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A B S T R A C T

Hub networks are the foundation of many transportation and distribution systems, and real-
world hub networks often transport freight or passengers of different service classes. This paper
introduces the stratified multiple allocation p-hub center and p-hub maximal covering problems
where the traffic corresponding to each origin–destination (O/D) pair is divided into different
strata each having a specific service level requirement. The problems are formulated as mixed-
integer linear programming (MILP) models and efficient Benders decomposition algorithms are
developed for solving large instances. Extensive computational experiments are conducted to
demonstrate the efficiency of the proposed mathematical models and the solution algorithms.
MILP formulations are also proposed for the generalized versions of the problems that include
fixed set-up costs for hubs and hub arcs. Results indicate that the optimal sets of hub locations
and hub arcs when considering different strata can be quite dissimilar to those of the traditional
p-hub center or p-hub maximal covering problem, but are similar to those of hierarchical hub
location problems. Furthermore, models are provided and solved for multi-modal stratified hub
location problems with fixed setup costs for hubs and hub arcs. Optimal results show a wide
range of network topologies that can be generated, as compared to the classical versions.

1. Introduction

Hub networks are the foundation of many transportation and distribution systems, and most hub location and hub network design
research treats the origin–destination flows as receiving a single type of service, or being a single stratum (e.g., freight with common
logistics and demand characteristics, or passengers of a single class of service). However, in many situations in practice, the service
level required by different classes of commodities or customers are not the same. For example, some commodities/customers are
sensitive to transportation time and need very fast delivery/transport, whereas other commodities/customers have more tolerance
towards longer transport (slower delivery). Applications include the design of a hub network in postal and parcel services where the
various types of service (regular, express, etc.) need to be provided for customers of different strata, passenger air transportation
with different classes of passengers (first class, business class, economy class, etc.) and the distribution of perishable items where
some require faster delivery (e.g., fresh fish) than others. Often the demand in different strata are willing to pay higher prices for
better service, as for example, with more direct airline flights (from an origin to a destination) that have higher prices.

In hub-based many-to-many transportation systems, fundamental functions such as transshipment, sorting, consolidation, etc.
are performed at hub facilities which serve as collection and distribution points between origin–destination (O/D) pairs. Due to
flow concentration on network arcs (especially on the inter-hub connections), transportation costs in hub networks benefit from
economies of scale. In hub location problems (HLPs) the objective is to locate a number of hub facilities and to allocate the demand
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points to the established hubs so that the O/D traffic is routed to achieve a desired objective (e.g., minimizing system-wide cost or
maximizing the service level provided to the clients). Non-hub nodes (origins/destinations) can be allocated to the hubs according
to either of two commonly adopted protocols: single or multiple allocation. If each non-hub node can be directly connected to
only one hub, the network is called a single allocation hub network. As a generalization of this protocol, if each non-hub node is
allowed to be directly connected to more than one hub, then we deal with a multiple allocation HLP. Incorporation of service level
considerations in hub networks is very important, particularly when we deal with the delivery of time sensitive items or passenger
transportation. One approach is to use hub center models where the objective is to minimize the maximum travel time between the
O/D pairs. Alternatively, one can use maximal covering models, where the aim is to serve the O/D pairs in such a way that the
fraction of traffic which is served within a specific allowable time threshold is maximized.

In this work we address the HLP from a service time perspective and introduce the stratified multiple allocation p-hub center
problem (SpHCP) and stratified multiple allocation p-hub maximal covering problem (SpHMCP). We assume that the total traffic
demand is divided into distinct strata, and the demand corresponding to each stratum has a distinct service level requirement. The
goal of SpHCP is to locate hubs and route the traffic in such a manner that the weighted sum of the largest travel times between
the O/D pairs associated with all the strata is minimized. SpHMCP, on the other hand, aims at maximizing the weighted sum of
the covered demand values over all the strata given a specific coverage requirement for each stratum. In other words, the service
level in our models is related to the travel times of the O/D traffic. In the case of the center problem, the lower the weighted sum
of the maximum travel times is, the higher the service level is. For the maximal covering problem, the larger the weighted sum of
the covered traffic is, the higher the service level is. To the best of our knowledge, this is the first work in the literature that tackles
stratified hub location problems, and in particular the stratified p-hub center and stratified p-hub maximal covering problems. These
problems are modeled as mixed-integer linear programs (MILPs) and exact solution approaches based on Benders decomposition
are presented. Extensive computational experiments are conducted to study the effect of different input parameters on the optimal
hub locations and traffic patterns and to demonstrate the efficiency of the proposed solution algorithms. Furthermore, we address
generalized versions of the problems that include partial coverage, operational times at hubs, multi-modal transport, and fixed set-up
costs for hubs and hub arcs and allowing an incomplete inter-hub network.

We propose MILP formulations to the generalized problems and analyze the obtained results. In this paper we focus on stratified
hub location from a service level perspective (as in Albareda-Sambola et al. (2019)). Because of our focus on service objectives, we do
not compute the cost for the obtained solutions; stratified hub location problems with a cost-oriented objective (e.g., the stratified
p-hub median problem) are an interesting area for future research. Our basic stratified models address strategic transportation
network design issues which allow different modes of transport as reflected by higher vehicle speeds between hubs (e.g., as from
trucks and airplanes). In Section 6 we consider a model that explicitly include different modes but modeling mode-specific fixed
costs for the hub nodes and hub arcs. Finally, as in most of hub location literature, we allow direct shipment between an origin and
destination only when the origin and/or destination are hubs.

The remainder of the paper is structured as follows. Section 2 presents related papers from the literature. Mathematical
formulations are presented in Section 3. The proposed Benders decomposition algorithms are developed in Section 4. Results from
extensive computational experiments are given in Section 5. MILP formulations for the generalized problems with fixed set-up costs
and their results are presented in Section 6. Conclusions as well as directions for future research are presented in Section 7.

2. Background

The HLP has become established as a rich territory of research within the area of transportation network design and facility
location. Studies on the HLP have grown at a fast pace since 1980s and interested readers may refer to Alumur and Kara (2008),
Campbell and O’Kelly (2012), Farahani et al. (2013), Contreras and O’Kelly (2019), Alumur et al. (2021) for review articles on the
HLP.

The p-hub center problem (pHCP) is a service-oriented member of the family of HLPs that deals with determining the optimal
location of p hubs and allocating the demand to these hubs in such a way that the maximum distance between all the O/D pairs
is minimized. The path-based formulation by Campbell (1994) was the first mathematical model for the pHCP on a network. Kara
and Tansel (2000) proposed a number of alternative formulations that have better computational performance, among which an
arc-based formulation has the highest efficiency. Kara and Tansel (2001) extended the pHCP to incorporate synchronization issues
on the operational level. The authors called this the latest arrival hub location problem. This problem was extended by Yaman et al.
(2007) by allowing a path from a non-hub node to its hub to visit another non-hub node en route. Ernst et al. (2009) proposed ILP
formulations for both the single and multiple allocation versions of the problem and proved that both problems are NP-Hard.

Sim et al. (2009) considered the p-hub center problem with stochastic travel times using normal distributions and employed
chance constraints to limit the probability of excessive travel times. A two-phase algorithm based on branch-and-bound was
presented by Meyer et al. (2009) for the single allocation p-hub center problem (USApHCP). Alumur et al. (2009) studied the single
allocation incomplete hub center and hub covering problems. A combined p-center and network design problem was addressed
in Contreras et al. (2012b), where facility location and underlying network design decisions were considered at the same time
to minimize the maximum customer-facility travel time. Bashiri et al. (2013) presented a GA based heuristic to solve the fuzzy
capacitated p-hub center problem. Yang et al. (2013) developed a hybrid PSO algorithm for the fuzzy p-hub center problem where
the travel times were modeled using normal fuzzy vectors. Brimberg et al. (2017a) proposed a basic variable neighborhood search
(BVNS) heuristic for the uncapacitated multiple allocation p-hub center problem (UMApHCP). In another work, Brimberg et al.
(2017b) proposed a general variable neighborhood search (GVNS) algorithm for the USApHCP.
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Similar to the p-hub center problem, the p-hub maximal covering problem (pHMCP) focuses on service-level considerations in
the design of hub networks. The pHMCP aims at maximizing the covered demand by using a fixed number of hub facilities. In other
words, in pHMCP it is not necessary to serve all O/D pairs as it is the case in profit maximizing HLPs (Taherkhani and Alumur,
2019). The models for both single and multiple allocations were proposed by Campbell (1994). A new mathematical formulation
for the single assignment version of the problem was later proposed by Hwang and Lee (2012). Weng et al. (2006) developed a
new model for the multiple allocation version and prove the NP-hardness of the problem. A tabu search (TS) based algorithm was
developed by Çalık et al. (2009) for the single allocation hub covering problem with incomplete inter-hub networks. Jabalameli
et al. (2012) proposed a simulated annealing (SA) algorithm for the single allocation p-hub maximal covering problem. Peker and
Kara (2015) extended the p-hub maximal covering problem by considering partial coverage where it was possible to partially cover
demand using gradual decay functions. Yıldız and Kara≥an (2015) studied the regenerator location problem from a hub covering
location perspective. A TS heuristic was proposed by Silva and Cunha (2017) for the uncapacitated single allocation p-hub maximal
covering problem. Jankovi¢ and Jankovi¢ and Stanimirovi¢ (2017) proposed a GVNS heuristic for the uncapacitated r-allocation
p-hub maximal covering problem (UrApHMCP) with binary coverage criterion. Efficient SA based algorithms were proposed for
solving single and multiple allocation maximal covering HLPs under market competition in Ghaffarinasab et al. (2018).

Benders decomposition (BD) (Benders, 1962) is a partitioning method for solving mixed integer programming (MIP) problems,
and it has been successfully applied to several different variants of the HLP. de Camargo et al. (2008) solved the uncapacitated
multiple allocation hub location problem (UMAHLP) using BD algorithms. Another BD algorithm was devised by de Camargo et al.
(2009b) for the HLPs with flow-dependent discount factor. A generalized BD algorithm was developed for HLPs under congestion by
de Camargo et al. (2009a, 2011). Large-scale instances of the UMAHLP were solved by using BD algorithms proposed by Contreras
et al. (2011a). The same authors applied a BD algorithm for solving stochastic uncapacitated HLPs (Contreras et al., 2011b). An
accelerated BD procedure was presented for an HLP in the context of urban transport and liner shipping network design in Gelareh
and Nickel (2011) which was then extended to solve a multi-period HLP under budget constraints (Gelareh et al., 2015). Capacitated
version of the HLPs were tackled by a BD algorithm in Contreras et al. (2012a). de Camargo et al. (2013) applied a BD algorithm
for the many-to-many hub location routing problem. BD algorithm were also used to solve the tree of hubs location problem and
the hub line location problem in de Sá et al. (2013, 2015), respectively. Another BD algorithm was devised by O’Kelly et al. (2015)
for the HLP with price-sensitive demands. Fontaine and Minner (2014) proposed a BD solution approach for a traffic network
design problem modeled as bilevel problems. Two BD procedures were proposed by Meraklı and Yaman (2016) for the robust
uncapacitated multiple allocation p-hub median problem (UMApHMP) under polyhedral demand uncertainty. BD algorithms were
proposed to solve the robust incomplete hub location problem with uncertain demands and hub fixed costs (de Sá et al., 2018a) and
with uncertain travel times (de Sá et al., 2018b). Ghaffarinasab and Kara (2019) proposed BD algorithms for solving uncapacitated
single allocation HLPs with fixed and variable number of hubs. A modified BD method was developed in Mokhtar et al. (2019) for
solving the 2-allocation p-hub median problem which can also be generalized for solving other HLPs. Mahéo et al. (2019) addressed
the design of a hub and shuttle public transit network and proposed an efficient procedure for solving it based on BD. Taherkhani
et al. (2020) developed a BD procedure for solving the profit maximizing hub location problems. Ghaffarinasab (2020a) proposed
an efficient BD algorithm for solving the UMApHCP. Najy and Diabat (2020) proposed a BD algorithm for a multiple allocation HLP
with economies of scale and node congestion. Finally, Ghaffarinasab (2021) developed BD algorithms for the robust uncapacitated
multiple allocation p-hub median problem.

Observing the literature, we conclude that carefully designed BD algorithms have been an effective solution approach for many
HLPs. Furthermore, the stratified p-hub center and p-hub maximal covering problems have not been addressed before. In case of
the HLP, the concept of providing multiple service levels has been used in some works (Campbell, 2009, 2013). However, these
works focus on a cost minimization objective, while the service level considerations are addressed as constraints. In the classical
facility location theory, the stratified p-center problem has been studied recently (Albareda-Sambola et al., 2019), where the authors
developed and compared different formulations, valid inequalities and preprocessing techniques for this problem. In this work we
introduce the stratified multiple allocation p-hub center and p-hub maximal covering problems, along with some generalizations,
and develop efficient solution algorithms based on Benders decomposition for these problems.

3. Model formulations

Let G = (N ,A) be a graph with N and A respectively as the sets of nodes and arcs such that A = {(i, j) : i, j À N , i ë j}. We
assume that all nodes in N are candidate sites for locating hub facilities. For all i, j À N , we denote by d

ij
the distance between

nodes i and j. Distances are assumed to satisfy the triangle inequality, i.e., d
ij
f d

ik
+ d

kj
for all i, j, k À N . We further assume that

the travel time between pair of nodes (i, j) À A is proportional to the distance between them, i.e., ⌧
ij
= ⌫d

ij
where ⌫ is a positive

scaling factor that can be viewed as the reciprocal of average speed. The number of hubs to be installed is a fixed value denoted by
p. We assume that each O/D trip visits at least one hub. In basic stratified HLPs, as a result of the triangle inequality, the inter-hub
network in an optimal solution is a complete network. We assume that a faster mode of transport is used on the inter-hub network,
where the parameter ↵, between 0 and 1, is a speed-up factor on the transportation time over the inter-hub connections. Thus, while
cost-oriented hub location models use ↵ as a cost discount factor for inter-hub travel, we use ↵ as a time discount factor, so the
average inter-hub speed can be viewed as 1_(↵⌫). The total travel time for the O/D flow associated with pair (i, j) À A through hubs
k and m in that order is calculated as:

c
ijkm

= ⌧
ik
+ ↵⌧

km
+ ⌧

mj
. (1)
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In the proposed version of the problems, the O/D traffic in the network is partitioned into a set of strata with the possibility of more
than one stratum for each O/D pair. Let S be the set of strata into which the O/D traffic are classified. We consider a collection
of subsets {As}

sÀS where A
s
” A is the set of O/D pairs at which stratum s À S is present. Let ts

ij
represent the traffic volume

corresponding to O/D pair (i, j) in stratum s À S. For each stratum s À S, we assign a weight ws which reflects the importance of
that stratum and is used to weight the cost or coverage related to different strata in the objective function. We define the binary
variable y

k
as:

y
k
=
<

1, if node k is selected as a hub,
0, otherwise.

Also, the non-negative variable x
s

ijkm
denotes the fraction of traffic associated with the O/D pair (i, j) À A

s, that is routed via hubs
k and m in stratum s À S.

3.1. The stratified p-hub center formulation

In order to formulate the stratified p-hub center problem, we define zs as the maximum travel time between the O/D pairs within
stratum s. The problem consists of selecting p nodes as hubs and determining how the O/D flows will be routed via these hubs so
that the weighted sum of the maximum travel times between O/D pairs within all strata is minimized. The MILP model for the
multiple allocation stratified p-hub center problem (SpHCP) can be written as:

min
…

sÀS
w

s
z
s (2)

s.t.:
…

kÀN
y
k
= p (3)

…

kÀN

…

mÀN
x
s

ijkm
= 1 s À S, (i, j) À A

s (4)

…

mÀN
x
s

ijkm
+

…

mÀN
mëk

x
s

ijmk
f y

k
s À S, (i, j) À A

s
, k À N (5)

z
s g …

kÀN

…

mÀN
c
ijkm

x
s

ijkm
s À S, (i, j) À A

s (6)

x
s

ijkm
g 0 s À S, (i, j) À A

s
, k,m À N (7)

z
s À R s À S (8)

y
k
À {0, 1} k À N (9)

The objective function (2) minimizes the weighted sum of the maximum travel times between O/D pairs within all strata. Constraint
(3) sets the number of installed hubs to be equal to p. Constraints (4) ensure that the entire flow corresponding to each O/D pair is
routed via some pair of hubs. Constraints (5) state that the flows cannot go through an intermediate node unless that node is a hub.
Constraints (6) calculate the maximum travel time between the O/D pairs within each stratum. Finally, (7), (8) and (9) determine
the domains of the decision variables.

3.2. The stratified p-hub maximal covering formulation

The sets, parameters, and decision variables used in formulating the stratified p-hub maximal covering problem are largely the
same as the ones used for the stratified p-hub center model. However, we define two new parameters specific for this problem. Let
�
s

ij
denote the maximum allowable travel time (or coverage radius) for O/D pair (i, j) À A

s in stratum s À S, and let as
ijkm

be a
binary covering parameter that takes the value of 1 if the traffic between nodes i and j in stratum s is covered and 0, otherwise. In
other words, we have:

a
s

ijkm
=
T

1, if c
ijkm

f �
s

ij

0, otherwise
s À S, (i, j) À A

s
, k,m À N (10)

Based on the above-mentioned parameters and notations, the MILP model for the stratified p-hub maximal covering problem
(SpHMCP) can be written as:

max
…

sÀS
w

s

H

…

(i,j)ÀAs

…

kÀN

…

mÀN
a
s

ijkm
t
s

ij
x
s

ijkm

I

(11)

s.t.: (3), (4), (5), (7), (9) (12)

The objective function (11) maximizes the weighted sum of the covered traffic over all the strata.
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We also propose a second formulation for SpHMCP which is more compact in terms of number of variables as compared with
the above model. Let the binary variable u

km
indicate whether both k À N and m À N are selected as hubs or not. Further, assume

the variable v
s

ij
represent the fraction of the O/D flow (i, j) À A

s in stratum s À S that is covered. Then we can write:

max
…

sÀS

…

(i,j)ÀAs

w
s
t
s

ij
v
s

ij
(13)

s.t.:
…

kÀN
y
k
= p (14)

u
km

f y
k

≈k,m À N , (k < m) (15)

u
km

f y
m

≈k,m À N , (k < m) (16)

v
s

ij
f …

kÀHs

ij

y
k
+

…

(k,m)ÀGs

ij

u
km

≈s À S, (i, j) À A
s (17)

0 f v
s

ij
f 1 s À S, (i, j) À A

s (18)

u
km

À {0, 1} ≈k,m À N , (k < m) (19)

y
k
À {0, 1} ≈k À N (20)

where H
s

ij
= {k À N : c

ijkk
f �

s

ij
} and G

s

ij
= {(k,m) À N ù N : k < m & min{c

ijkm
, c

ijmk
} f �

s

ij
& min{c

ijkk
, c

ijmm
} > �

s

ij
}.

Note that we can relax the integrality constraints on u
km

variables as for any fixed binary solution for the y
k
variables, the

resulting LP always has an optimal solution with the u
km

and v
s

ij
variables binary corresponding to u

km
= min{y

k
, y

m
} and

v
s

ij
= min{1,≥

kÀHs

ij

y
k
+≥

(k,m)ÀGs

ij

u
km

}. Therefore, we replace (19) with:

0 f u
km

f 1 ≈k,m À N , (k < m) (21)

The above formulation can further be tightened by adding the following valid inequalities:
…

mÀN
m>k

u
km

+
…

mÀN
m<k

u
mk

f (p * 1)y
k

≈k À N (22)

We call the models (11)–(12) and (13)–(18), (20)–(22) as MILP1 and MILP2, respectively and will use them as baseline for
comparison with the proposed exact solution algorithms.

It is worth mentioning that when for every s À S, As = A (i.e., all O/D pairs are present in each stratum), then SpHCP and SpHMCP
are equivalent to the original multiple allocation pHCP and pHMCP, respectively that belong the class of NP-hard problems (Ernst
et al., 2009; Weng et al., 2006).

4. Solution algorithms

BD is an exact solution procedure for large-scale MIP models in which the problem is decomposed in such a way that the
complicating variables form a master problem (MP) and the remaining variables constitute the subproblem (SP). The problem is
then solved using a cutting plane approach where the cuts extracted from solving the SP are added to the MP. BD exploits the fact
that computational burden of an MIP problem substantially increases with the problem size. Therefore, a divide-and-conquer scheme
is employed to decompose a single large problem into smaller problems which can be solved more efficiently. Motivated by this fact,
we apply Benders decomposition to SpHCP and SpHMCP. In classical implementation of Benders algorithm, we need to solve the
master problem at each iteration. However, we use a modern implementation within a branch-and-cut (B&C) setting where the MP
is solved in one attempt and the cuts are added on the fly whenever required by using the capabilities of the state-of-the-art solvers.
We separate the Benders cuts as we visit a candidate integer solution in the B&C tree of the MP. By doing so, the computational
effort needed to solve an integer problem at each iteration is considerably reduced.

4.1. Benders reformulation for the stratified p-hub center problem

By fixing the binary location variables vector as y = Çy, the subproblem (SP) for SpHCP can be written as:

min
…

sÀS
w

s
z
s (23)

s.t.:
…

kÀN

…

mÀN
x
s

ijkm
= 1 s À S, (i, j) À A

s (24)

…

mÀN
x
s

ijkm
+

…

mÀN
mëk

x
s

ijmk
f Çy

k
s À S, (i, j) À A

s
, k À N (25)

z
s g …

kÀN

…

mÀN
c
ijkm

x
s

ijkm
s À S, (i, j) À A

s (26)

x
s

ijkm
g 0 s À S, (i, j) À A

s
, k,m À N (27)
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z
s À R s À S (28)

The subproblem (23)–(28) aims to minimize the weighted sum of the maximum travel time between O/D pairs within each stratum
given that p hubs are installed in the network. Since every O/D flow within each stratum is routed via at least one open hub, there
is at least one path (with a positive travel time) for routing the corresponding traffic. Hence, the SP is always feasible and bounded.
Let �s

ij
, ⇡s

ijk
, and �

s

ij
be the dual variables associated with constraints (24), (25), and (26), respectively. Hence, the dual subproblem

(DSP) for SpHCP solves the following linear programming problem:

max
…

sÀS

…

(i,j)ÀAs

�
s

ij
*
…

sÀS

…

(i,j)ÀAs

…

kÀN
Çy
k
⇡
s

ijk
(29)

s.t.: �s
ij
* ⇡

s

ijk
* ⇡

s

ijm
f c

ijkm
�
s

ij
s À S, (i, j) À A

s
, k,m À N , (k ë m) (30)

�
s

ij
* ⇡

s

ijk
f c

ijkk
�
s

ij
s À S, (i, j) À A

s
, k À N (31)

…

(i,j)ÀAs

�
s

ij
= w

s
s À S (32)

⇡
s

ijk
g 0 s À S, (i, j) À A

s
, k À N (33)

�
s

ij
g 0 s À S, (i, j) À A

s (34)

�
s

ij
À R s À S, (i, j) À A

s (35)

We can now write the master problem (MP) for SpHCP as follows:

min ✓ (36)

s.t.: ✓ g …

sÀS

…

(i,j)ÀAs

�
s(v)
ij

*
…

sÀS

…

(i,j)ÀAs

…

kÀN
⇡
s(v)
ijk

y
k

v = 1,… ,V (37)

(3), (9) (38)

✓ g 0 (39)

in which (�(v),⇡(v)
, �

(v)) denotes the vth extreme point of the feasible solution space of the DSP. As noted above, with p installed
hubs, the SP (23)–(28) is always feasible. Therefore, we do not need to add feasibility cuts to the MP.

Now we devise an algorithm for solving the DSP by inspection (without using a standard solver) which results in substantial
savings in the solution time. To this end, we first determine the optimal values of the �

s

ij
variables. Due to the maximization in the

objective function of the DSP (29)–(35) and according to constraints (32), we can conclude that for each stratum s À S, the value
of variable �

s

ij
associated with the longest travel time for that stratum will take the value of ws and the remaining variables will

have 0 value in an optimal solution. We present a procedure for determining the optimal values of the �s
ij
variables in Algorithm 1.

Algorithm 1 : Determining the optimal values for �s
ij
variables

1: for all s À S do
2: v

max
} *ÿ

3: (o
s
, d

s
) } (0, 0)

4: for all (i, j) À A
s do

5: if v
max

< min
k,mÀH1

{c
ijkm

} then
6: (o

s
, d

s
) } (i, j)

7: v
max

} min
k,mÀH1

{c
ijkm

}
8: end if
9: end for
10: �

s<
o
s
d
s

} w
s

11: for all (i, j) À A
s ‰ {(o

s
, d

s
)} do

12: �
s<
ij

} 0
13: end for
14: end for

In the above algorithm, H1 is the set of nodes that are selected as hubs at the current iteration.

Proposition 1. The values obtained for �s
ij
by Algorithm 1 are optimal.

Proof. Let (o
s
, d

s
) be the O/D pair with the largest value of travel time within stratum s À S that is obtained using the installed hubs

based on Çy. Moreover, let As

0 denote the set of remaining O/D pairs (i.e., As

0 = A
s ‰ {(o

s
, d

s
)}). Therefore, for all s À S, constraints

(26) hold as equality for (i, j) = (o
s
, d

s
) and hold as strict inequality for all (i, j) À A

s

0. In other words, we can rewrite the constraints
(26) as follows:

z
s =

…

kÀN

…

mÀN
c
osdskm

x
s

osdskm
s À S (40)



Transportation Research Part B 157 (2022) 120–148

126

N. Ghaffarinasab et al.

z
s
>

…

kÀN

…

mÀN
c
ijkm

x
s

ijkm
s À S, (i, j) À A

s

0 (41)

Due to complementary slackness conditions in duality theory, the dual variables associated with (41) are equal to zero (i.e., �s
ij
= 0

for all s À S, (i, j) À A
s

0). Now, based on constraints (32), in any optimal solution of the DSP, we have:
…

(i,j)ÀAs

0

�
s

ij
+ �

s

osds
= w

s
s À S (42)

that implies �s
osds

= w
s. ∏

Having obtained the optimal values for the �s
ij
variables, the DSP for SpHCP can now be reduced to the following linear programming

problem:

max
…

sÀS
�
s

osds
*
…

sÀS

…

kÀN
Çy
k
⇡
s

osdsk
(43)

s.t.: �s
osds

* ⇡
s

osdsk
* ⇡

s

osdsm
f c

osdskm
w

s
s À S, k,m À N , (k ë m) (44)

�
s

osds
* ⇡

s

osdsk
f c

osdskk
w

s
s À S, k À N (45)

⇡
s

osdsk
g 0 s À S, k À N (46)

�
s

osds
À R s À S (47)

Note that the reduced DSP corresponding to O/D pairs (i, j) À A
s

0 has the optimal values �
s

ij
= ⇡

s

ijk
= 0 for all (i, j) À A

s

0, k À N and
hence these are not needed for deriving the optimality cuts. The model (43)–(47) is the dual of:

min
…

sÀS

…

kÀN

…

mÀN
c
osdskm

w
s
x
s

osdskm
(48)

s.t.:
…

kÀN

…

mÀN
x
s

osdskm
= 1 s À S (49)

…

mÀN
x
s

osdskm
+

…

mÀN
mëk

x
s

osdsmk
f Çy

k
s À S, k À N (50)

x
s

osdskm
g 0 s À S, k,m À N (51)

This problem can be solved by inspection as a shortest path problem and since it is feasible and bounded, the corresponding optimal
dual variables �s

osds
and ⇡

s

osdsk
for all s À S, k À N can be determined using the complementary slackness conditions as explained

by Contreras et al. (2011a). Our master problem can now be rewritten as follows:

(MP1-SpHCP)

max ✓ (52)

s.t.: ✓ g …

sÀS
�
s(v)
osds

*
…

sÀS

…

kÀN
⇡
s(v)
osdsk

y
k

v = 1,… ,V (53)

(3), (9), (39)

Note that for each stratum s À S, dual variables corresponding to only one O/D pair that has the maximum travel time (i.e., (o
s
, d

s
))

are used in constructing the MP1-SpHCP as the values of the remaining dual variables are zero. Therefore, MP1-SpHCP can be
solved much more efficiently than the original MP (36)–(39). Based on the fact that the SP for SpHCP can be disaggregated for each
s À S, we can assemble multiple cuts (one for each stratum) to be added to the MP together. Doing so, we can write a new multi-cut
version of the master problem for SpHCP as follows:

(MP2-SpHCP)

max
…

sÀS
✓
s (54)

s.t.: ✓s g �
s(v)
osds

*
…

kÀN
⇡
s(v)
osdsk

y
k

s À S, v = 1,… ,V (55)

(3), (9)

✓
s g 0 s À S (56)

4.2. Benders reformulation for the stratified p-hub maximal covering problem

By fixing the binary location variables vector as y = Çy, in the model MILP1 (11)–(12), the SP for SpHMCP can be written as:

max
…

sÀS
w

s

H

…

(i,j)ÀAs

…

kÀN

…

mÀN
a
s

ijkm
t
s

ij
x
s

ijkm

I

(57)
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s.t.:
…

kÀN

…

mÀN
x
s

ijkm
= 1 s À S, (i, j) À A

s (58)

…

mÀN
x
s

ijkm
+

…

mÀN
mëk

x
s

ijmk
f Çy

k
s À S, (i, j) À A

s
, k À N (59)

x
s

ijkm
g 0 s À S, (i, j) À A

s
, k,m À N (60)

Let 's

ij
and �

s

ijk
be the dual variable associated with constraints (58) and (59). The DSP for SpHMCP can then be formulated as

follows:

min
…

sÀS

…

(i,j)ÀAs

'
s

ij
+
…

sÀS

…

(i,j)ÀAs

…

kÀN
Çy
k
�
s

ijk
(61)

s.t.: 's

ij
+ �

s

ijk
+ �

s

ijm
g w

s
a
s

ijkm
t
s

ij
s À S, (i, j) À A

s
, k,m À N , (k ë m) (62)

'
s

ij
+ �

s

ijk
g w

s
a
s

ijkk
t
s

ij
s À S, (i, j) À A

s
, k À N (63)

�
s

ijk
g 0 s À S, (i, j) À A

s
, k À N (64)

'
s

ij
À R s À S, (i, j) À A

s (65)

We can now write the MP for SpHMCP as follows:

(MP1-SpHMCP)

max � (66)

s.t.: � f …

sÀS

…

(i,j)ÀAs

'
s(v)
ij

+
…

sÀS

…

(i,j)ÀAs

…

kÀN
�
s(v)
ijk

y
k

v = 1,… ,V (67)

(3), (9)

� g 0 (68)

In order to solve the DSP for SpHMCP we propose a two-phase algorithm that derives the optimal values of dual variables by
inspection, without using a standard solver. Our approach for breaking the subproblem into two phases is analogous to the idea
of approximating the Pareto optimal cuts (Magnanti and Wong, 1981). In Phase I, we obtain the optimal value of the subproblem,
whereas in Phase II, we strengthen the cut while preserving the optimality and feasibility of the solution.

At a given iteration of the BD algorithm, we obtain an optimal solution Çy from MP. Let H1 = {k À N : Çy
k
= 1} be the set

of open hubs, and let H0 = {k À N : Çy
k
= 0} be the set of closed hubs. Note that any feasible value of �s

ijk
would be optimal

when k À H
0. Hence, we can solve the subproblem in two phases. In Phase I, we remove the variables �s

ijk
and their corresponding

constraints from the DSP associated with k À H
0 and compute the values of the remaining variables by solving the following Phase

I subproblem:

min
…

sÀS

…

(i,j)ÀAs

'
s

ij
+
…

sÀS

…

(i,j)ÀAs

…

kÀH1
�
s

ijk
(69)

s.t.: 's

ij
+ �

s

ijk
+ �

s

ijm
g w

s
a
s

ijkm
t
s

ij
s À S, (i, j) À A

s
, k,m À H

1
, (k ë m) (70)

'
s

ij
+ �

s

ijk
g w

s
a
s

ijkk
t
s

ij
s À S, (i, j) À A

s
, k À H

1 (71)

�
s

ijk
g 0 s À S, (i, j) À A

s
, k À H

1 (72)

'
s

ij
À R s À S, (i, j) À A

s (73)

Note that the '
s

ij
variables are independent from k; accordingly, solving DSP-I results in obtaining the optimal values of all 's

ij

variables. Hence, in Phase II, we find feasible values of �s

ijk
for k À H

0 with respect to constraints (62)–(63) to strengthen the cut.
The model (69)–(73) is the dual of:

min
…

sÀS

H

…

(i,j)ÀAs

…

kÀH1

…

mÀH1
c
ijkm

w
s
x
s

ijkm

I

(74)

s.t.:
…

kÀH1

…

mÀH1
x
s

ijkm
= 1 s À S, (i, j) À A

s (75)

…

mÀH1
x
s

ijkm
+

…

mÀH1
mëk

x
s

ijmk
f 1 s À S, (i, j) À A

s
, k À H

1 (76)

x
s

ijkm
g 0 s À S, (i, j) À A

s
, k,m À H

1 (77)

Constraints (76) are dominated by (75) for every k À H
1 and thus can be removed entirely from the dual problem. Accordingly,

it is optimal to set the dual variables associated with (76) to zero, that is, �s

ijk
= 0 for all k À H

1. By replacing variables �s

ijk
with
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zero in the DSP1 (69)–(73), we can obtain the optimal values for 's

ij
as follows:

'
s

ij
= max

k,mÀH1
{ws

t
s

ij
a
s

ijkm
} s À S, (i, j) À A

s
. (78)

Updating DSP by fixing the value of the computed variables and removing the already satisfied constraints, we get the following
Phase II subproblem:

min
…

sÀS

…

(i,j)ÀAs

…

kÀH0
�
s

ijk
(79)

s.t.: �s

ijk
+ �

s

ijm
g B

s

ijkm
s À S, (i, j) À A

s
, k,m À H

0
, (k ë m) (80)

�
s

ijk
g B

s

ijkm
s À S, (i, j) À A

s
, k À H

0
,m À H

1 (81)

�
s

ijk
g B

s

ijmk
s À S, (i, j) À A

s
, k À H

0
,m À H

1 (82)

�
s

ijk
g B

s

ijkk
s À S, (i, j) À A

s
, k À H

0 (83)

�
s

ijk
g 0 s À S, (i, j) À A

s
, k À H

0 (84)

where B
s

ijkm
= w

s
a
s

ijkm
t
s

ij
* '

s

ij
for all s À S, (i, j) À A

s
, k,m À N . Note that if we only consider the constraints (83) and (84), we

have:

�
s

ijk
} max{0,Bs

ijkk
} s À S, (i, j) À A

s
, k À H

0 (85)

which represent the paths with only one closed hub k À H
0. If we further consider the paths with one closed hub k À H

0 and one
open hub m À H

1 by adding constraints (81) and (82), the optimal values will become:

�
s

ijk
} max

$

�
s

ijk
,max{Bs

ijkm
,B

s

ijmk
}
%

s À S, (i, j) À A
s
, k À H

0
,m À H

1
. (86)

Finally, by adding constraints (80) we also consider the paths with two distinct closed hubs k,m À H
0
, (k ë m). In this case if the

constraints (80) are violated, (i.e., if � = B
s

ijkm
* �

s

ijk
* �

s

ijm
> 0), we increase the sum of variables �s

ijk
and �

s

ijm
in the left-hand side

of (80) by � as follows:

�
s

ijk
} �

s

ijk
+ !�

�
s

ijm
} �

s

ijm
+ (1 * !)�

in which ! is a constant value within the interval [0, 1].
The pseudo-code for the proposed two-phase procedure is shown in Algorithm 2.

Algorithm 2 : Two-phase procedure for determining the optimal values for 's

ij
and �

s

ijk
variables

1: for all s À S do
2: for all (i, j) À A

s do
3: Phase I
4: '

s

ij
} max

k,mÀH1
{ws

t
s

ij
a
s

ijkm
}

5: for all k À H
1 do

6: �
s

ijk
} 0

7: end for
8: Phase II
9: for all k À H

0 do
10: �

s

ijk
} max{0,Bs

ijkk
}

11: for all m À H
1 do

12: �
s

ijk
} max

$

�
s

ijk
,max{Bs

ijkm
,B

s

ijmk
}
%

13: end for
14: end for
15: for all (k,m) À H

0 ùH
0
, (m ë k) do

16: � } B
s

ijkm
* �

s

ijk
* �

s

ijm

17: if � > 0 then
18: �

s

ijk
} �

s

ijk
+ !�

19: �
s

ijm
} �

s

ijm
+ (1 * !)�

20: end if
21: end for
22: end for
23: end for

Note that as in the case of the stratified p-hub center problem, the SP for SpHMCP can be separated for each s À S. Nevertheless,
our preliminary computational tests showed that this scheme for cut disaggregation does not perform well in terms of solution time
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reduction. On the other hand, it can be seen that the SP can also be separated for each O/D pair (i, j) À A. However, as shown by de
Camargo et al. (2008), if we add A cuts per iteration of the Benders algorithm, the time saved as a result of the reduction in the
number of iterations cannot compensate for the increased computational time for solving the master problem, even for instances
of small sizes. Therefore, rather than adding A cuts at each iteration, we can aggregate the information and add cuts associated
with subsets of O/D pairs. In particular, for each node i À N , we can add a cut corresponding to the O/D pairs originating from
node i. Therefore, we can separate the subproblem into N independent subproblems, one for each node i À N . Hence, the master
problem for the multi-cut version of the proposed Benders reformulation can be stated as follows:

(MP2-SpHMCP)

max
…

iÀN
�
i

(87)

s.t.: �
i
f …

sÀS

…

jÀN
'
s(v)
ij

+
…

sÀS

…

jÀN

…

kÀN
�
s(v)
ijk

y
k

v = 1,… ,V (88)

(3), (9)

�
i
g 0 i À N . (89)

For each i À N , an upper bound UB
i
on the value of �

i
can be obtained by allowing every node to act as a hub as follows:

UB
i
=

…

sÀS

…

jÀN
a
s

ijij
w

s
t
s

ij

Applying these upper bounds on the value of the �
i
variables has shown to be effective in reducing the solution time of the algorithm.

5. Computational experiments

In this section, we present first in Section 5.1 some optimal solutions to illustrate how the stratified demand impacts the optimal
hub network, including hub locations and traffic routing. Then in Section 5.2 we provide extensive computational results for
problems with up to 200 nodes and 10 strata.

5.1. An illustrative example

This section presents an illustrative example to show the effect of having different strata with varying levels of importance on the
optimal hub network. To this end, we use the CAB data set (O’Kelly, 1987) which is based on air passenger traffic data and assume
that we have three classes of passengers, called economy class, business class, and first class, that have different levels of willingness
to pay and hence are of different importance levels for the airline. The first class passengers are very sensitive to the service level
and hence desire their travel time to be as short as possible. They also provide the highest profit margin to the airline company. In
contrast, the economy class passengers are not very sensitive to travel time and tend to pay lower prices for their trips. The business
class passengers are assumed to be moderately sensitive to both travel time and cost. We assume that economy class passengers
exist for all O/D pairs between the 25 cities of the CAB data set. However, we generate the O/D matrices for the business class and
first class passengers randomly as shown in Fig. 1, so that business class and the first class passengers exist for only 50.33% and
20.66% of the O/D pairs, respectively. The demand matrices are all symmetric and the weights (w

s
) for the economy, business, and

first class strata are set to be 0.1, 0.3, and 0.6, respectively. For our illustration, we show optimal solutions with the number of hubs
(p) equal to 4 and the discount factor (↵) at 0.6 (i.e., inter-hub travel speed is 67% faster than the speed not between two hubs).

We first solve the uncapacitated p-hub center problem for each stratum separately, and then solve the problem considering all
the strata together as SpHCP. The optimal solutions (hubs and hub arcs) for individual strata as well as the aggregate problem are
depicted in Fig. 2. We report the objective function values for the four different problems as a quadruplet under each map. The
first number is the objective function value for the p-hub center problem considering only the O/D pairs present in the first stratum
given the set of hubs shown in the corresponding map. The second and the third numbers show the objective function values for the
second and the third strata, respectively. Finally, the last number gives the objective function value for the stratified p-hub center
problem consisting of all the three strata using the given weights.

As can be seen in these maps, when we consider only the first stratum (i.e., the economy class passengers; Fig. 2-a) the optimal
location of hubs are at nodes 1 (Atlanta), 2 (Baltimore), 12 (Los Angeles), and 23 (Seattle). For the business class passengers (Fig. 2-
b), the optimal hub set consists of four other cities: 5 (Cincinnati), 8 (Denver), 18 (Philadelphia), and 24 (Tampa). For the first class
passengers (Fig. 2-c), the optimal hub set includes three new cities: 6 (Cleveland), 7 (Dallas-Fort Worth), and 22 (San Francisco),
along with 8 (Denver) which was also optimal for business class passengers. Finally, the optimal solution for the stratified p-hub
center problem (Fig. 2-d) includes cities 6 (Cleveland), 8 (Denver), 16 (New Orleans), and 22 (San Francisco) as the hub nodes. We
observe that the optimal hub set for SpHCP is very similar to the optimal set of hubs for the first class passengers, as three out of
four hubs (i.e., Cleveland, Denver, and San Francisco) are the same in the two solutions. This is due to large weight value of the
third stratum (w3 = 0.6) compared to the first two strata (w1 = 0.1, w2 = 0.3).

Since economy class passengers exist for all O/D pairs between the 25 cities of the CAB data set, the solution for the economy
class passengers (Fig. 2-a) is identical to that of the traditional p-hub center problem (pHCP). Hence, we can see that the optimal
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Fig. 1. O/D matrices for the business class and the first class passengers.

Fig. 2. Optimal solutions for SpHCP with p = 4 and ↵ = 0.6.

hub network (i.e., set of hub locations and hub arcs) for the stratified p-hub center problem (Fig. 2-d) is very different from that of
the pHCP (Fig. 2-a), as none of the four optimal hub locations for SpHCP are optimal hubs for the pHCP.

Note that using the optimal network for a single class of passengers is 2%-6.5% worse (in terms of the objective for the stratified
model) than using the optimal solution for the stratified model (in Fig. 2-d). While the stratified solution is not optimal for any one
class of passengers (e.g., it is 10% worse for economy passengers than the optimal network for economy passengers alone in 2-a), it
represents a balance of the competing forces from the individual optimal networks Note that both Figs. 2-a and 2-d include traffic
between all O/D pairs, yet the optimal hub locations are routes are quite different. For example, for O/D pair (3,10) the travel path
in Fig. 2-a, which reflects an equal weighting for all O/D pairs, is 3 ô 2 ô 1 ô 10, while the path in Fig. 2-d is 3 ô 6 ô 16 ô 10.
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Fig. 3. Optimal solutions for SpHMCP with p = 4 and ↵ = 0.6.

Interestingly, node 6 which is a hub in SpHCP (Fig. 2-d) and for the first class passengers (Fig. 2-c) has no originating or terminating
demand of first-class passengers; yet it is an effective hub for the six rather clustered nodes to its right (east) (nodes 2, 3, 17, 18,
20, and 25) and nearby nodes 5 and 9. The travel paths for O/D pair (3,10) are also different in Figs. 2-c and 2-d (3 ô 18 ô 5 ô
10 and 3 ô 6 ô 7 ô 10, respectively), in part due to the sparse demand patterns for business and first-class passengers (See Fig. 1).

The results for the maximal covering case are presented in Fig. 3. Here, we have assumed the covering radius of 1000, 800, and
600 for the economy class, the business class, and the first class passengers, respectively. Here also we can observe that due to large
value of the weight corresponding to the third stratum, the optimal hub set for SpHMCP is very similar to the optimal set of hubs for
the first class passengers. As can be seen, three out of four hubs (i.e., Atlanta (1), Chicago (4), and San Francisco (22)) are the same
in the two solutions. However, as shown in the hub center case, the optimal set of hub locations for the stratified p-hub maximal
covering problem (Fig. 3-d) is quite dissimilar to that of the traditional p-hub maximal covering problem (Fig. 3-a). Note that using
the optimal network for a single class of passengers is 0.05%–14% worse (in terms of the objective for the stratified model SpHMCP)
than using the optimal solution for the stratified model (in Fig. 3-d). While the stratified solution provides optimal coverage for the
first class passengers, it provides 12%–16% worse coverage for the economy and business class passengers, respectively, compared
to the optimal network for that class of passengers alone. Note that the optimal set of hubs for SpHMCP is quite different from that
of SpHCP. As can be seen in Figs. 2-d and 3-d from the four installed hubs in each solution, only the hub 22 is common in the two
solutions.

5.2. Numerical results

In this section, we conduct an extensive set of computational tests to demonstrate the efficiency of the proposed BD algorithms.
We use three well-known data sets available in the literature of the HLP, namely the CAB, the TR, and the AP data sets. The CAB
data set is from air passenger traffic data between 25 US cities in 1970 (O’Kelly, 1987). The TR data set is based on the cargo
flows between 81 cities of Turkey (Tan and Kara, 2007), whereas the Australia Post (AP) data set (Ernst and Krishnamoorthy,
1996) includes 200 nodes in the postal network of Sydney, Australia. In our experiments, we use instances of different sizes as
N À {25, 50, 75, 100, 150, 200} from the AP data set. We set the values of the parameter ↵ at four levels as: ↵ À {0.2, 0.4, 0.6, 0.8}.
Furthermore, four values are used as the number of open hubs: p À {2, 3, 4, 5}.

We generate a total of S = 10 independent strata for each problem instance. For each stratum s À S, similar to Albareda-
Sambola et al. (2019), we go through the following steps to determine the O/D pairs which are included in that stratum. First, a
random number ⇠s

ij
À (0, 1) is generated for each (i, j) À A and s À S. Then we generate another random number q

s À [0, 1). If
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Table 1
Results for the Stratified p-hub center problem with the CAB data set.
p ↵ Opt Hubs MILP BD1 BD2

CPU(s) CPU(s) # cuts CPU(s) # cuts

2 0.2 2021.47 5, 22 262.07 0.10 14 0.11 100
0.4 2331.78 5, 8 211.10 0.04 11 0.06 120
0.6 2531.47 8, 21 125.91 0.03 12 0.04 80
0.8 2663.28 6, 8 113.91 0.03 18 0.03 103

3 0.2 1758.90 9, 16, 22 286.71 0.05 28 0.09 261
0.4 2022.50 5, 12, 23 311.23 0.08 27 0.07 160
0.6 2239.26 8, 20, 24 291.91 0.05 28 0.04 143
0.8 2499.39 6, 8, 24 90.94 0.05 34 0.06 183

4 0.2 1601.98 12, 13, 23, 25 352.02 0.09 45 0.15 249
0.4 1768.61 9, 12, 16, 23 335.25 0.05 34 0.09 314
0.6 2102.38 12, 16, 20, 23 314.08 0.06 48 0.07 290
0.8 2420.21 6, 8, 23, 24 237.20 0.06 51 0.05 230

5 0.2 1283.80 11, 12, 23, 24, 25 301.26 0.08 48 0.07 152
0.4 1596.65 11, 12, 14, 18, 23 314.48 0.07 50 0.11 267
0.6 1909.05 1, 18, 19, 22, 23 212.39 0.05 41 0.09 279
0.8 2270.80 6, 12, 22, 23, 24 72.53 0.03 25 0.03 135

Average 239.56 0.06 0.07

q
s
< ⇠

s

ij
, we set (i, j) À A

s and otherwise, (i, j) Ã A
s. Furthermore, if (i, j) À A

s, the corresponding traffic volume t
s

ij
is set to be

the same as the associated traffic value in the original demand matrix of the respective data sets. The traffic values (ts
ij
) are then

scaled in such a way that the sum of traffic associated with each stratum equals 1. We assume that the corresponding weights for
the strata are equal (i.e., the weight of each stratum is 1/10). For the maximal covering problem, the covering radius �s

ij
is set as

�
s

ij
= 500 + 100s,≈(i, j) À A

s and s = 1,… , 10 for the CAB data set. For the TR and the AP data sets, the corresponding values are
�
s

ij
= 500 + 50s and �

s

ij
= 2000 + 2000s, respectively. We use the value of parameter ! as 0.5 in the proposed two-phase procedure

for solving the subproblems in all of our experiments.
The proposed mathematical models as well as the Benders algorithms are coded in JAVA and are solved by CPLEX version 12.10.

All the experiments have been run on a computer with Intel(R) Core(TM) i3-3220 CPU of 3.30 GHz and 16 GB of RAM, using the
Microsoft Windows 7 operating system. The Benders algorithm is implemented within a branch-and-cut framework, where the
master problem is solved on a single tree and the optimality cuts are added one at a time using the lazy constraint callback function
available in CPLEX. The time limit of five hours is used in our experiments.

5.2.1. Results for SpHCP
Table 1 shows the results obtained by solving the stratified p-hub center problem with the CAB data set. The number of hubs and

the value of the discount factor are presented in the columns entitled p and ↵, respectively. The next two columns show the optimal
objective function value and the set of opened hubs. The next columns show the solution results for the MILP model and the two
Benders decomposition algorithms proposed for solving the stratified p-hub center problem. In the first Benders algorithm (BD1),
we add a single cut at a time to the master problem as in MP1-SpHCP. The second algorithm (BD2) uses the cut disaggregation
scheme and adds S cuts at a time to the MP as in MP2-SpHCP. The computational efficiency of different solution approaches
can be compared in terms of solution times which are presented (in seconds) for each solution method in the columns labeled as
‘‘CPU(s)". The number of Benders cuts added in BD1 and BD2 until the optimal solution or the best solution obtained within the
time limit is presented in the columns labeled as ‘‘# cuts". The cuts are added whenever an incumbent solution is found and the cut
pool is managed by the solver. The results reported in Table 1 show that the proposed BD algorithms are capable of obtaining the
optimal solution for all the CAB instances in a fraction of a second, whereas the average time taken by CPLEX to solve the MILP
models is around 240 s. As expected, for a fixed value of p, as the value of the discount factor (↵) increases, the optimal objective
value increases; and for a given value of the discount factor, as p increases the longest transportation time decreases.

Table 2 shows the results obtained by solving the stratified p-hub center problem with the TR data set. Due to the large size of the
instances in the TR data set, the MILP model could not be solved using the standard solver due to excessive memory requirements.
This is indicated by the word ‘‘Memory" in Table 2. Nevertheless, as can be observed, both of the proposed Benders algorithms solve
the instances in short computational times. The average time spent by the single-cut and multi-cut algorithms are around 10 and
20 s, respectively.

In order to present the solution results for the AP data set, we divide the corresponding instances into three groups based on
their sizes. The instances with 25 and 50 nodes (N = 25 and 50) are grouped together and called small instances. The instances of
75 and 100 nodes are categorized as medium instances and the ones with 150 and 200 nodes are called large instances. The results
obtained by solving the stratified p-hub center problem for the small instances of the AP data set are reported in Table 3. Note that
only two of the instances with 50 nodes could be solved using the standard solver within the allowed time limit of 5 h. For the
instances not solved within the time limit we present the gap percentage between the corresponding upper and lower bounds which
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Table 2
Results for the Stratified p-hub center problem with the TR data set.
p ↵ Opt Hubs MILP BD1 BD2

CPU(s) CPU(s) # cuts CPU(s) # cuts

2 0.2 1394.50 26, 62 Memory 0.34 28 0.34 210
0.4 1534.20 12, 26 Memory 0.10 22 0.19 229
0.6 1685.60 6, 49 Memory 0.11 21 0.10 130
0.8 1839.06 6, 56 Memory 0.06 16 0.16 170

3 0.2 1245.84 4, 26, 58 Memory 1.33 85 3.70 519
0.4 1416.00 3, 12, 81 Memory 1.20 103 2.55 489
0.6 1572.90 12, 20, 41 Memory 0.43 58 0.88 315
0.8 1778.22 3, 34, 49 Memory 0.33 62 0.56 326

4 0.2 1110.22 4, 20, 41, 58 Memory 8.80 128 29.59 755
0.4 1274.94 3, 49, 59, 60 Memory 5.23 127 10.96 658
0.6 1464.18 3, 25, 59, 73 Memory 1.33 65 1.90 330
0.8 1721.90 25, 34, 64, 73 Memory 1.01 98 0.73 412

5 0.2 1016.08 13, 29, 38, 41, 64 Memory 113.55 295 216.43 1210
0.4 1184.40 3, 25, 40, 56, 59 Memory 22.76 149 50.04 1247
0.6 1417.32 3, 12, 24, 59, 73 Memory 5.62 122 8.75 651
0.8 1690.12 13, 24, 30, 59, 64 Memory 2.21 120 1.03 344

Average – 10.27 20.49

Table 3
Results for the Stratified p-hub center problem with the AP data set (small instances).
N p ↵ Opt Hubs MILP BD1 BD2

CPU(s) CPU(s) # cuts CPU(s) # cuts

25 2 0.2 45030.60 4, 16 246.42 0.07 20 0.07 118
0.4 46956.24 4, 16 222.65 0.03 14 0.04 109
0.6 47940.87 5, 12 122.52 0.03 14 0.04 80
0.8 50594.43 5, 12 70.82 0.03 12 0.05 70

3 0.2 40090.01 5, 8, 22 326.93 0.08 41 0.11 236
0.4 40970.84 5, 8, 11 258.74 0.05 29 0.08 196
0.6 42504.02 5, 7, 16 183.90 0.04 22 0.05 139
0.8 46269.52 5, 8, 21 126.35 0.03 18 0.03 65

4 0.2 32561.90 2, 5, 9, 16 321.60 0.08 46 0.13 215
0.4 35292.80 2, 5, 13, 21 262.67 0.06 34 0.07 180
0.6 38414.38 5, 7, 13, 21 218.48 0.04 35 0.06 194
0.8 45168.19 5, 7, 17, 21 196.31 0.03 30 0.04 105

5 0.2 29452.84 2, 5, 12, 14, 21 314.87 0.14 70 0.18 363
0.4 32165.65 2, 5, 13, 16, 21 224.79 0.08 51 0.13 315
0.6 36455.32 5, 7, 13, 17, 21 209.25 0.06 43 0.09 217
0.8 44337.62 2, 5, 7, 13, 21 150.78 0.04 34 0.03 73

50 2 0.2 55372.11 7, 32 5h (17.28%) 0.06 23 0.07 163
0.4 56953.47 7, 22 5h (10.20%) 0.05 26 0.05 168
0.6 58610.88 8, 12 5h (8.02%) 0.04 27 0.05 159
0.8 60600.83 10, 13 11949.55 0.03 22 0.03 144

3 0.2 45240.18 4, 8, 44 5h (20.01%) 0.11 45 0.20 325
0.4 50425.81 1, 8, 31 5h (16.77%) 0.14 65 0.23 300
0.6 53998.03 3, 8, 31 5h (8.39%) 0.15 70 0.18 387
0.8 55631.54 10, 14, 42 15793.94 0.08 24 0.03 118

4 0.2 39119.77 4, 9, 28, 31 5h (21.13%) 0.31 63 0.23 260
0.4 44593.45 4, 9, 27, 31 5h (18.50%) 0.26 57 0.59 333
0.6 48203.68 1, 10, 15, 42 5h (7.67%) 0.15 63 0.11 200
0.8 54440.88 3, 10, 16, 42 5h (2.57%) 0.11 58 0.09 257

5 0.2 32591.50 1, 4, 9, 28, 31 5h (31.68%) 0.23 47 0.25 257
0.4 39729.18 1, 4, 9, 25, 42 5h (14.22%) 0.34 63 0.51 407
0.6 45657.90 1, 4, 10, 18, 42 5h (9.07%) 0.23 75 0.22 364
0.8 52677.18 1, 10, 16, 41, 42 10963.22 0.08 31 0.06 175

Average > 8630.12 0.10 0.13

are reported by the solver. From a solution time perspective we can observe that both Benders algorithms solved the instances in a
fraction of a second.

Table 4 gives the solution results for the stratified p-hub center problem with the medium size AP instances. The MILP model
could not be solved for any of these instances due to excessive memory requirements. Nevertheless, the instances were solved within
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Table 4
Results for the Stratified p-hub center problem with the AP data set (medium instances).
N p ↵ Opt Hubs MILP BD1 BD2

CPU(s) CPU(s) # cuts CPU(s) # cuts

75 2 0.2 56500.54 9, 65 Memory 0.07 18 0.07 127
0.4 58494.80 9, 32 Memory 0.06 24 0.11 170
0.6 59571.38 10, 32 Memory 0.06 16 0.08 133
0.8 62688.18 10, 32 Memory 0.05 17 0.07 159

3 0.2 46423.53 7, 11, 64 Memory 0.18 44 0.33 337
0.4 51604.40 7, 28, 46 Memory 0.25 67 0.29 280
0.6 55390.18 5, 11, 46 Memory 0.29 57 0.34 295
0.8 58032.33 13, 21, 62 Memory 0.10 38 0.15 298

4 0.2 40222.47 7, 12, 38, 46 Memory 0.43 59 0.69 400
0.4 46847.82 7, 12, 39, 46 Memory 0.68 82 1.47 442
0.6 52105.90 4, 13, 39, 46 Memory 1.07 125 3.16 620
0.8 56045.86 5, 11, 15, 62 Memory 0.19 52 0.23 247

5 0.2 37845.95 2, 7, 12, 41, 64 Memory 2.38 109 5.17 605
0.4 42981.91 1, 7, 12, 39, 46 Memory 2.43 136 3.28 662
0.6 47384.35 1, 7, 13, 36, 62 Memory 0.79 114 1.10 513
0.8 55474.73 4, 12, 15, 22, 62 Memory 0.65 116 0.45 336

100 2 0.2 57204.35 13, 44 Memory 0.14 27 0.26 242
0.4 58614.65 14, 23 Memory 0.13 27 0.20 187
0.6 60707.28 14, 22 Memory 0.12 26 0.18 226
0.8 63769.69 17, 23 Memory 0.09 24 0.17 251

3 0.2 46214.74 5, 16, 62 Memory 0.41 50 0.69 279
0.4 50688.61 5, 16, 62 Memory 0.65 64 0.82 350
0.6 55418.50 6, 16, 61 Memory 0.55 82 0.97 471
0.8 58519.51 11, 18, 83 Memory 0.27 56 0.20 213

4 0.2 38064.22 5, 17, 61, 77 Memory 0.73 72 1.04 353
0.4 44098.90 5, 17, 61, 77 Memory 0.86 81 0.74 365
0.6 50177.12 5, 19, 32, 61 Memory 0.85 97 1.18 263
0.8 56688.72 5, 18, 31, 83 Memory 0.64 106 0.53 336

5 0.2 35538.00 5, 17, 37, 61, 69 Memory 3.19 112 6.70 428
0.4 41111.43 5, 18, 37, 61, 69 Memory 2.86 104 3.97 602
0.6 47936.05 2, 12, 18, 46, 83 Memory 4.91 121 3.82 476
0.8 55633.68 4, 18, 20, 36, 82 Memory 1.09 108 0.80 319

Average – 0.85 1.23

quite short computation times using the proposed Benders algorithms. The solution times for BD1 are much smaller than those of
BD2. Note that the maximum solution times for the instances with 100 nodes are less than 5 and 7 s by using BD1 and BD2,
respectively. This indicates the high efficiency of the proposed algorithms.

Table 5 presents the solution results for the stratified p-hub center problem with the large size AP instances. As can be seen from
these results, the solution times of BD1 and BD2 are very small for solving such large-scale instances of the problem, with average
computational times of around 7 and 14 s, respectively. Although both the algorithms are highly efficient, the results indicate the
superiority of BD1 over BD2.

5.2.2. Results for SpHMCP
Table 6 presents the results for solving the stratified p-hub maximal covering problem with the CAB data set. Here, the objective

function value shows the average percentage of the covered demand over all strata. We present the results for both the mathematical
formulations MILP1 and MILP2 and also the proposed Benders algorithms BD1 and BD2. According to the reformulations presented
in Section 4.2, the first Benders algorithm (BD1) adds a single cut at a time to the master problem as in MP1-SpHMCP, while the
second algorithm (BD2) adds N cuts at a time to the MP as in MP2-SpHMCP.

Table 6 shows that the proposed solution algorithms solve all the instances of the CAB data set in a small fraction of a second,
while the average time taken by CPLEX to solve the MILP1 models is around 6 s and 0.7 s, respectively. The superiority of the MILP2
formulation over the MILP1 model stems from the fact that MILP2 is a more compact model in terms of the number of variables
compared to MILP1. As expected, for a given number of the opened hubs p, as the value of the discount factor (↵) increases (i.e., as
the inter-hub speed decreases), the optimal objective value decreases. This is because larger values of ↵ result in increased travel
time between the O/D pairs and hence, decrease the percentage of the covered traffic. On the other hand, for a fixed value of the
discount factor (inter-hub speed), the total covered traffic increases as the number of opened hubs (p) gets larger.

Solution results for the stratified p-hub maximal covering problem with the TR data set are given in Table 7. Note that the MILP1
model could not be solved using the standard solver due to excessive memory requirements for the instances in the TR data set.
However, the MILP2 model has solved all the instances of the TR data set within an average computational time of around 1000 s.
The solution times for the proposed Benders algorithms, on the other hand, are quite short for such a realistic data set. Results also
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Table 5
Results for the Stratified p-hub center problem with the AP data set (large instances).
N p ↵ Opt Hubs MILP BD1 BD2

CPU(s) CPU(s) # cuts CPU(s) # cuts

150 2 0.2 59743.84 15, 97 Memory 0.40 38 0.44 250
0.4 61399.95 17, 64 Memory 0.28 37 0.40 256
0.6 63211.06 17, 62 Memory 0.31 41 0.20 200
0.8 66647.16 18, 122 Memory 0.23 36 0.19 230

3 0.2 48548.05 5, 23, 97 Memory 1.03 56 2.82 323
0.4 53722.77 5, 24, 92 Memory 0.93 53 2.13 413
0.6 58526.66 7, 25, 92 Memory 1.16 88 2.22 486
0.8 62052.84 27, 37, 122 Memory 0.38 48 0.25 227

4 0.2 39572.61 5, 25, 79, 91 Memory 1.44 82 3.56 389
0.4 46183.92 5, 26, 78, 91 Memory 1.49 52 2.07 352
0.6 52432.26 5, 27, 47, 91 Memory 1.62 97 1.61 436
0.8 60273.13 25, 29, 38, 122 Memory 0.60 48 0.49 232

5 0.2 37626.47 5, 30, 56, 91, 113 Memory 18.20 147 32.04 800
0.4 42710.96 5, 26, 68, 84, 91 Memory 4.57 99 11.49 854
0.6 50415.59 5, 27, 36, 56, 123 Memory 4.17 130 3.29 482
0.8 59346.63 5, 21, 29, 91, 121 Memory 1.87 111 1.19 310

200 2 0.2 60598.53 25, 130 Memory 0.73 50 1.04 345
0.4 62743.37 25, 89 Memory 0.59 46 0.70 315
0.6 64371.97 25, 122 Memory 0.55 48 0.54 288
0.8 67288.71 26, 166 Memory 0.39 40 0.38 256

3 0.2 49262.34 7, 34, 127 Memory 2.70 49 5.61 409
0.4 54542.59 10, 34, 87 Memory 4.23 112 6.49 642
0.6 59851.02 7, 32, 124 Memory 4.60 98 6.87 520
0.8 62894.27 37, 53, 165 Memory 0.93 63 0.72 294

4 0.2 39977.96 7, 35, 105, 122 Memory 6.06 92 11.36 593
0.4 47422.09 7, 40, 111, 122 Memory 5.29 103 14.36 561
0.6 54021.80 7, 36, 104, 121 Memory 4.94 77 5.30 629
0.8 61181.20 7, 31, 39, 165 Memory 1.80 98 1.23 343

5 0.2 38157.49 7, 40, 73, 122, 199 Memory 69.21 180 204.78 880
0.4 44534.99 7, 36, 96, 114, 121 Memory 24.10 174 41.73 579
0.6 51930.78 7, 36, 88, 111, 165 Memory 52.51 212 85.89 1005
0.8 60120.64 4, 33, 39, 55, 163 Memory 5.53 162 1.77 325

Average – 6.96 14.16

Table 6
Results for the Stratified p-hub maximal covering problem with the CAB data set.
p ↵ Opt Hubs MILP1 MILP2 BD1 BD2

CPU(s) CPU(s) CPU(s) # cuts CPU(s) # cuts

2 0.2 56.70% 2, 21 21.05 0.38 0.60 42 0.43 271
0.4 54.15% 18, 21 6.41 0.28 0.16 37 0.11 270
0.6 53.12% 2, 4 2.41 0.09 0.08 20 0.08 165
0.8 52.15% 2, 4 2.78 0.04 0.07 23 0.06 120

3 0.2 73.85% 12, 17, 21 5.54 1.28 0.16 42 0.15 253
0.4 65.71% 2, 4, 12 5.01 1.66 0.16 48 0.08 245
0.6 60.49% 4, 12, 17 6.68 0.33 0.14 45 0.08 250
0.8 58.26% 2, 4, 12 2.62 0.39 0.10 31 0.04 135

4 0.2 84.36% 12, 18, 21, 24 9.44 1.45 0.21 49 0.14 336
0.4 74.96% 2, 4, 12, 14 5.58 0.86 0.22 55 0.15 308
0.6 67.13% 4, 12, 17, 24 5.70 0.60 0.41 78 0.10 296
0.8 63.76% 1, 4, 12, 17 2.26 0.13 0.13 36 0.03 140

5 0.2 89.75% 4, 7, 12, 17, 24 7.05 2.02 0.27 63 0.13 347
0.4 81.91% 2, 4, 7, 12, 14 2.94 0.74 0.19 46 0.05 176
0.6 72.98% 4, 7, 12, 14, 18 4.74 0.38 0.23 56 0.06 170
0.8 67.39% 4, 7, 12, 14, 17 2.08 0.13 0.16 44 0.04 142

Average 5.77 0.67 0.20 0.11

show that the average time spent by the multi-cut algorithm (BD2) is less than the average time for the single-cut algorithm (BD1).

Table 8 reports the results for solving the stratified p-hub maximal covering problem with the small instances of the AP data set.
The MILP1 and MILP2 models are solved by CPLEX within the average CPU time of around 82 and 6 s, respectively. However, the
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Table 7
Results for the Stratified p-hub maximal covering problem with the TR data set.
p ↵ Opt Hubs MILP1 MILP2 BD1 BD2

CPU(s) CPU(s) CPU(s) # cuts CPU(s) # cuts

2 0.2 53.23% 38, 41 Memory 709.23 29.60 117 12.75 3608
0.4 46.78% 38, 41 Memory 139.71 21.24 98 6.69 2838
0.6 43.15% 41, 68 Memory 49.54 12.85 67 3.12 1449
0.8 41.20% 41, 68 Memory 11.13 6.68 38 1.90 775

3 0.2 67.20% 12, 41, 68 Memory 1682.60 133.52 645 96.12 13720
0.4 57.43% 41, 46, 71 Memory 876.58 94.18 579 43.17 9294
0.6 52.07% 6, 41, 46 Memory 119.04 41.11 289 11.98 4537
0.8 48.22% 6, 41, 46 Memory 24.79 18.70 143 2.96 1328

4 0.2 79.16% 3, 27, 41, 60 Memory 2895.89 281.89 1143 355.64 15695
0.4 67.71% 3, 41, 60, 80 Memory 1393.43 166.24 886 106.94 9391
0.6 58.48% 1, 3, 41, 60 Memory 349.34 126.43 819 40.88 7202
0.8 53.75% 1, 3, 41, 60 Memory 37.90 37.82 273 5.48 1841

5 0.2 88.50% 12, 19, 41, 64, 80 Memory 5819.73 514.01 1203 541.20 9702
0.4 75.19% 3, 12, 19, 41, 80 Memory 1604.32 591.53 1804 349.46 11794
0.6 63.72% 1, 3, 19, 21, 41 Memory 520.54 426.50 1725 190.37 10677
0.8 57.25% 1, 3, 21, 41, 60 Memory 39.86 105.29 572 11.74 2575

Average – 1017.10 162.97 111.28

Table 8
Results for the Stratified p-hub maximal covering problem with the AP data set (small instances).
N p ↵ Opt Hubs MILP1 MILP2 BD1 BD2

CPU(s) CPU(s) CPU(s) # cuts CPU(s) # cuts

25 2 0.2 37.37% 8, 18 2.75 1.34 0.37 18 0.17 127
0.4 34.38% 8, 18 2.48 0.09 0.13 22 0.10 104
0.6 32.53% 8, 18 2.10 0.04 0.07 21 0.14 147
0.8 31.80% 8, 18 1.86 0.03 0.05 15 0.08 90

3 0.2 44.51% 7, 18, 20 15.15 1.45 0.24 84 0.27 300
0.4 40.43% 8, 18, 20 4.24 0.36 0.12 57 0.10 211
0.6 37.60% 8, 16, 18 2.29 0.10 0.12 57 0.08 160
0.8 36.14% 8, 16, 18 1.87 0.03 0.20 32 0.05 94

4 0.2 51.68% 2, 7, 14, 18 10.32 1.82 0.42 157 0.21 337
0.4 46.52% 8, 16, 18, 20 2.45 0.29 0.18 80 0.06 168
0.6 41.52% 8, 16, 18, 20 2.79 0.23 0.21 97 0.06 187
0.8 38.60% 8, 14, 16, 18 2.03 0.16 0.32 95 0.06 149

5 0.2 58.75% 2, 8, 15, 16, 18 8.32 0.88 0.51 151 0.11 306
0.4 51.57% 2, 8, 16, 18, 20 2.47 0.23 0.25 92 0.07 125
0.6 44.54% 2, 7, 16, 18, 20 5.92 0.32 0.58 183 0.06 222
0.8 41.00% 2, 7, 14, 16, 18 2.02 0.15 0.43 118 0.04 137

50 2 0.2 37.59% 14, 35 185.26 6.85 0.87 37 0.35 463
0.4 34.75% 16, 35 112.24 1.97 0.74 34 0.26 356
0.6 32.98% 16, 35 85.58 0.71 0.76 37 0.27 309
0.8 32.34% 15, 35 56.58 0.33 0.40 20 0.22 247

3 0.2 44.48% 14, 29, 35 223.09 19.36 4.09 178 0.73 869
0.4 39.85% 16, 33, 35 206.44 4.13 3.78 181 0.59 779
0.6 37.53% 16, 33, 35 132.24 1.59 1.88 97 0.34 457
0.8 36.08% 15, 32, 35 102.77 0.54 1.23 67 0.23 318

4 0.2 50.92% 14, 29, 32, 35 183.44 18.77 8.16 314 0.82 748
0.4 44.75% 14, 27, 33, 35 155.79 9.95 7.15 320 0.74 789
0.6 41.12% 14, 28, 33, 35 73.52 1.66 4.01 199 0.43 524
0.8 38.96% 14, 27, 32, 35 43.95 0.59 2.67 142 0.25 343

5 0.2 54.54% 4, 15, 29, 32, 35 312.69 72.38 43.39 1170 1.90 1104
0.4 47.37% 14, 25, 29, 33, 35 402.36 29.97 54.15 1669 2.08 1229
0.6 43.26% 14, 18, 33, 35, 38 143.76 9.84 16.62 735 1.10 998
0.8 40.41% 14, 18, 33, 35, 38 149.17 4.63 10.78 503 0.58 552

Average 82.43 5.96 5.15 0.39

proposed solution algorithms solve the corresponding instances in much smaller time. The average solution time for BD1 is around
5 s, while BD2 solves the problems in less than half of a second on average.

The results for the stratified p-hub maximal covering problem with the medium instances of the AP data set are shown in Table 9.
The MILP1 model was not solved by CPLEX due to high memory requirements. However, the MILP2 model was able to solve all the
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Table 9
Results for the Stratified p-hub maximal covering problem with the AP data set (medium instances).
N p ↵ Opt Hubs MILP1 MILP2 BD1 BD2

CPU(s) CPU(s) CPU(s) # cuts CPU(s) # cuts

75 2 0.2 35.97% 22, 52 Memory 18.12 5.78 55 1.45 711
0.4 33.23% 22, 52 Memory 3.53 4.25 43 1.21 695
0.6 31.84% 22, 52 Memory 1.98 3.38 36 0.88 524
0.8 31.17% 22, 52 Memory 0.82 2.48 25 0.60 289

3 0.2 42.59% 21, 41, 52 Memory 282.80 31.61 311 4.05 1741
0.4 38.29% 22, 48, 52 Memory 88.73 24.84 273 4.35 2141
0.6 36.15% 22, 48, 52 Memory 9.24 14.58 168 2.40 1154
0.8 34.98% 22, 48, 52 Memory 3.33 7.53 92 1.02 514

4 0.2 49.01% 21, 41, 48, 52 Memory 460.93 74.37 701 6.86 2374
0.4 43.49% 21, 41, 48, 52 Memory 68.36 44.52 472 3.56 1604
0.6 39.81% 21, 39, 48, 52 Memory 24.53 35.49 405 3.24 1416
0.8 38.10% 21, 39, 48, 52 Memory 3.63 14.10 169 1.45 621

5 0.2 53.27% 5, 22, 42, 48, 52 Memory 751.48 278.37 1869 17.07 3686
0.4 46.39% 5, 22, 41, 48, 52 Memory 232.33 215.72 1794 11.23 2752
0.6 41.93% 5, 23, 48, 52, 57 Memory 132.42 189.46 1794 10.71 2704
0.8 39.66% 21, 39, 48, 52, 55 Memory 13.80 66.07 736 2.75 1187

100 2 0.2 37.89% 30, 70 Memory 386.41 19.81 63 5.53 1268
0.4 35.38% 28, 70 Memory 25.01 13.69 45 4.68 1055
0.6 33.71% 28, 70 Memory 4.22 8.33 30 3.10 669
0.8 32.94% 30, 70 Memory 8.08 6.90 22 2.28 413

3 0.2 45.45% 28, 56, 70 Memory 1068.33 91.81 299 13.98 2820
0.4 41.09% 28, 56, 70 Memory 384.19 75.62 268 11.13 2444
0.6 37.95% 28, 63, 70 Memory 103.24 79.88 295 6.98 1760
0.8 36.52% 28, 63, 70 Memory 12.66 39.55 150 3.93 884

4 0.2 51.88% 28, 56, 63, 70 Memory 2022.99 211.91 667 22.52 3821
0.4 46.43% 28, 56, 63, 70 Memory 285.32 119.79 423 11.41 2306
0.6 42.22% 28, 56, 63, 70 Memory 67.10 104.85 396 7.52 1542
0.8 39.80% 28, 56, 63, 70 Memory 10.70 75.44 295 4.24 932

5 0.2 54.66% 7, 30, 57, 63, 70 Memory 9898.00 4662.63 6329 152.47 8877
0.4 48.76% 28, 56, 63, 70, 75 Memory 1969.23 1308.14 3223 43.45 4352
0.6 44.21% 28, 50, 63, 70, 78 Memory 567.10 758.86 2323 31.48 4454
0.8 41.55% 28, 54, 63, 70, 75 Memory 35.18 269.58 980 9.02 1737

Average – 591.99 276.85 12.70

instances within an average CPU time of less than 10 min. The solution time for the proposed Benders algorithms are quite small.
The average solution time for BD1 is less than 5 min, while BD2 has solved the medium instances in less than 13 s on average.

Finally, Table 10 presents the results obtained by solving the stratified p-hub maximal covering problem with the large instances
of the AP data set. MILP2 was able to solve only 15 out of 32 instances within the allowed solution time of 5 h. For these instances,
the gap percentages between the upper and lower bounds are reported. In one instance (N = 200, p = 2, and ↵ = 0.2) CPLEX
could not even find an integer feasible solution within 5 h. BD1 was not able to solve 4 out of 32 instances within the allowed CPU
time of 5 h. BD2, in contrast, was able to solve all the large instances within an average solution time of around 10 min.

5.2.3. Results with larger values of p
In order to test the efficiency of the proposed BD algorithms, we solve instances with larger numbers of opened hubs (p = 6,

8, and 10) from the CAB, TR and AP (N = 100) data sets. Table 11 presents the results with these larger values of p. In these
experiments, we have removed the limit of 5 h on the solution times.

The results in Table 11 show that the solution times for instances with large values of p are reasonable (less than 5000 s on
average), but are significantly larger than the corresponding solution times for the instances with smaller values of p. This is mainly
due to the fact that by increasing the value of p, the number of feasible solutions to the problems increases exponentially. For
instance, the number of feasible solutions for the instances of the AP data set (N = 100) with p = 5 is

�100
5
�

, where this number
increases to

�100
10
�

when p is set to 10, which is around (23 ù104) times the earlier value (i.e.,
�100
10
�

Ù 23 ù 104 ù
�100

5
�

).

5.2.4. Comparison to hierarchical hub solutions
This section provides a comparison of stratified hub center and stratified maximal covering solutions to hierarchical hub solutions.

The hierarchical hub networks (e.g., Lin and Chen (2004), Yaman (2009), Korani and Sahraeian (2013), Ghaffarinasab (2020b))
use several layers of hubs that are used to connect the network for the O/D demands. The hierarchical hub location problem has
been introduced in Yaman (2009) with two levels of hubs to capture this characteristic. Here, we present the results for solving the
hierarchical p-hub center and hierarchical p-hub maximal covering problems, which have been extended from the models proposed
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Table 10
Results for the Stratified p-hub maximal covering problem with the AP data set (large instances).
N p ↵ Opt Hubs MILP1 MILP2 BD1 BD2

CPU(s) CPU(s) CPU(s) # cuts CPU(s) # cuts

150 2 0.2 38.02% 38, 100 Memory 10178.69 105.92 71 32.05 2095
0.4 35.40% 38, 100 Memory 1210.95 68.42 49 22.76 1634
0.6 33.81% 38, 100 Memory 420.95 37.57 27 13.05 962
0.8 32.83% 38, 100 Memory 82.93 23.18 17 19.35 854

3 0.2 44.92% 38, 82, 100 Memory 5h (751.40%) 617.10 424 85.25 5412
0.4 40.70% 38, 93, 100 Memory 4506.51 468.15 350 54.86 4290
0.6 38.15% 38, 93, 101 Memory 1046.63 187.09 149 29.25 2193
0.8 36.40% 38, 93, 100 Memory 128.60 143.60 115 19.46 1294

4 0.2 51.17% 38, 82, 94, 101 Memory 5h (568.57%) 1596.57 1065 149.36 8431
0.4 45.91% 38, 81, 93, 101 Memory 10344.22 842.20 630 57.16 4131
0.6 41.97% 38, 81, 93, 101 Memory 5312.82 507.49 402 48.17 3452
0.8 39.49% 38, 79, 93, 100 Memory 160.70 331.69 270 29.38 1930

5 0.2 54.67% 7, 41, 83, 94, 100 Memory 5h (495.64%) 12870.98 5010 347.62 9372
0.4 48.33% 38, 69, 83, 93, 100 Memory 5h (1.26%) 7886.78 4352 323.85 10703
0.6 43.76% 38, 81, 93, 100, 109 Memory 13373.28 5308.92 3654 266.28 11870
0.8 40.96% 38, 49, 93, 100, 110 Memory 516.45 2401.09 1826 75.08 4272

200 2 0.2 36.95% 57, 140 Memory 5h (-) 774.16 175 198.57 5494
0.4 34.55% 57, 140 Memory 5h (696.65%) 563.68 137 172.19 4665
0.6 33.14% 61, 140 Memory 5212.38 350.69 87 84.89 2584
0.8 32.52% 61, 140 Memory 579.02 159.89 38 53.10 1186

3 0.2 44.24% 57, 111, 140 Memory 5h (769.84%) 4091.42 945 432.70 11271
0.4 39.96% 57, 111, 140 Memory 5h (652.61%) 3246.15 817 304.92 9343
0.6 37.24% 56, 129, 140 Memory 5h (246.61%) 2479.47 656 233.55 6896
0.8 35.87% 57, 128, 140 Memory 1987.53 1412.99 384 124.32 3420

4 0.2 50.30% 57, 111, 128, 140 Memory 5h (587.79%) 14305.86 2968 1032.79 18001
0.4 45.15% 57, 111, 128, 140 Memory 5h (498.38%) 6524.56 1528 337.04 8117
0.6 41.32% 57, 109, 130, 141 Memory 5h (400.04%) 4308.15 1075 195.36 5886
0.8 39.12% 56, 109, 128, 140 Memory 1251.14 2626.21 684 89.56 2607

5 0.2 53.58% 56, 90, 111, 132, 141 Memory 5h (519.99%) 5h (8.76%) – 10645.59 29723
0.4 47.61% 56, 102, 113, 128, 140 Memory 5h (440.17%) 5h (6.29%) – 3016.43 18721
0.6 43.32% 57, 99, 130, 141, 155 Memory 5h (352.09%) 5h (4.09%) – 1014.88 14298
0.8 40.61% 57, 69, 128, 140, 148 Memory 5h (0.34%) 5h (1.71%) – 482.01 8052

Average – > 10759.77 > 5132.50 624.71

Table 11
Results for the Stratified p-hub center and maximal covering problems with large values of p.
p ↵ SpHCP SpHMCP

CAB TR AP (N = 100) CAB TR AP (N = 100)

Opt CPU(s) Opt CPU(s) Opt CPU(s) Opt CPU(s) Opt CPU(s) Opt CPU(s)

6 0.2 1210.68 0.27 921.14 400.93 33437.01 41.39 93.22% 0.169 93.07% 656.76 57.48% 966.36
0.4 1449.33 0.18 1134.88 109.33 38163.14 15.56 84.50% 0.135 80.81% 485.13 50.93% 172.52
0.6 1812.65 0.10 1369.96 14.34 45323.10 5.15 75.16% 0.117 68.23% 134.88 45.90% 47.82
0.8 2204.10 0.06 1660.22 1.75 54898.89 1.15 69.55% 0.063 59.41% 46.12 42.78% 9.05

8 0.2 1029.77 0.32 805.82 3749.46 27928.61 652.26 96.59% 0.248 96.64% 9189.30 62.47% 16301.98
0.4 1273.97 0.13 1052.72 1096.41 34170.08 158.96 88.30% 0.147 85.96% 3578.18 54.89% 1508.91
0.6 1682.17 0.07 1311.62 109.86 42806.35 19.05 78.43% 0.238 72.26% 2981.14 48.90% 492.45
0.8 2156.39 0.04 1621.94 2.29 54170.03 2.21 71.87% 0.073 62.33% 252.22 44.84% 70.55

10 0.2 810.55 0.31 750.94 28864.26 24413.65 2109.47 98.43% 0.75 98.18% 16146.70 66.96% 15439.24
0.4 1191.39 0.19 1021.40 16524.22 31325.87 106.88 90.65% 0.20 88.97% 14514.67 57.89% 12478.15
0.6 1620.66 0.08 1282.68 2095.50 41458.65 41.89 80.46% 0.27 75.25% 11054.39 51.11% 5026.38
0.8 2141.15 0.02 1613.98 3.28 54040.00 0.27 73.18% 0.12 64.31% 583.62 46.24% 275.91

Average 0.15 4414.30 262.85 0.21 4968.59 4399.11

in Yaman (2009), and we compare these results with those of the corresponding stratified models. The hierarchical network can be
viewed as having three levels of nodes, with demand points at the lowest level, regional hubs in a middle level, and central hubs at
the top level. The hierarchical hub network operates as in Yaman (2009), where each demand point is assigned to a single regional
or central hub, each regional hub is assigned to a single central hub, and the central hubs are connected by a complete network;
and we assume each O/D flow must pass through at least one central hub on its path from the corresponding origin to destination.
We install a total of p, hubs which consists of p0 central hubs and (p* p0) regional hubs. Transportation time between regional and
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Table 12
Results for the hierarchical p-hub center problem with the CAB data set.
p ↵ p0 = 1 p0 = 2 p0 = 3 p0 = 4 p0 = 5

Opt Hubs Opt Hubs Opt Hubs Opt Hubs Opt Hubs

2 0.2 2131.20 21, 22 2079.92 5, 8 – – – – – –
0.4 2501.92 8, 11 2131.20 21, 22 – – – – – –
0.6 2711.09 8, 11 2281.32 21, 22 – – – – – –
0.8 2931.74 8, 11 2402.55 8, 21 – – – – – –

3 0.2 1951.60 5, 19, 23 1760.15 9, 13, 22 1760.15 2, 13, 22 – – – –
0.4 2131.20 12, 21, 23 1923.12 5, 19, 23 1923.12 5, 19, 23 – – – –
0.6 2438.41 8, 18, 24 2049.13 1, 8, 17 2049.13 8, 20, 24 – – – –
0.8 2716.43 11, 22, 23 2231.95 5, 8, 14 2100.47 1, 8, 20 – – – –

4 0.2 1760.15 2, 12, 13, 23 1520.06 11, 22, 24, 25 1467.81 9, 16, 19, 23 1467.81 9, 16, 19, 23 – –
0.4 2009.54 3, 12, 13, 23 1691.14 11, 14, 18, 22 1619.48 9, 16, 19, 23 1619.48 9, 16, 19, 23 – –
0.6 2222.79 7, 12, 23, 25 1915.52 13, 17, 19, 23 1760.15 3, 12, 13, 23 1760.15 3, 12, 13, 23 – –
0.8 2501.92 11, 12, 22, 23 2163.19 5, 8, 14, 23 1959.58 12, 13, 17, 23 1884.84 5, 12, 13, 23 – –

5 0.2 1348.96 11, 12, 18, 23, 24 1284.42 11, 12, 23, 24, 25 1284.42 11, 12, 23, 24, 25 1284.42 11, 12, 18, 23, 24 1284.42 6, 11, 12, 23, 24
0.4 1740.92 7, 12, 14, 23, 25 1389.83 11, 12, 18, 23, 24 1355.41 11, 12, 20, 23, 24 1346.36 11, 12, 23, 20, 24 1346.36 6, 11, 12, 23, 24
0.6 2131.20 12, 19, 21, 22, 23 1777.64 17, 19, 21, 23, 24 1617.20 12, 18, 21, 23, 24 1577.96 8, 9, 12, 16, 23 1443.48 2, 11, 12, 23, 24
0.8 2472.38 11, 12, 21, 22, 23 2081.91 5, 8, 14, 22, 23 1875.03 3, 12, 14, 21, 23 1824.42 7, 12, 14, 23, 25 1599.74 11, 12, 18, 23, 24

Table 13
Results for the hierarchical p-hub maximal covering problem with the CAB data set.
p ↵ p0 = 1 p0 = 2 p0 = 3 p0 = 4 p0 = 5

Opt Hubs Opt Hubs Opt Hubs Opt Hubs Opt Hubs

2 0.2 56.16% 6, 24 61.48% 6, 12 – – – – – –
0.4 54.02% 6, 24 56.70% 6, 24 – – – – – –
0.6 48.48% 14, 20 55.20% 6, 14 – – – – – –
0.8 44.86% 14, 25 54.65% 6, 24 – – – – – –

3 0.2 71.53% 12, 18, 21 75.49% 6, 12, 24 78.59% 12, 13, 17 – – – –
0.4 60.56% 5, 18, 24 67.67% 6, 12, 24 73.05% 12, 18, 21 – – – –
0.6 56.15% 5, 14, 18 60.19% 5, 17, 24 66.20% 6, 13, 14 – – – –
0.8 45.81% 14, 24, 25 56.10% 14, 21, 25 63.92% 6, 13, 24 – – – –

4 0.2 85.44% 12, 14, 18, 21 88.76% 12, 14, 17, 21 90.50% 6, 12, 13, 14 92.31% 11, 12, 24, 25 – –
0.4 67.14% 5, 7, 14, 17 78.10% 5, 12, 14, 17 85.18% 12, 18, 21, 24 86.96% 12, 18, 21, 24 – –
0.6 59.80% 5, 13, 14, 17 68.12% 5, 12, 14, 18 72.72% 12, 17, 21, 24 78.57% 12, 17, 21, 24 – –
0.8 46.93% 6, 14, 17, 21 57.53% 6, 14, 17, 21 66.40% 6, 13, 14, 17 70.99% 12, 14, 17, 21 – –

5 0.2 89.75% 8, 12, 14, 18, 21 93.30% 10, 12, 14, 17, 21 94.90% 7, 12, 14, 18, 21 95.96% 11, 12, 14, 16, 25 95.96% 11, 12, 14, 16, 25
0.4 70.62% 5, 7, 12, 14, 17 85.83% 5, 10, 12, 14, 17 89.28% 5, 7, 12, 14, 17 90.93% 8, 12, 18, 21, 24 91.60% 4, 7, 12, 18, 24
0.6 62.27% 1, 5, 7, 14, 17 71.77% 5, 12, 13, 14, 17 78.33% 5, 10, 12, 14, 18 83.85% 4, 12, 14, 16, 17 86.02% 4, 12, 13, 17, 24
0.8 47.69% 14, 15, 17, 21, 25 58.70% 8, 14, 17, 21, 25 67.85% 6, 10, 13, 14, 17 73.44% 6, 12, 13, 14, 17 79.52% 4, 12, 13, 14, 17

central hubs is discounted by the discount factor ↵, whereas the time decrease between two central hubs is discounted by factor ↵0,
where we set ↵0 =

1
2↵. Thus, the vehicles traveling between two central hubs have average speed 2_(↵⌫), vehicles traveling between

a central hub and regional hub have speed 1_(↵⌫), and vehicles traveling between a demand point and regional hub have speed 1_⌫.
To obtain results for the hierarchical p-hub center and hierarchical p-hub maximal covering problems we modified the formulation
from Yaman (2009) (to reflect these service-oriented objectives) and solved problems for the CAB data set using CPLEX. The results
including the optimal objective function values and opened hubs are presented in Tables 12 and 13. Note that these results are
new to the literature and are based on the model presented in Yaman (2009), but modified to obtain center and maximal covering
versions. The central hubs are shown in boldface in Tables 12 and 13.

Pairwise comparison of solutions for the same values of p and ↵ in Table 1 for the SpHCP and in Table 12 for the hierarchical
p-hub center problem shows that while the objective function value is larger in the hierarchical solutions with one central hub (as
expected due to the extra travel with the 2 layers of hubs), the optimal hub locations can be quite similar. The average pairwise
similarity of hub locations is 48.6%. Pairwise similarity is the fraction of hubs in Table 12 that are also a hub for the corresponding
instance in Table 1. The central hubs in Table 12 are also often used as hubs in the non-hierarchical problem (Table 1), as the
average similarity for central hubs is 37.6% (here, similarity is the fraction of the central hubs in Table 12 that are also a hub for
the corresponding instance in Table 1). The similarity for the hubs decreases with ↵ from 54.6% for ↵ = 0.2 to 38% for ↵ = 0.8.
The similarity for the central hubs also decreases with ↵ from 47.3% for ↵ = 0.2 to 29.9% for ↵ = 0.8. Results also show that as the
number of central hubs increases, the travel times decrease because of reduced travel time between central hubs; and having two
or more central hubs is enough to provide a lower objective value in the hierarchical hub problems, except when ↵ = 0.2.

Pairwise comparison of solutions for the same values of p and ↵ in Table 6 for the SpMHCP and in Table 13 for the hierarchical
p-hub maximal covering problem shows the same pattern of results as the comparison of results in Tables 1 and 12, although the
similarities are about one-third smaller. For example, the average pairwise similarity of hub locations for the maximal covering
problems is 31.4% vs. 48.6% for the hub center problems. In summary, there is considerable similarity of the optimal hubs (about
30%–50%) between the stratified and hierarchical hub problems. This is not surprising given that remote, isolated hubs are often
optimal locations for center and covering problems. For example, with the CAB data set, nodes 23 (Seattle) is optimal in 94% of
the hierarchical hub center solutions and in 100% of the SpHCP solutions for p g 4.

5.3. Discussion of results

The results presented in Tables 1–10 show that the proposed solution algorithms are able to efficiently solve large scale instances
of the stratified p-hub center and the stratified p-hub maximal covering problems in short computational times. As expected, the
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solution time for both problems increases with the size of the problems (i.e., the number of nodes N and/or the number of installed
hubs p). Moreover, for the maximal covering problem, the solution times decrease with an increase in the discount factor. One reason
for this behavior is that by increasing the value of the discount factor, the travel times over paths using inter-hub arcs get larger
and hence there are fewer paths that do not exceed the time threshold (i.e., the covering radius), which reduces the number of
feasible paths to be explored by the algorithm. Since both stratified problems belong to the class of NP-hard optimization problems,
developing exact solution algorithms that are capable of solving large-scale instances of problems in short computational times is
important both from the theoretical and practical standpoints.

Examination of the results for SpHCP and SpHMCP suggests some implications for managerial practice. First, increasing the
number of opened hubs, can increase the quality of service provided to the customers considerably in terms of the weighted
maximum travel time and the percentage of covered demands across different strata. However, these benefits come with the added
fixed costs for opening new facilities, added complexity as more routes are available through the network, and a reduction in average
traffic on arcs (since more arcs are available). Note that with the increase in open hubs, many O/D demands will travel a longer
part of their path between two hub facilities on the faster vehicles, which may have additional benefits (e.g., comforts of passenger
plane travel vs. bus travel). Furthermore, the results indicate that by decreasing the discount factor value (i.e., employing faster
modes of transportation on inter-hub connections), the service provider can offer better service to the customers. These benefits
likely come with the added costs for the faster transportation mode (e.g., planes vs. trucks for freight transport), but do not affect
the network complexity as does adding new hubs. Further, faster transport modes (a smaller discount factor) will tend to increase
traffic on the inter-hub arcs (to take advantage of the faster transportation) and may thereby allow a higher frequency of service
ion those arcs as well. Thus, the results clearly show the impacts of the two ways to improve service: by adding hubs (increasing
p) or by using faster vehicles (reducing ↵). Each option has associated costs, and each option brings benefits from the improved
service, which ultimately may translate into increased demand and/or being able to charge higher prices for the better service level.
Thus, the number of opened hubs and type of vehicles are two main levers that transportation firms can use to gain a competitive
advantage over their rivals in the increasingly competitive business environment.

Examination and comparison of the optimal solutions for SpHCP and SpHMCP reveals some interesting behaviors. The stratified
hub center problem solutions in aggregate use a larger selection of optimal hubs, though none very intensively across all problems,
while the stratified maximal covering problems use fewer different hubs more intensively. For example, comparing the optimal hubs
in Tables 1 and 6 for the CAB data set shows that SpHCP uses 17 of the 25 nodes as hubs in at least one optimal solution, while
SpHMCP uses only nine of the 25 nodes as hubs in at least one optimal solution. For SpHCP, the nodes most often used as hubs are
node 23 in nine of the 16 problems, node 12 in seven of the 16 problems and node 8 in six of the 16 problems; further, one of the
western nodes 8, 12 or 22 is a hub in all of the 16 problems. In contrast, for SpHMCP, the nodes most often used as hubs are node
4 in 12 of the 16 problems (and node 4 is never a hub for SpHCP), node 12 in 12 of the 16 problems, and node 2 in seven of the 16
problems (and node 2 is never a hub for SpHCP). There is also a geographic component of hub location evident in the solutions, as
for nearby nodes 17 and 18, or 14 and 24, one of which is a hub in nine, and seven respectively, of the 16 problems. We also note
that the more peripheral nodes 3, 10 and 15 are never optimal hubs in Tables 1 and 6 for SpHCP and SpHMCP, respectively. The
behavior described above for the CAB data set is also reflected in the solutions with the TR data set. Comparing the optimal hubs
in Tables 2 and 7 shows that SpHCP uses 24 different nodes as hubs in at least one optimal solution, while SpHMCP uses only 15
different nodes as hubs, eight of which are not hubs for SpHCP. With the TR data set, for SpHCP, the nodes most often used as hubs
are node 3 in six of the 16 problems, and node 59 in five of the 16 problems (with node 59 never a hub for SpHMCP). In contrast,
for SpHMCP, the nodes most often used as hubs are node 41 in all 16 problems (and a hub in only 3 of the 16 problems for SpHCP),
node 3 in six of the 16 problems (note that node 3 is the most common hub for SpHCP), and node 60 in five of the 16 problems.
These results reflect a quite different usage of hubs in the two problems SpHCP and SpHMCP, where with CAB only six of the 22
nodes used as hubs are hubs for both problems, and with TR only seven of the 32 nodes used as hubs are hubs for both problems.

6. Generalized models

This section considers three generalizations of the stratified hub location models presented earlier.

6.1. Partial coverage in SpHMCP

In the models presented for the SpHMCP, we assumed a binary coverage mechanism, i.e., if the travel time for the O/D pair
(i, j) À A

s is smaller than the corresponding coverage radius (�s
ij
), then the demand for that O/D pair is fully covered. Otherwise,

the corresponding demand is entirely uncovered. However, earlier research (see e.g., Peker and Kara (2015)) has shown that in some
real-life cases binary coverage may be unrealistic and partial coverage may be more appropriate. In this section, we generalize our
earlier models to accommodate partial coverage where the coverage level gradually decreases as the travel time increases. To this
end, we need to alter the definition of the covering parameter, as

ijkm
, which previously was defined as a binary parameter in (10).

Thus, we define the following five-step function in our mathematical model to provide three levels of partial coverage:
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Table 14
Results for the Stratified p-hub maximal covering problem with gradual coverage.
p ↵ CAB TR AP (N = 100)

Opt Hubs Opt Hubs Opt Hubs

2 0.2 55.25% 18, 21 51.37% 38, 41 37.28% 28, 70
0.4 53.22% 4, 18 45.89% 38, 41 34.84% 28, 70
0.6 52.17% 4, 18 42.37% 38, 54 33.45% 28, 71
0.8 51.14% 4, 18 40.69% 38, 54 32.72% 28, 71

3 0.2 71.25% 12, 18, 21 63.39% 21, 41, 68 44.03% 28, 56, 70
0.4 64.33% 4, 12, 18 55.35% 41, 46, 71 39.83% 28, 65, 70
0.6 59.90% 4, 12, 18 50.42% 6, 41, 46 37.64% 28, 65, 70
0.8 57.48% 4, 12, 18 47.31% 6, 41, 46 36.19% 28, 65, 70

4 0.2 81.34% 4, 12, 18, 24 74.14% 3, 27, 34, 60 50.16% 28, 55, 63, 70
0.4 72.86% 4, 12, 18, 24 63.58% 3, 34, 60, 80 44.82% 28, 55, 65, 70
0.6 66.11% 4, 12, 14, 18 55.94% 1, 3, 41, 60 41.19% 28, 55, 65, 70
0.8 61.70% 1, 4, 12, 18 51.28% 1, 3, 41, 60 38.99% 28, 53, 65, 70

5 0.2 87.75% 4, 7, 12, 18, 24 82.62% 12, 34, 64, 71, 80 52.87% 28, 45, 55, 66, 70
0.4 79.02% 4, 7, 12, 14, 18 70.37% 12, 34, 64, 71, 80 47.14% 28, 55, 65, 70, 75
0.6 71.14% 4, 7, 12, 14, 18 61.00% 1, 6, 23, 34, 64 43.13% 28, 55, 65, 70, 75
0.8 65.12% 4, 7, 12, 14, 18 54.46% 1, 3, 21, 41, 60 40.54% 28, 54, 65, 70, 75

We then solve SpHMCP with (90) instead of (10) for the CAB, the TR, and the AP (with N = 100) data sets, and the results
are presented in Table 14. Results show that in most of the cases, the optimal hub set under partial coverage differs from the
corresponding optimal set under the binary coverage. For the CAB data set, 13 of 16 solutions in Table 14 differed in one hub
with solutions that used binary coverage (from Table 6) and two other solutions differed in two hubs. For the larger TR data set,
eight of 16 solutions in Table 14 differed at least in one hub with solutions that used binary coverage (from Table 7), and with the
largest AP (N = 100) data set only two solutions in Table 14 had identical sets of hubs with solutions that used binary coverage
(from Table 9). As expected, the coverage percentage with the partial coverage under the defined coverage (90) is smaller than the
corresponding value with the binary coverage for all the instances.

6.2. Inclusion of operational times at hubs

As the proposed models deal with enhancing the customer service level, it is important to study the effect of the operational
times at hubs on the optimal solutions as these times directly affect the total in-transit time of the O/D traffic. To this end, we
modify the definition of the total travel time for the O/D traffic (i, j) À A that is routed via hubs k À N and m À N , originally
defined by (1), as follows:

c
ijkm

=
<

⌧
ik
+ ot

k
+ ↵⌧

km
+ ot

m
+ ⌧

mj
, if k ë m,

⌧
ik
+ ot

k
+ ⌧

kj
, if k = m

(91)

where, ot
k
represents the operational time value at hub k À N . Using (91) in the proposed models for the SpHCP and the SpHMCP,

we solved the instances from the CAB, TR and AP (N = 100) data sets by setting the values for the operational times as ot
k
= Ñ⌧

20 ,
where Ñ⌧ denotes the average travel time on the network arcs, i.e., Ñ⌧ = ≥

(i,j)ÀA
⌧ij

A
. The results for solving the SpHCP and the SpHMCP

considering operational times at hubs are presented in Tables 15 and 16, respectively.
These results show that including operational time at hubs worsens the value of the objective function in both the stratified p-hub

center and maximal covering problems. This is quite expected as adding operational time at hubs increases the total travel time for
the O/D traffic. An interesting observation is that the inclusion of the operational time at hubs often alters the optimal set of hub
locations. For instance, in 6 out of 16 instances, the optimal hub sets for the SpHCP with operational times under the CAB data set
are different from the optimal hub set for the corresponding instances without operational times. For the TR and AP (N = 100)
data set, the number of nonidentical hubs sets are 7 and 9, respectively. For the SpHMCP, the number of instances with different
optimal hub sets when considering operational times are 12, 6, and 9 for the CAB, TR, and AP (N = 100) data sets, respectively.

6.3. Multi-modal problems with fixed costs

In this section we propose MILP formulations for the multi-modal stratified hub center and maximal covering problems with
fixed set-up costs for hubs and hub edges. To explicitly model different modes, let Q be the set of available modes of transport that
can be chosen for inter-hub arcs. Accordingly, we define f

q

k
and Çf

q

km
as the fixed costs associated with installing a hub facility for

mode q À Q at node k À N and setting up a hub edge with mode q À Q between hubs k,m À N , (k < m), respectively. The discount
factor to be applied to the transportation cost over inter-hub arcs using transport mode q À Q is denoted by ↵

q . We assume that an
installed hub edge between hubs k and m activates both arcs (k, m) and (m, k) on the hub level network. Moreover, we assume that
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Table 15
Results for the Stratified p-hub center problem considering operational times at hubs.
p ↵ CAB TR AP (N = 100)

Opt Hubs Opt Hubs Opt Hubs

2 0.2 2114.28 5, 22 1454.13 23, 26 58362.42 13, 44
0.4 2434.32 5, 8 1609.66 12, 26 59746.29 13, 43
0.6 2634.01 8, 21 1761.06 6, 49 62148.04 15, 22
0.8 2720.84 8, 9 1907.62 6, 56 65340.74 18, 25

3 0.2 1846.20 9, 16, 22 1321.30 4, 26, 58 47522.23 5, 16, 62
0.4 2109.66 5, 12, 23 1469.08 3, 12, 41 52778.55 5, 16, 62
0.6 2338.27 8, 17, 24 1640.65 3, 12, 59 56711.71 5, 16, 61
0.8 2573.52 8, 9, 24 1848.02 3, 34, 49 60062.25 18, 28, 82

4 0.2 1669.22 3, 12, 13, 23 1181.32 4, 20, 41, 58 40144.33 5, 17, 61, 77
0.4 1856.99 9, 12, 16, 23 1348.76 3, 49, 59, 60 46188.84 5, 17, 61, 77
0.6 2204.92 12, 16, 20, 23 1535.58 3, 25, 59, 73 52267.06 5, 18, 32, 61
0.8 2519.75 3, 8, 9, 24 1792.90 3, 4, 34, 73 58557.35 7, 20, 38, 82

5 0.2 1381.80 11, 12, 23, 24, 25 1087.95 38, 41, 56, 64, 69 37528.61 5, 17, 37, 61, 69
0.4 1699.19 11, 12, 14, 18, 23 1259.22 3, 25, 40, 56, 59 42760.48 2, 12, 18, 54, 61
0.6 2011.10 1, 17, 19, 22, 23 1484.51 3, 25, 30, 59, 72 49654.42 2, 12, 18, 46, 83
0.8 2355.39 6, 12, 22, 23, 24 1764.34 3, 4, 21, 30, 34 57446.80 5, 16, 20, 61, 81

Table 16
Results for the Stratified p-hub maximal covering problem considering operational times at hubs.
p ↵ CAB TR AP (N = 100)

Opt Hubs Opt Hubs Opt Hubs

2 0.2 53.59% 18, 21 46.47% 38, 41 30.99% 29, 70
0.4 51.61% 4, 18 41.24% 38, 41 28.64% 28, 70
0.6 50.72% 4, 18 38.69% 41, 68 27.36% 28, 70
0.8 49.10% 21, 25 37.10% 41, 68 26.74% 28, 70

3 0.2 69.04% 12, 17, 21 59.46% 21, 41, 68 37.45% 28, 56, 70
0.4 61.57% 4, 12, 18 51.27% 6, 41, 46 33.48% 28, 63, 70
0.6 57.18% 4, 12, 18 46.43% 6, 41, 46 31.36% 28, 63, 70
0.8 54.78% 12, 21, 25 43.74% 6, 41, 46 30.02% 28, 63, 70

4 0.2 79.97% 12, 18, 21, 24 71.60% 3, 27, 34, 60 43.28% 28, 56, 63, 70
0.4 70.75% 4, 12, 14, 18 59.82% 1, 41, 60, 64 38.24% 28, 55, 63, 70
0.6 63.25% 1, 4, 12, 18 52.58% 1, 3, 41, 60 34.59% 28, 56, 63, 70
0.8 59.64% 1, 4, 12, 17 48.25% 1, 3, 41, 58 32.51% 28, 53, 63, 70

5 0.2 86.39% 4, 7, 12, 18, 24 81.47% 12, 19, 41, 64, 80 46.09% 28, 45, 56, 66, 70
0.4 77.12% 4, 7, 12, 14, 18 67.07% 1, 21, 41, 60, 64 40.33% 28, 50, 57, 63, 70
0.6 68.79% 4, 7, 12, 14, 18 56.56% 1, 3, 21, 41, 60 36.39% 28, 56, 63, 70, 75
0.8 62.75% 4, 7, 12, 14, 17 51.35% 1, 3, 21, 41, 60 33.97% 28, 54, 65, 70, 75

the available budget for paying the upfront costs of installing hubs and arcs is limited and denoted by B. We introduce the binary
variables yq

k
and e

q

km
as follows:

y
q

k
=
T

1, if a hub with transport mode q À Q is installed at node k À N ,
0, otherwise

e
q

km
=
T

1, if an edge with transport mode q À Q is installed between hubs k,m À N , (k < m),
0, otherwise.

We define flow variable Ñx
s

ijk
as the fraction of traffic associated with the O/D pair (i, j) À A

s that is routed through the access arc
(i, k) in stratum s À S. Similarly, flow variable ÑÑx

s

ijm
is defined as the fraction of demand associated with the O/D pair (i, j) À A

s that
is routed through the access arc (m, j). Finally, flow variable x

sq

ijkm
represents the fraction of traffic for the O/D pair (i, j) À A

s that
is routed through the hub arc (k,m) using transportation mode q À Q. The following MILP model solves the multi-modal stratified
hub center problem with fixed costs (MSHCP-FC):

min
…

sÀS
w

s
z
s (92)

s.t.:
…

kÀN
Ñx
s

ijk
= 1 s À S, (i, j) À A

s (93)

…

mÀN
ÑÑx
s

ijm
= 1 s À S, (i, j) À A

s (94)
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…

mÀN

…

qÀQ
x
sq

ijkm
+ ÑÑx

s

ijk
*

…

mÀN

…

qÀQ
x
sq

ijmk
* Ñx

s

ijk
= 0 s À S, (i, j) À A

s
, k À N (95)

Ñx
s

ijk
f …

qÀQ
y
q

k
s À S, (i, j) À A

s
, k À N (96)

ÑÑx
s

ijm
f …

qÀQ
y
q

m
s À S, (i, j) À A

s
,m À N (97)

x
sq

ijkm
+ x

sq

ijmk
f e

q

km
s À S, (i, j) À A

s
, k,m À N , (k < m), q À Q (98)

2eq
km

f y
q

k
+ y

q

m
k,m À N , (k < m), q À Q (99)

Ñx
s

ijk
f 2 * y

q

i
* y

q
®

k
s À S, (i, j) À A

s
, k À N , (i ë k), q, q® À Q (100)

ÑÑx
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ijm
f 2 * y

q

j
* y

q
®
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s À S, (i, j) À A
s
,m À N , (j ë m), q, q® À Q (101)
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+

…

kÀN
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z
s g …

kÀN
⌧
ik
Ñx
s

ijk
+

…

kÀN
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mÀN

…

qÀQ
↵
q
⌧
km

x
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ijkm
+
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mÀN
⌧
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ÑÑx
s

ijm
s À S, (i, j) À A

s (103)

z
s À R s À S (104)

Ñx
s

ijk
, ÑÑx

s

ijm
, x

sq

ijkm
À {0, 1} s À S, (i, j) À A

s
, k,m À N , q À Q (105)

y
q

k
À {0, 1} k À N , q À Q (106)

e
q

km
À {0, 1} k,m À N , (k < m), q À Q (107)

The objective function (92) minimizes the weighted sum of the maximum travel times between O/D pairs within all strata.
Constraints (93)–(95) are flow conservation constraints which ensure that for each pair of nodes (i, j) À A

s, the corresponding
traffic leaves node i and arrives at node j, and is being properly accounted for whenever a hub k is used. Constraints (96) and (97)
assure that O/D traffic can only access or leave the inter-hub network through installed hubs. Constraints (98) ensure that flows can
travel via a hub arc with a specific mode of transport only if the corresponding hub edge is installed. Constraints (99) guarantee
that a hub edge can only be activated only if the respective hubs are installed. Constraints (100) and (101) prevent formation of
bridge arcs (i.e., arcs connecting pairs of hubs but without the reduced unit flow cost of a hub arc). The budget limitation for setting
up the hubs and the hub arcs is reflected by (102). Constraints (103) calculate the maximum travel time between the O/D pairs
within each stratum. Finally, (104)–(107) are the standard domain constraints.

To model the multi-modal stratified hub maximal covering problem with fixed costs, we use the additional binary variable r
s

ij

which takes the value of 1 if the traffic from origin node i to destination node j in stratum s is covered; and 0, otherwise. The MILP
formulation for the multi-modal stratified hub maximal covering problem with fixed costs (MSHMCP-FC) can be written as follows:

max
…

sÀS
w

s

H

…

(i,j)ÀAs

t
s

ij
r
s

ij

I

(108)

s.t.: (93)–(102), (105)–(107) (109)
…
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…
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↵
q
⌧
km
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+
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⌧
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ijm
f �

s

ij
+ (1 * r

s

ij
)M s À S, (i, j) À A

s (110)

r
s

ij
À {0, 1} s À S, (i, j) À A

s (111)

The objective function (108) maximizes the weighted sum of the covered traffic over all the strata. Constraints (110) determine
whether the traffic from node i to node j in stratum s is covered or not in whichM is a sufficiently large number. More specifically,
if the left-hand side of (110) exceeds the covering radius �s

ij
, then the variable r

s

ij
will be forced to take the value of zero in order

to satisfy the inequality. On the other hand, if the left-hand side of (110) does not exceed the covering radius �s
ij
, it means that the

corresponding flow is covered and the variable r
s

ij
will take the value of one due to maximization sense in the objective function.

A tight value for M can be calculated as (2 + max
a ù min

↵)max⌧ in which max
⌧ is the maximum travel time on network arcs, maxa

is the maximum number of hub edges that can be installed in the network, and min
↵ is the smallest discount factor corresponding

to different modes of transport. This number can be calculated a priori based on the fixed costs for hubs and hub edges, discount
factor values, and the available budget.

6.3.1. Fixed cost results
In order to focus on the role of fixed costs, we first solve the MSHCP-FC and MSHMCP-FC with only one mode of transport

(i.e., Q=1), and compare the results to those for the corresponding solutions of the SpHCP and SpHMCP. For this purpose, we
use the CAB data set with 15 and 25 nodes (i.e., N=15, 25). Three strata are used as presented in our numerical example in
Section 5.1. We use the fixed setup cost values for hubs as f

k
= 100 for all k À N and the fixed activation cost values for hub edges
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Table 17
Results for the MSHCP-FC with Q = 1 for the CAB data set.
N MSHCP-FC SpHCP

B ↵ Opt Hubs Activated Hub Edges Consumed Budget Opt Hubs % Improve

15 300 0.2 1717.98 12, 13 (12,13) 280.40 1717.98 12, 13 0.00%
0.4 1722.82 12, 13 (12,13) 280.40 1722.82 12, 13 0.00%
0.6 1827.78 12, 13 (12,13) 280.40 1827.78 12, 13 0.00%
0.8 1941.68 5, 12 (5,12) 294.48 1941.68 5, 12 0.00%

600 0.2 1205.95 1, 3, 11, 12 (1,3), (1,11), (11,12) 549.27 1205.95 1, 3, 11, 12 0.00%
0.4 1316.69 1, 3, 11, 12 (1,3), (1,11), (11,12) 549.27 1304.41 1, 3, 11, 12 0.94%
0.6 1545.63 1, 3, 11, 12 (1,3), (1,11), (11,12) 549.27 1521.07 1, 3, 11, 12 1.61%
0.8 1794.07 2, 11, 12, 13 (2,11), (2,13), (11,12), (11,13) 302.35 1751.73 1, 3, 11, 12 2.42%

25 300 0.2 1994.29 21, 22 (21,22) 286.80 1988.50 5, 22 0.29%
0.4 2219.29 21, 22 (21,22) 286.80 2219.29 21, 22 0.00%
0.6 2380.06 8, 18 (8,18) 278.74 2380.06 8, 18 0.00%
0.8 2531.50 21, 22 (21,22) 286.80 2531.50 21, 22 0.00%

600 0.2 1511.20 8, 16, 20, 22 (8,16), (8,20), (8,22) 566.19 1492.49 6, 8, 16, 22 1.25%
0.4 1745.80 12, 13, 17, 23 (12,13), (12,23), (13,17) 577.53 1742.48 12, 13, 17, 23 0.19%
0.6 2026.02 6, 8, 16, 22 (6,8), (8,16), (8,22) 561.96 2026.02 6, 8, 16, 22 0.00%
0.8 2346.69 3, 8, 9, 22 (3,8), (8,9), (8,22) 593.22 2312.14 3, 4, 7, 22 1.49%

as Çf
km

= dkm

20 for all k,m À N , (k < m). We consider five values of ↵ À {0.2, 0.4, 0.6, 0.8} and two values for the budget B À {300, 600}.
The results for solving the MSHCP-FC with Q = 1 are shown in Table 17. The first two columns show the number of nodes and
the available budget in the problem instances, respectively. The third column presents the discount factor applied to the inter-hub
connections. The next four columns show the solution results for the MSHCP-FC, including the optimal objective function value,
the set of opened hubs and activated hub arcs and the consumed budget, respectively. In order to compare the optimal network
configurations obtained by the MSHCP-FC with those of the SpHCP, we provide the optimal solution results for SpHCP in the last
three columns, including the optimal objective function value, the opened hubs, and the percentage improvement in the objective
function values of SpHCP over those of the MSHCP-FC. Note that SpHCP is solved by setting the parameter p as the number of
opened hubs in the solution of the MSHCP-FC.

It can be seen from Table 17 that in all instances with B = 300, two hubs are opened and a hub arc connects them resulting in
a complete inter-hub network. Therefore, in such cases the optimal solution obtained by the MSHCP-FC is identical to the optimal
solution of SpHCP unless the fixed cost needed to establish the hubs and the hub arc exceeds the available budget. For example,
when N = 25,B = 300, and ↵ = 0.2, the optimal solution for the MSHCP-FC is to open hubs at nodes 21 and 22. However, the
optimal hubs for SpHCP are at nodes 5 and 22 with a slightly better objective value. The reason is that the fixed cost required to
establish the hub arc (5,22) is larger (due to longer distance) than the fixed cost needed to activate the hub arc (21,22). This makes
the total cost of the SpHCP solution exceed the available budget of 300 units. The largest budget B = 600 allows more opened
hubs and activated hub arcs which provides better service and shorter travel times (compared to B = 300). Note that the inter-hub
network is incomplete in these cases but the hubs are connected in all the cases. It is interesting to see that even though the inter-hub
network is incomplete in the solutions of the MSHCP-FC, in some instances with identical sets of hubs, the provided service is the
same with that of SpHCP solution which has a complete inter-hub network. As an example, see the instance with N = 25,B = 600,
and ↵ = 0.6 where only three hub arcs (6,8), (8,16), and (8,22) are activated by the MSHCP-FC but the objective value is identical
with that of SpHCP. The reason is that the worst-case travel times in all the strata pass through these three hub arcs in the optimal
solution of SpHCP and hence the objective values of the two problems coincide at the value of 2026.02.

Table 18 presents the results for solving the MSHMCP-FC with Q = 1. It can be observed that for B = 300, the optimal solutions
for the MSHMCP-FC are identical to those of the SpHMCP. In contrast, for three out of four instances with N = 15 and B = 600,
the optimal hub sets for the MSHMCP-FC and SpHMCP are different. The instances with N = 25 and B = 600 could not be solved
within the time limit of 20 h using CPLEX. Therefore, we used the optimal set of hubs for SpHMCP with p = 4 and fixed these hubs
as opened hubs in the MSHMCP-FC model and then allowed the set of activated hub arcs be determined by the model (108)–(111).
The obtained values are shown in boldface with an asterisk in Table 18. Note that for the instance with ↵=0.6, the objective function
values of the solutions attained for the MSHMCP-FC and SpHMCP are the same (53.06%) regardless of the fact that the inter-hub
network in the former solution is incomplete.

The optimal networks for MSHCP-FC and MSHMCP-FC with Q = 1, B = 600, and ↵ = 0.6 are depicted in Fig. 4. Note that in both
cases, the inter-hub network is incomplete but the provided service level is the same as the corresponding problems with complete
inter-hub networks (see Figs. 2-d and 3-d). This can be deemed as an important advantage of the incomplete networks as they
can obtain solutions with the same (or slightly inferior) objective value but with significantly lower upfront cost of constructing the
network. Nevertheless, incomplete hub networks make some O/D traffic travel through more circuitous paths which can be regarded
as a disadvantage in applications where fast delivery is required by the clients. For instance, in Fig. 4-a the traffic corresponding to
the O/D pair (6,16) travels through the path 6 ô 8 ô 16 rather than going directly from 6 to 16 as it is the case when the inter-hub
network is complete.

From a managerial perspective, being able to add or remove service between hub nodes can be a valuable tool to respond to
changes in the market. For example, the tremendous drop in air travel and freight transport with COVID-19 beginning in 2019 could
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Table 18
Results for the MSHMCP-FC with Q = 1 for the CAB data set.
N MSHMCP-FC SpHMCP

B ↵ Opt Hubs Activated Hub Edges Consumed Budget Opt Hubs % Improve

15 300 0.2 39.03% 4, 7 (4,7) 239.51 39.03% 4, 7 0.00%
0.4 37.62% 4, 7 (4,7) 239.51 37.62% 4, 7 0.00%
0.6 37.31% 4, 7 (4,7) 239.51 37.31% 4, 7 0.00%
0.8 37.25% 4, 7 (4,7) 239.51 37.25% 4, 7 0.00%

600 0.2 65.99% 4, 7, 12, 14 (4,7), (7,12), (7,14) 556.87 66.06% 4, 7, 12, 14 0.10%
0.4 58.45% 4, 7, 8, 14 (4,7), (4,8), (4,14), (7,14) 599.10 60.27% 4, 7, 12, 14 3.11%
0.6 51.96% 4, 6, 7, 8, 11 (4,6), (4,11), (7,11), (8,11) 585.85 53.68% 4, 7, 8, 9, 15 3.32%
0.8 45.62% 4, 6, 7, 8, 11 (4,6), (4,11), (7,11), (8,11) 585.85 46.41% 4, 7, 8, 9, 15 1.73%

25 300 0.2 49.22% 18, 24 (18,24) 246.33 49.22% 18, 24 0.00%
0.4 47.52% 2, 14 (2,14) 247.48 47.52% 2, 14 0.00%
0.6 41.97% 4, 18 (4,18) 233.77 41.97% 4, 18 0.00%
0.8 41.62% 2, 4 (2,4) 230.65 41.62% 2, 4 0.00%

600 0.2 70.92%* 4, 18, 22, 24 (4,18), (4,22), (18,24) 572.78 71.12% 4, 18, 22, 24 0.29%
0.4 63.46%* 2, 4, 12, 14 (2,14), (4,12), (4,14) 593.91 64.55% 2, 4, 12, 14 1.71%
0.6 53.06%* 1, 4, 18, 22 (1,4), (1,18), (4,18), (4,22) 589.96 53.06% 1, 4, 18, 22 0.00%
0.8 51.43%* 2, 4, 7, 22 (2,4), (4,7), (2,22) 592.97 51.46% 2, 4, 7, 22 0.07%

Fig. 4. Solutions for the MSHCP-FC and MSHMCP-FC for the CAB data with ↵
1 = 0.6, B = 600, N=25, and Q = 1.

lead to reduced services for certain arcs O/D pairs and the elimination of some inter-hub connections. Fixed cost models that do
not assume full connectivity of the hub nodes can thus give valuable strategic insights for flexible network designs. Also, note that
considering fixed costs for installing hubs and activating hub arcs may add realism in some cases as constructing transportation
infrastructure (e.g., road, rail, port, etc.) or offering new services is highly capital-intensive. Therefore, it is not viable in many
practical situations to have a complete transportation network between the installed hubs. Results with the fixed cost (FC) models
show how a range of hub network topologies can be generated when there are incomplete networks. For example, with MSHCP-FC
for N = 25, B = 600 and ↵

1 = 0.4 (see Table 17), the hub network is a ‘‘line" of 3 connected hub arcs 23-12-13-17; with N =
25, B = 600 and ↵ = 0.6, the hub network is a ‘‘star" with three hub arcs from central node 8 to nodes 6, 16 and 22 (see Fig. 4-a),
and for MSHMCP-FC with N = 15, B = 600 and ↵ = 0.6 (see Table 18), the network is a tree with 4 edges. Other incomplete
topologies as in Fig. 4-b are seen as well, and with greater numbers of hubs more variety is possible.

6.3.2. Multi-modal solutions
Now we consider the multi-mode case and assume we have two available modes of transport that can be used between hubs

(i.e., Q = 2). Let the discount factor values for these two modes of transport be set as ↵1 = 0.6 and ↵
2 = 1 (i.e., the first mode is

faster). We use the fixed setup cost values for the two types of hubs as f 1
k
= 100 and f

2
k
= 20 for all k À N and the fixed activation

cost values for the corresponding hub edges as Çf
1
km

= dkm

20 and Çf
2
km

= dkm

100 for all k,m À N , (k < m). The models MSHCP-FC and
MSHMCP-FC with Q = 2 are solved for the CAB data with N = 15 and 25 and the results are presented in Table 19. The mode
type of the installed hubs and edges are shown with the superscript in fifth and sixth columns of the table.

Table 19 shows that four of the eight instances use only one mode of transport (mode 1) and the other four instances (in rows 2,
5, 6 and 7) use both modes. Fig. 5 shows two of the optimal two-mode networks (from rows 2 and 6) for MSHCP-FC and MSHMCP-FC
with the CAB data when N=15 and B = 600. In the solution for the MSHCP-FC (Fig. 5-a), three hubs serve only transport mode 1
(hubs 1, 3 and 12), one hub serves only mode 2 (hub 4) and one hub serves both modes 1 and 2 (hub 11). Three arcs of transport
mode 1 connect hub 3 to hub 1 to hub 11 to hub 12. One arc of transport mode 2 connects hub 4 to hub 11. Note that there are
also access arcs with a different travel time rate (representing a third transport mode) connecting the non-hub nodes to hubs. The
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Table 19
Results for the MSHCP-FC and MSHMCP-FC with Q = 2 for the CAB data set.
Model N B Opt Hubs Activated Hub Edges Consumed Budget

MSHCP-FC 15 300 1827.78 121 , 131 (12, 13)1 280.40
15 600 1484.23 11 , 31 , 111 , 121 , 42 , 112 (1, 3)1 , (1, 11)1 , (11, 12)1 , (4, 11)2 593.33

25 300 2380.06 81 , 181 (8, 18)1 278.74
25 600 2026.02* 61 , 81 , 161 , 221 (6, 8)1 , (8, 16)1 , (8, 22)1 561.96

MSHMCP-FC 15 300 45.31% 41 , 81 , 42 , 72 (4, 8)1 , (4, 7)2 293.27
15 600 54.16% 41 , 81 , 111 , 151 , 22 , 52 , 72 , 112 , 142 (4, 11)1 , (8, 11)1 , (11, 15)1 , (2, 5)2 , (2, 14)2 , (5, 7)2 , (5, 11)2 , (7, 11)2 599.69

25 300 42.97%* 11 , 21 , 12 , 52 , 142 (1, 2)1 , (1, 5)2 , (1, 14)2 298.51
25 600 53.06%* 11 , 41 , 181 , 221 (1, 4)1 , (1, 18)1 , (4, 18)1 , (4, 22)1 589.96

Fig. 5. Solutions for the MSHCP-FC and MSHMCP-FC for the CAB data with N=15, B = 600, and Q = 2.

optimal network for MSHMCP-FC (Fig. 5-b) is more complex and includes three hubs that serve mode 1 only, 4 hubs that serve
mode 2 only, and one hub that serves both modes 1 and 2. There are five mode 2 arcs that connect the five hubs that serve mode
2, and three mode 1 arcs that connect the four hubs that serve mode 1. Note that in both solutions, node 11 accommodates two
hubs with different modes of transport. These more complex networks allow interesting O/D paths that use multiple modes. For
example, with MSHCP-FC the path from node 12 to node 4 uses mode 1 for 12–11, then mode 2 for 11–4. With MSHMCP-FC, the
path from node 12 to node 4 uses an access arc 12–8, then mode 1 for 8-11-4.

7. Conclusions

Hub networks are the backbone of many transportation systems and they often support service to several different classes of
demand (i.e., traffic receiving different levels of service). We introduced the stratified multiple allocation p-hub center and p-hub
maximal covering problems where the commodities to be transported between each O/D pair were divided into different strata
with varying service level requirements. MILP formulations were proposed for the problems and efficient Benders decomposition
algorithms were developed to solve them. Extensive computational experiments were conducted to analyze the efficiency of the
proposed solution algorithms and the proposed MILP formulations using three well-known data sets from the HLP literature with
up to 200 nodes (39,800 O/D pairs) and 10 strata. Results indicate that the optimal set of hub locations when considering different
strata can be quite dissimilar to that of the traditional p-hub center or p-hub maximal covering problem. Furthermore, by altering
the values of different input parameters, we studied the resulting changes on the optimal solutions of the problems. Results showed
how the stratified center and maximal covering problems can have quite different optimal hub sets, and thus quite different traffic
flow patterns. Results also demonstrate that large-scale instances of the problems can be solved by the developed BD algorithms in
quite short computational times. Finally, we generalized the basic MILP formulations to include multiple modes of transport and also
fixed set-up costs for hubs and hub edges. These features allow incomplete inter-hub networks. We compared the results obtained
by solving the generalized models to those of the classical models and observed that the optimal solutions for the fixed cost models
tend to be incomplete networks with lower network construction costs but not necessarily inferior service levels compared to the
classical models.

The present work can be expanded in a number of ways. An interesting extension would assign different weights to the O/D
traffic within each stratum. For example, one may want to weight a high flow O/D pair in one strata different than a low flow
O/D pair in the same strata. Alternatively, some of the assumptions made in this work can be relaxed in order to reflect more
realistic situations. To this end, one can adopt more detailed modeling of different modes of transportation between hub facilities,
or allow direct connections between O/D pairs. Furthermore, looking at the stratified HLP from a cost perspective and addressing the
stratified p-hub median problem would be a worthwhile contribution. Ideally, researchers would develop stratified demand models
that address both cost and service considerations. As another line for future research one can propose heuristic solution algorithms
for the generalized models in order to solve large-scale instances in reasonable time. It is also valuable to study the same problems
under the single allocation or r-allocation settings. A final extension can be the incorporation of routing decisions into the proposed
models which is important in postal services and LTL transportation.
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