsveld, & Vanvuchelen (2021) . Their 

article presents a road map for implementing deep reinforce- 

ment learning for inventory control problems. 

4. Feature data is becoming an integral part of most OM models. 

Models that specify the type of feature data to be used (rather 

than keep it general) together with a data-driven approach 

are gaining momentum in the literature. Choi (2018) , Hauser, 

Flath, & Thiesse (2021) , Huang & Van Mieghem (2014) and 

Weißhuhn & Hoberg (2021) are some of the recent exam- 

ples. Research at this detail level looks very promising. Nev- 

ertheless, one needs to make sure t hat relevant feature data 

is available. One research direction would be to analyze big 

data and recommend additional feature data to be collected 

for the specific type of inventory problem (see Ikegwu, Nweke, 

Anikwe, Alo, & Okonkwo, 2022 for a more general perspec- 

tive; Boone, Ganeshan, Jain, & Sanders, 2019 , and See-To & Ngai, 

2018 for forecasting). Finally, for the approaches described in 

Section 4 , the analytical models require behavioral data to be 

built and validated. Choi (2018) , Gallino et al. (2022) , See-To & 

Ngai (2018) and Weißhuhn & Hoberg (2021) may be consider 

as studies in that direction. Nevertheless, this line of research 

seems to be very promising. 

5. Another challenging issue is the existence of censored data. If 

decisions affect the consequent uncertainty observed, we have 

censored data. Researchers have some experience in lost-sales 

situations when it becomes essential to differentiate sales and 

demand. However, more general approaches will be instrumen- 

tal with the availability of feature data and other complications. 

One such study is proposed by Lee, Homem-de Mello, & Kley- 

wegt (2012) . 

6. The overview excluded the empirical methods used for esti- 

mation and prediction and the application of those methods 

to inventory-related problems with specific research questions. 

Some recent related references were supplied in Section 4 . 

More research to develop empirical methods in Management 

Science, as well as research more specific to the needs of in- 

ventory problems, is needed for the data-driven research to ex- 

pand. 

7. We understand that what we call “uncertainty” can be fur- 

ther analyzed using the classical approach. Such an example 

is introduced in Section 4.2 , bringing together the well-known 

EOQ problem environment with the notion of heterogeneous 

customers. We are encouraged to use such models as we ob- 

serve the development of the behavioral operations manage- 

ment field (please see Donohue, Özer, & Zheng, 2020 for a re- 

cent review on the topic). Further, as an example, several stud- 

ies complement the model stated in Section 4.2 . As a depar- 

ture from the classical EOQ model, the model presented in 

Section 4.2 considers backorder time as a factor for demand. 

Allon, Federgruen, & Pierson (2011) , and Chen, Kumar, Sing- 

hal, & Singhal (2021) consider waiting-time costs (both struc- 

turally and empirically), indicating that it is possible to have 

such a representation as given in the model. Backorder cost is 

also another issue Schwartz (1970) uses empirical data to ver- 

ify a model, which then can be used to estimate backlogging 

cost (please see Argon, Güllü, & Erkip, 2001 , and Liberopoulos, 

Tsikis, & Delikouras, 2010 for details). Further research in this 

direction will help enrich the classical theory and increase the 

chances of real-life implementations. 

8. The models mentioned in Sections 2 and 4 use the EtO ap- 

proach. In practice, plans are implemented on a rolling basis; 

hence, we expect this sequence to be implemented over time, 

though the cycle of renewing estimate may not be the same 

as optimized. The studies detailed in Section 3 , on the other 
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hand, use the EO approach, simultaneously dealing with the 

two stages of problems. The studies on predict-and-optimize 

in the literature (see, Elmachtoub & Grigas, 2022 as an exam- 

ple) use a similar approach to EO. Note that this similarity in 

approaches is a good indication of a possible cross-fertilization 

of available knowledge, presenting the researchers in different 

fields to contribute to the methodologies which can be applied 

and extended for inventory problems. 

9. The final item we mention for the research agenda follows 

naturally: Why not utilize different approaches to model a 

decision situation and select the model that gives a more 

accurate representation using the available data. For further 

analysis, this model (approach) can then be implemented for 

decision-making. This idea looked futuristic when mentioned 

by Geoffrion (2008) in his foreword for a book advocating the 

use of intuition for decision making. Some authors utilize the 

idea; see den Boer & Sierag (2021) as an example. Note that 

this opens a new research direction requiring convincing com- 

parison methodologies besides other technicalities. 

Epilogue 

Discussion on utilizing data-driven systems can be found in 

ther fields; see Zappone, Di Renzo, & Debbah (2019) for the 

ontrol of wireless networks and Saltelli (2019) for mathematical 

odel validation in general. It is interesting to note that although 

altelli (2019) reports experiences from another field, the resem- 

lance of the approach selects a model that gives a more accurate 

epresentation using the available data. 

One can find many studies that pinpoint dangers in employing 

ata-driven systems in general. Matzner (2019) , and Rainie, Ander- 

on, & Page (2017) present two examples, the former from a hu- 

an standpoint and the latter from a governance standpoint. It is 

nteresting to note that some researchers are cautiously advocat- 

ng the implementation of data-driven algorithms for social good 

see Shi, Wang, & Fang (2020) as an example). We will see much 

iscussion on the pros and cons of data-driven systems from all 

erspectives in the future. 

We want to conclude the discussion for our field. We believe 

hat data-driven systems have definite merit, and we should pre- 

are ourselves and our community to become knowledgeable (if 

ot experts) on those approaches. Boutilier & Chan (2021) report 

ourses they designed to include the teaching of these techniques 

ogether with optimization ideas. However, we will advocate teach- 

ng theoretical models more than ever, as it is hard to keep track 

f the changes with data-driven systems without keeping the in- 

uition alive. We refer to Chhajed & Lowe (2008) , an edited book 

ith chapters all related to the intuition we obtain using theo- 

etical models for different areas of OM and Geoffrion (1976) , an 

rticle, under-cited, in my opinion, which talks about how one 

an obtain intuition from a mathematical model. The exposition 

n Section 4.2 is an example of gaining insight into inventory 

heory. 
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