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A B S T R A C T

We extend Berezinskii’s diagram technique to the one-dimensional disordered wire containing Rashba and
Dresselhaus spin–orbit interactions. The retarded and advanced Green’s functions are factorized in coordinates
space in the presence of spin–orbit interactions. This factorization allows us to transform all coordinate
dependence of the Green’s functions from lines to the impurity vertices. Our calculations show that all possible
impurity vertices giving a contribution to the correlators do not differ from those given in the conventional
technique, except that they are written in a 2 × 2 matrix form and the Fermi velocity 𝑣∗𝐹 now depends on the
spin–orbit coupling constants. The diagrammatic method of Berezinskii with spin–orbit interaction is used to
obtain the distribution of the electron density of the localized state 𝑝∞(𝑦).
1. Introduction

One of the essential problems in spintronics is how impurities affect
the spin precession in the presence of spin–orbit interaction (SOI).
Existence of a macroscopic structural inversion asymmetry or a bulk
inversion asymmetry in a disordered 2D system was shown to change
the sign of the phase-coherent localization correction to the conduc-
tivity [1–4], driving the system from a weak localization regime into
an antilocalization one. The Rashba and Dresselhaus SO terms equally
and independently contribute to the weak antilocalization correction.
Generation of a dissipationless transverse spin current or a spin Hall
current by a driving electric field was predicted [5,6] in a clean,
infinite and homogeneous structural inversion asymmetric 2D system.
Even an arbitrary small concentration of nonmagnetic impurities was
shown [7–10] to suppress totally the universal value of the spin Hall
conductivity.

Single dislocations in plastically deformed silicon [11,12] and
atomic chains at semiconductor surface [13,14] are two classes of one
dimensional samples, where the spin–orbit interaction mediated energy
band splitting was observed. Although there is big activity in studies
of Rashba-type SOI in 1D system [15–20], a scattering on impurities
was considered only in few works [21,22]. It is necessary to mention
that many interesting effects have been revealed [23] in a one channel
(Aharonov–Bohm) ring by taking into account SOI.
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The competition of the randomness and interaction effects in low
dimensional systems is still one of the most intriguing problems even
in the absence of the Rashba and Dresselhaus SOIs. Weak Coulomb in-
teractions between electrons moving diffusively in a disordered system
have been shown to increase the localization effect [24]. Interference
between the propagated and backscattered electronic waves results in
a localization. Localization in 1𝐷 structures was qualitatively studied
by Mott and Twose [25] in the random Kronig–Penney model. They
concluded that in a 1𝐷 system all electronic states with an arbitrary
random field and with an arbitrary concentration of the randomness
must be localized. A rigorous proof of this statement has been done later
by Borland [26] and Halperin [27]. Indeed, for a weak randomness
when the condition of 𝑘𝐹 𝑙 ≫ 1 or 𝜖𝐹 𝜏0 ≫ 1, with 𝜖𝐹 being the Fermi
energy, is satisfied, the electron remains in the vicinity of the Fermi
lever either at 𝑝 = 𝑝𝐹 or at 𝑝 = −𝑝𝐹 . Although a forward scattering
on impurities with the mean free path 𝑙+ cannot significantly change
the character of electronic wave function, the backward scattering
with the mean free path 𝑙− forces the electron to scatter from 𝑝𝐹
to −𝑝𝐹 and back, escaping the electron in length scale of the order
𝑙−. Therefore, the number of electrons passing the whole length of a
sample with length of 𝐿 ≫ 𝑙− is exponentially small ∝ exp (−𝐿∕𝑙−),
because of the number of electron having a mean free path 𝑙 larger
than 𝑙− is ∝ exp(−𝑙∕𝑙−). Localization of the wave function in the
regime of weak randomness, 𝜖𝐹 𝜏0 ≫ 1, is not expected to change the
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density of electronic states (DOS) significantly, instead it changes the
mobility or diffusion coefficient, and therefore the static conductivity
of a system according to the Einstein relation for the conductivity
𝜎 = 𝑒2𝜌(𝑑)0 𝐷𝑑 , where 𝜌(𝑑)0

(

𝜖𝐹
)

= 𝑚𝑝𝑑−2𝐹 ∕ℏ2𝜋1−𝑑 , 𝐷𝑑 are the DOS and the
diffusion coefficient 𝑑-dimensional electron gas, correspondingly. The
high-frequency conductivity 𝜎(𝜔) in a disordered 1𝐷 system occurs, ac-
cording to the qualitative description of Mott [28,29], due to resonance
hopping of electron between two localized states at distance 𝑥 separated
by the minimal energy difference 𝛥𝐸 = 𝐸0 exp(−|𝑥|∕𝑙−), where 𝐸0 is the
amplitude of the high-frequency electric field 𝐸 = 𝐸0 cos𝜔𝑡. The energy
absorption per unit time and unit length in the presence of 𝑎𝑐-electric
field is, from one hand, 𝛥 = 1

2𝜎(𝜔)𝐸
2
0 . On the other hand, the absorbed

energy can be found by calculating the probability of an amplitude
for transition from the localized level with energy 𝜖𝑎 to the level with
energy 𝜖𝑏, separated by the distance |

|

𝑧𝑎𝑏||, as 2𝜋 1
4

(

𝑒𝐸0
)2

|

|

𝑧𝑎𝑏||
2 𝜌(1𝑑)0

(

𝜖𝑏
)

,
and then multiplying the total probability, obtained by integrating this
expression over all possible separation, to the number of electrons
𝜔𝜌(1𝑑)0

(

𝜖𝑏
)

, participating in the absorption process in the energy interval
𝜔 = 𝜖𝑎 − 𝜖𝑏. From these two expressions for the absorption energy one
gets

𝜎 (𝜔) ∝ 𝑒2𝜈21
(

𝜖𝐹
)

𝜔2
∫

|

|

𝑧𝑎𝑏||
2 𝑑𝑧. (1)

Taking into account the qualitative expression for the matrix ele-
ments 𝑧𝑎𝑏 ∼ 𝑧2𝑒−2|𝑧|∕𝑙− , and the lower limit of integration as 𝑍𝑐 =
2𝑙− ln(𝑣𝐹 ∕𝜔𝑙−), one gets the following expression for the conductivity

𝜎 (𝜔) ∝ 𝑒2𝑙−
(

𝜔𝑙−∕𝑣𝐹
)2 ln2

(

𝜔𝑙−∕𝑣𝐹
)

. (2)

The interference effects in 1D disordered systems are strong, and there-
fore, the diffusion approximation, which is used in higher dimensions
(D > 1), is not acceptable (and applicable) in 1D system. Signif-
icant progress in the theory of a 1𝐷 weakly disordered system is
connected with a real-space diagrammatic technique developed by
Berezinskii [30]. By selection of the impurity vertices, which do not
contain the strongly oscillating phase factors ∼ 𝑒±𝑖𝑝𝐹 𝑦𝑗 at a location of
the impurity 𝑦𝑗 , Berezinskii derived the rigorous expression for the low-
frequency asymptotics of the 𝑎𝑐-conductivity of 1𝐷 weakly disordered
system. In this paper, we show that the Berezinskii’s technique is
applicable in the presence of SOI in a 1D disordered system.

The rest of this paper is organized as follows. In the next Section
formulation of the problem is presented. In Section 3, we introduce
‘‘bare’’ Green’s functions describing a one-dimensional disordered wire
containing Rashba and Dresselhaus SOIs. By applying the diagrammatic
theory of Berezinskii [30] to the case of SOI in Section 4, we draw
all possible impurity vertices and calculate them. The diagrammatic
method of Berezinskii with SOI is used to obtain the distribution of the
electron density of the localized state 𝑝∞(𝑦) in Section 5. Conclusions
are given in Section 6. Some technical aspects of Berezinskii’s diagram
method are relegated to Appendix.

2. Model and formulation of the problem

We consider a one-dimensional disordered wire in the presence of
Rashba and Dresselhaus spin–orbit couplings (SOCs). Hamiltonian for
such a system reads

𝐻̂ =
𝑃𝑦
2𝑚∗ +

∑

𝑗
𝑉 (𝑦 − 𝑦𝑗 ) + 𝐻̂𝑅 + 𝐻̂𝐷, (3)

where 𝑚∗ is an electron effective mass, 𝑃𝑦 = ℏ
𝑖
𝜕
𝜕𝑦 is 𝑦-component

f the momentum operator, 𝑉 (𝑦 − 𝑦𝑗 ) is the potential of an impurity
located at point 𝑦𝑗 , 𝐻̂𝑅 and 𝐻̂𝐷 represent Rashba and Dresselhaus SOIs,
respectively. In a two-dimensional system, 𝐻̂2𝐷

𝑅 + 𝐻̂2𝐷
𝐷 can be written

as [31]

𝐻̂2𝐷 + 𝐻̂2𝐷 = 𝛼 (

𝜎 𝑃 − 𝜎 𝑃
)

+
𝛽 (

𝜎 𝑃 − 𝜎 𝑃
)

, (4)
2

𝑅 𝐷 ℏ 𝑥 𝑦 𝑦 𝑥 ℏ 𝑥 𝑥 𝑦 𝑦
here 𝛼 and 𝛽 are Rashba- and Dresselhaus- SOC constants, corre-
pondingly, and 𝜎𝑖 with 𝑖 = 𝑥, 𝑦 are the Pauli spin-matrix components

𝑥 =
(

0 1
1 0

)

; 𝜎𝑦 =
(

0 −𝑖
𝑖 0

)

. (5)

n a quasi one-dimensional system with homogeneous spin–orbit inter-
ction, by choosing the form of lateral confinement it is possible to
xpress the contributions of Rashba and Dresselhaus SOIs (4) in two
erms: the first one is the intersubband coupling term 𝐻̂𝑚𝑖𝑥

𝑅 + 𝐻̂𝑚𝑖𝑥
𝐷 and

he second one is the spin precession term 𝐻̂𝑝𝑟𝑒𝑐
𝑅 + 𝐻̂𝑝𝑟𝑒𝑐

𝑅 [32]

̂ 𝑚𝑖𝑥
𝑅 + 𝐻̂𝑚𝑖𝑥

𝐷 = − 𝛼
ℏ
𝜎𝑦𝑃𝑥 +

𝛽
ℏ
𝜎𝑥𝑃𝑥, (6)

𝐻̂𝑝𝑟𝑒𝑐
𝑅 + 𝐻̂𝑝𝑟𝑒𝑐

𝐷 = 𝛼
ℏ
𝜎𝑥𝑃𝑦 −

𝛽
ℏ
𝜎𝑦𝑃𝑦. (7)

Since we consider a purely one-dimensional system, the mixing term
vanishes [33] and only the precession term contributes to the Hamilto-
nian (3)

𝐻̂𝑅 + 𝐻̂𝐷 = 𝛼
ℏ
𝜎𝑥𝑃𝑦 −

𝛽
ℏ
𝜎𝑦𝑃𝑦. (8)

The correlation functions for the charge 𝑗0(𝑦) and current 𝑗1(𝑦)
perators

0(𝑦) = 𝜓†(𝑦)𝜓(𝑦) and 𝑗1(𝑦) = ℏ2

2𝑚

(

𝜕
𝜕𝑦

− 𝜕
𝜕𝑦′

)

𝜓†(𝑦)𝜓(𝑦′)|𝑦=𝑦′ .

(9)

Then, the correlation functions 𝜒𝑎(𝑦 − 𝑦′, 𝜔) are expressed

𝜒𝑎(𝑦 − 𝑦′, 𝜔) = ∫

∞

0
𝑑𝑡𝑒𝑖𝜔𝑡 ∫ 𝑑𝐸𝑓 (𝐸)

⟨

Tr 𝛿𝐸𝑗𝑎(𝑦, 𝑡)𝑗𝑎(𝑦′, 𝑡′)
⟩

= ∫

∞

−∞

𝑑𝑘
2𝜋
𝜒𝑎(𝑘, 𝜔)𝑒𝑖𝑘(𝑦−𝑦

′), (10)

here 𝑓 (𝐸) is the distribution, and 𝛿𝐸 is the density matrix of the
icrocanonical distribution

𝐸 = 1
2𝜋𝑖

{

1
𝐸 − 𝐻̂ − 𝑖0

− 1
𝐸 − 𝐻̂ + 𝑖0

}

. (11)

By introducing the Green’s functions 𝐺±(𝑦, 𝑦′|𝐸) for the energy 𝐸 and
𝐺′(𝑦, 𝑦′|𝐸 + 𝜔) for the energy 𝐸 + 𝜔 as

𝐺±(𝑦, 𝑦′|𝐸) = 1
𝐸 − 𝐻̂ ± 𝑖0

, and 𝐺′(𝑦, 𝑦′|𝐸 + 𝜔) = 1
𝐸 + 𝜔 − 𝐻̂

,

(12)

he correlators are expressed through the Green’s functions

0
±(𝑦 − 𝑦

′) = 1
2𝜋

⟨

𝐺±(𝑦, 𝑦′|𝐸)𝐺′(𝑦′, 𝑦|𝐸 + 𝜔)
⟩

, (13)

nd

1
±(𝑦 − 𝑦

′
|𝐸 + 𝜔) = 1

2𝜋

⟨

(

𝜕
𝜕𝑦1

− 𝜕
𝜕𝑦2

)

(

𝜕
𝜕𝑦′1

− 𝜕
𝜕𝑦′2

)

× 𝐺±(𝑦1, 𝑦′1|𝐸)𝐺
′(𝑦′2, 𝑦2|𝐸 + 𝜔)

⟩

|

|

|

|

|

𝑦1=𝑦
′
1=𝑦

𝑦2=𝑦
′
2=𝑦

′

(14)

The unaveraged diagram for density–density or current–current cor-
relator consists of two electron lines going from the point 𝑦′ to 𝑦.
Ordering the impurity locations {𝑦𝑗} between 𝑦 and 𝑦′, all coordinate
dependence can be transferred from lines of Green’s functions to the
vertices. The central idea in Berezinskii’s diagrammatic technique is
that the ‘‘bare’’ Green’s functions, the retarded 𝐺+

0 (𝑦, 𝑦
′) and advanced

𝐺−(𝑦, 𝑦′) functions, are factorized in coordinates space.
0
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3. ‘‘Bare’’ Green’s functions

The ‘‘bare’’ Hamiltonian in the absence of an external potential is
written in the form

𝐻̂0 = − ℏ2

2𝑚∗
𝜕2

𝜕𝑦2
+ 𝛼
ℏ
𝜎𝑥𝑃𝑦 −

𝛽
ℏ
𝜎𝑦𝑃𝑦, (15)

n order to solve the Schrödinger equation 𝐻̂0𝛷𝑘(𝑦) = 𝜖𝛷𝑘(𝑦) one uses
the spinor wave-function as

𝛷𝑘(𝑦) ≡ ⟨𝑦|𝑘⟩

=
(𝜙↑

𝑘(𝑦)

𝜙↓
𝑘(𝑦)

)

=
(

𝑎
𝑏

)

𝑒𝑖𝑘𝑦, (16)

where 𝑎 and 𝑏 are constants. The energy spectrum 𝜖 can be found as a
solution of the following determinant
|

|

|

|

|

|

𝜖 − ℏ2𝑘2

2𝑚∗ −(𝛼 + 𝑖𝛽)𝑘

−(𝛼 − 𝑖𝛽)𝑘 𝜖 − ℏ2𝑘2

2𝑚∗

|

|

|

|

|

|

= 0, (17)

which yields

𝜖(𝑘) = ℏ2𝑘2

2𝑚∗ ±
√

𝑘2(𝛼2 + 𝛽2). (18)

The coefficients 𝑎 and 𝑏 are determined from the normalization condi-
tion |𝑎|2 + |𝑏|2 = 1 and from the relation

𝑏
𝑎
=
𝜖 − ℏ2𝑘2

2𝑚∗

𝑘(𝛼 + 𝑖𝛽)

=
𝑘(𝛼 − 𝑖𝛽)

𝜖 − ℏ2𝑘2
2𝑚∗

. (19)

Now the eigenvector reads

𝛷𝑘(𝑦) = 𝑎
( 1

±
√

𝛼−𝑖𝛽
𝛼+𝑖𝛽

|𝑘|
𝑘

)

𝑒𝑖𝑘𝑦. (20)

reen’s function is defined as a solution of the following differential
quation

𝜖 − 𝐻̂0]𝐺(𝑦, 𝑦′; 𝜖) = 𝛿(𝑦 − 𝑦′), (21)

here 𝐻̂0(𝑦)𝛷𝑘(𝑦) = 𝜆𝑘𝛷𝑘(𝑦). By writing 𝐺(𝑦, 𝑦′; 𝜖) = ⟨𝑦|𝐺(𝜖)|𝑦′⟩ and
𝛿(𝑦 − 𝑦′)𝐻̂0(𝑦) =

⟨

𝑦|𝐻̂0|𝑦′
⟩

, the differential equation for the Green’s
unction is rewritten as (𝜖 − 𝐻̂0)𝐺(𝜖) = 1, and one gets

𝐺(𝜖) = 1
𝜖 − 𝐻̂0

=
∑

𝑘

|𝑘⟩ ⟨𝑘|
𝜖 − 𝐻̂0

, (22)

r for 𝐺(𝑦, 𝑦′; 𝜖)

(𝑦, 𝑦′; 𝜖) =
⟨

𝑦|𝐺(𝜖)|𝑦′
⟩

=
∑

𝑘

⟨𝑦|𝑘⟩ ⟨𝑘|𝑦′⟩
𝜖 − 𝐻̂0

. (23)

The expression on the numerator seems to be the dyadic (or outer)
product of the eigen-vectors

⟨𝑦|𝑘⟩
⟨

𝑘|𝑦′
⟩

= 𝛷𝑘(𝑦)⊗ 𝛷̄𝑘(𝑦′)

= |𝑘⟩⊗ ⟨𝑘| ⋅ 𝑒𝑖𝑘(𝑦−𝑦
′)

= |𝑎|2
⎛

⎜

⎜

⎝

1 ±
√

𝛼−𝑖𝛽
𝛼+𝑖𝛽

|𝑘|
𝑘

±
√

𝛼+𝑖𝛽
𝛼−𝑖𝛽

|𝑘|
𝑘 1

⎞

⎟

⎟

⎠

(24)

‘‘Bare’’ Green’s functions for a free particle with energy 𝜖 propagating
from point 𝑦 to 𝑦′ are written

G±(𝑦, 𝑦′|𝜖) =
∞ 𝑑𝑘 𝑒𝑖𝑘(𝑦−𝑦′) (25)
3

∫−∞ 2𝜋 𝜖 − 𝐻̂0 ± 𝑖𝛿
here ± correspond to the retarded and advanced Green’s functions, 𝛿
s an infinitesimal. The denominator 𝐌 = 𝜖 − 𝐻̂0 ± 𝑖𝛿 is 2 × 2 matrix.
y multiplying it to the reverse matrix 𝐌−1 with 𝐌𝐌−1 = 𝐼 yields

G±(𝑦, 𝑦′|𝜖) = ∫

∞

−∞

𝑑𝑘
2𝜋
𝑒𝑖𝑘(𝑦−𝑦

′) 𝐠±

(𝜖 − ℏ2𝑘2
2𝑚∗ ) − (𝛼2 + 𝛽2)𝑘2 ± 𝑖𝛿𝑠𝑖𝑔𝑛(𝜖 − ℏ2𝑘2

2𝑚∗ )
,

(26)

here

± =

(

𝐺±
↑,↑ 𝐺±

↑,↓

𝐺±
↓,↑ 𝐺±

↓,↓

)

, and 𝐠± =
⎛

⎜

⎜

⎝

𝜖 − ℏ2𝑘2

2𝑚∗ (𝛼 + 𝑖𝛽)𝑘

(𝛼 − 𝑖𝛽)𝑘 𝜖 − ℏ2𝑘2

2𝑚∗

⎞

⎟

⎟

⎠

. (27)

We will integrate and express the ‘‘bare’’ Green’s functions in the
coordinate space. To this end, we calculate each component of the
Green’s function separately,

𝐺±
↑,↑(𝑦, 𝑦

′
|𝜖) = ∫

∞

−∞

𝑑𝑘
2𝜋
𝑒𝑖𝑘(𝑦−𝑦′)

×
𝜖 − ℏ2𝑘2

2𝑚∗

[𝜖 − ℏ2𝑘2

2𝑚∗ +
√

𝛼2 + 𝛽2 |𝑘| ± 𝑖𝛿][𝜖 − ℏ2𝑘2

2𝑚∗ −
√

𝛼2 + 𝛽2 |𝑘| ± 𝑖𝛿]

= − 𝑚∗

2𝜋ℏ2 ∫

∞

−∞
𝑑𝑘𝑒𝑖𝑘(𝑦−𝑦′)

{

1
(

𝑘 − 𝑚∗ 𝛼̃
ℏ2

)2 − 2𝑚∗𝜖
ℏ2

−
( 𝑚∗ 𝛼̃
ℏ2

)2 ∓ 𝑖𝛿

+ 1
(

𝑘 + 𝑚∗ 𝛼̃
ℏ2

)2 − 2𝑚∗𝜖
ℏ2

−
( 𝑚∗ 𝛼̃
ℏ2

)2 ∓ 𝑖𝛿

}

, (28)

where 𝛼̃ =
√

𝛼2 + 𝛽2. We replace the variable 𝜅 = 𝑘 − 𝑚∗𝛼̃∕ℏ2 under
he integrand, and take the integral by using the residue theorem. In
his case, we have to consider two different cases: (i) 𝑦− 𝑦′ > 0 and (ii)
𝑦 − 𝑦′ < 0. The result is written

±
↑,↑(𝑦, 𝑦

′
|𝜖) = ∓ 𝑖

𝑣∗𝐹ℏ
cos

[

𝑚∗𝛼̃
ℏ2

(𝑦 − 𝑦′)
]

𝑒±𝑖
𝑃∗𝐹
ℏ |𝑦−𝑦′|, (29)

where 𝑃 ∗
𝐹 =

√

2𝑚∗𝜖 + (𝑚∗𝛼̃)2 and 𝑣∗𝐹 = 𝑃 ∗
𝐹 ∕𝑚

∗ =
√

2𝜖∕𝑚∗ + 𝑚∗(𝛼̃)2. It is
clear that

𝐺±
↓,↓(𝑦, 𝑦

′
|𝜖) = 𝐺±

↑,↑(𝑦, 𝑦
′
|𝜖). (30)

ow, we calculate the non-diagonal components of the Green’s func-
ion.

±
↑,↓(𝑦, 𝑦

′
|𝜖) = ∫

∞

−∞

𝑑𝑘
2𝜋
𝑒𝑖𝑘(𝑦−𝑦′)

×
(𝛼 + 𝑖𝛽)𝑘

[𝜖 − ℏ2𝑘2

2𝑚∗ +
√

𝛼2 + 𝛽2 |𝑘| ± 𝑖𝛿][𝜖 − ℏ2𝑘2

2𝑚∗ −
√

𝛼2 + 𝛽2 |𝑘| ± 𝑖𝛿]

= − 𝑚∗

2𝜋ℏ2

√

𝛼 + 𝑖𝛽
𝛼 − 𝑖𝛽 ∫

∞

−∞
𝑑𝑘𝑒𝑖𝑘(𝑦−𝑦′)

×
{

1
(

𝑘 − 𝑚∗ 𝛼̃
ℏ2

)2 − 2𝑚∗𝜖
ℏ2

−
( 𝑚∗ 𝛼̃
ℏ2

)2 ∓ 𝑖𝛿

+ 1
(

𝑘 + 𝑚∗ 𝛼̃
ℏ2

)2 − 2𝑚∗𝜖
ℏ2

−
( 𝑚∗ 𝛼̃
ℏ2

)2 ∓ 𝑖𝛿

}

, (31)

By applying the same procedure that we used in calculation of the
integral in Eq. (28), we get the expression

𝐺±
↑,↓(𝑦, 𝑦

′
|𝜖) = ∓ 1

𝑣∗𝐹ℏ

√

𝛼 + 𝑖𝛽
𝛼 − 𝑖𝛽

sin
[

𝑚∗𝛼̃
ℏ2

(𝑦 − 𝑦′)
]

𝑒±𝑖
𝑃∗𝐹
ℏ |𝑦−𝑦′|. (32)

and

𝐺±
↓,↑(𝑦, 𝑦

′
|𝜖) = ∓ 1

∗

√

𝛼 − 𝑖𝛽
sin

[

𝑚∗𝛼̃
2
(𝑦 − 𝑦′)

]

𝑒±𝑖
𝑃∗𝐹
ℏ |𝑦−𝑦′|. (33)
𝑣𝐹ℏ 𝛼 + 𝑖𝛽 ℏ
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4. The diagrammatic method of Berezinskii in the presence of
Rashba- and Dresselhaus SOIs

We write the Green’s function as 2 × 2 matrix. This matrix can be
decomposed as a multiplication of two matrices as

G±(𝑦, 𝑦′|𝜖) = ∓ 𝑖
2𝑣∗𝐹ℏ

𝑒±𝑖
𝑃∗𝐹
ℏ |𝑦−𝑦′|

⎛

⎜

⎜

⎜

⎝

𝑒𝑖
𝑚∗ 𝛼̃
ℏ2

𝑦, 𝑒−𝑖
𝑚∗ 𝛼̃
ℏ2

𝑦

−
√

𝛼−𝑖𝛽
𝛼+𝑖𝛽 𝑒

𝑖 𝑚
∗ 𝛼̃
ℏ2

𝑦,
√

𝛼−𝑖𝛽
𝛼+𝑖𝛽 𝑒

−𝑖 𝑚
∗ 𝛼̃
ℏ2

𝑦

⎞

⎟

⎟

⎟

⎠

×

⎛

⎜

⎜

⎜

⎝

𝑒−𝑖
𝑚∗ 𝛼̃
ℏ2

𝑦′ , −
√

𝛼+𝑖𝛽
𝛼−𝑖𝛽 𝑒

−𝑖 𝑚
∗ 𝛼̃
ℏ2

𝑦′

𝑒𝑖
𝑚∗ 𝛼̃
ℏ2

𝑦′ ,
√

𝛼+𝑖𝛽
𝛼−𝑖𝛽 𝑒

𝑖 𝑚
∗ 𝛼̃
ℏ2

𝑦′

⎞

⎟

⎟

⎟

⎠

(34)

he Green’s function in the matrix form is again factorizable, as it is
n the conventional Berezinskii’s technique. Nevertheless, in difference
rom the conventional technique, now the Green’s function depends
n the direction and we cannot order the impurity coordinates. After
eaking up the coordinate-dependent factors and transferring them to
he vertices 𝑦 and 𝑦′, the coordinate dependence of the Green’s function
s transferred from the line to the vertex. We now draw all possible
ertices and calculate them. Fig. 1 shows all possible internal vertices
iving a contribution to the correlators. Let us calculate in detail the
nternal impurity vertices 𝑎 (𝑎′) and 𝑒

(𝑎 (𝑎′)) = 𝑐𝑖𝑚𝑝

(

−𝑖
2ℏ𝑣∗𝐹

)2 ⎛
⎜

⎜

⎝

𝑒𝑖𝑦, 𝑒−𝑖𝑦

−
√

−
+ 𝑒

𝑖𝑦,
√

−
+ 𝑒

−𝑖𝑦

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

𝑒−𝑖𝑦, −
√

+
− 𝑒

−𝑖𝑦

𝑒𝑖𝑦,
√

+
− 𝑒

−𝑖𝑦

⎞

⎟

⎟

⎟

⎠

×

(

𝑉 , 0

0, 𝑉

)

⎛

⎜

⎜

⎝

𝑒𝑖𝑦, 𝑒−𝑖𝑦

−
√

−
+ 𝑒

𝑖𝑦,
√

−
+ 𝑒

−𝑖𝑦

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

𝑒−𝑖𝑦, −
√

+
− 𝑒

−𝑖𝑦

𝑒𝑖𝑦,
√

+
− 𝑒

−𝑖𝑦

⎞

⎟

⎟

⎟

⎠

(

𝑉 , 0

0, 𝑉

)

= −𝑐𝑖𝑚𝑝

(

1
ℏ𝑣∗𝐹

)2
𝑉0𝐼0

= − 1
𝑙+𝑆𝑂

𝐼0, (35)

𝑒) = 𝑐𝑖𝑚𝑝

(

−𝑖
2ℏ𝑣∗𝐹

)(

𝑖
2ℏ𝑣∗𝐹

)

𝑒2𝑖
𝑝∗

′
𝐹 −𝑝∗𝐹
ℏ 𝑦

⎛

⎜

⎜

⎝

𝑒𝑖𝑦, 𝑒−𝑖𝑦

−
√

−
+ 𝑒

𝑖𝑦,
√

−
+ 𝑒

−𝑖𝑦

⎞

⎟

⎟

⎠

×

⎛

⎜

⎜

⎜

⎝

𝑒−𝑖𝑦, −
√

+
− 𝑒

−𝑖𝑦

𝑒𝑖𝑦,
√

+
− 𝑒

−𝑖𝑦

⎞

⎟

⎟

⎟

⎠

(

𝑉 , 0

0, 𝑉

)

⎛

⎜

⎜

⎝

𝑒𝑖𝑦, 𝑒−𝑖𝑦

−
√

−
+ 𝑒

𝑖𝑦,
√

−
+ 𝑒

−𝑖𝑦

⎞

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

𝑒−𝑖𝑦, −
√

+
− 𝑒

−𝑖𝑦

𝑒𝑖𝑦,
√

+
− 𝑒

−𝑖𝑦

⎞

⎟

⎟

⎟

⎠

(

𝑉 , 0

0, 𝑉

)

= 𝑐𝑖𝑚𝑝
⎛

⎜

⎜

⎝

𝑒
𝑖 𝜔
ℏ𝑣∗𝐹

𝑦

ℏ𝑣∗𝐹

⎞

⎟

⎟

⎠

2

𝑉0𝐼0

= 𝑒
2𝑖 𝜔
ℏ𝑣∗𝐹

𝑦

𝑙−𝑆𝑂
𝐼0, (36)

here we use the following shortcut: 𝑒±𝑖𝑦 instead of 𝑒±𝑖
𝑚∗ 𝛼̃
ℏ2

𝑦 and
√

±
∓

instead of
√

𝛼±𝑖𝛽
𝛼∓𝑖𝛽 ; 𝐼0 =

(

1, 0
0, 1

)

, 𝑝∗′𝐹 − 𝑝∗𝐹 =
√

2𝑚∗(𝜖 + 𝜔) + (𝑚∗𝛼̃)2 −

2𝑚∗𝜖 + (𝑚∗𝛼̃)2 ≈ 𝜔
𝑣∗𝐹

for small external frequency 𝜔. 𝑉0 in the above
expressions corresponds to the correlator of the impurity potential. For
the white-noise Gaussian random potential ⟨𝑉 (𝑦)⟩ = 0 and 𝑉 (𝑦 − 𝑦′) =
⟨𝑉 (𝑦)𝑉 (𝑦′)⟩ = 𝑐𝑖𝑚𝑝𝑉0𝛿(𝑦 − 𝑦′)∕ℏ2𝑣∗2𝐹 ≡ 𝑙−1𝛿(𝑥 − 𝑥′), where the mean-
free path is defined as 𝑙−1 = (𝑙± )−1 = 𝑐 𝑉 ∕ℏ2𝑣∗2. All other internal
4

𝑆𝑂 𝑖𝑚𝑝 0 𝐹
vertices are calculated in a similar way and give the following results:

(𝑏 (𝑏′)) = −𝐼0∕2𝑙−𝑆𝑂 − 𝐼0∕2𝑙+𝑆𝑂; (𝑐 (𝑐′)) = −𝐼0∕𝑙−𝑆𝑂; (𝑑) = 𝐼0∕𝑙+𝑆𝑂;

(𝑓 ) = 𝑒
−2𝑖 𝜔

ℏ𝑣∗𝐹
𝑦

𝑙−𝑆𝑂
𝐼0.

(37)

It is necessary to note here that although we used the white-noise
potential in these calculations, it is possible to generalize the random
potential within the Born approximation, where the impurity potential
correlator should not be proportional to 𝛿-function. The potential is
considered to be weak enough and does not overlap each other. This
means that the width 𝑏 of a single impurity potential is much smaller
than the average distance 𝑐−1𝑖𝑚𝑝 between the impurities. The mean free
path is the largest distance scale 𝑏 ≪ 𝑐−1𝑖𝑚𝑝 ≪ 𝑙 within the Born approx-
imation, and the impurity potential is characterized by the correlator
of a width of order 𝑏

𝑉 (𝑦 − 𝑦′) =
⟨

𝑉 (𝑦)𝑉 (𝑦′)
⟩

. (38)

The impurity vertices become vertical lines, as they are in the case of
𝛿-correlated white-noise potential, after integration over the internal
variables 𝑦− 𝑦′, which yields the following expression for the essential
vertices
1
𝑙+𝑆𝑂

= 2
𝑣∗2𝐹

∫

∞

0
𝑈 (𝑦)𝑑𝑦; and

1
𝑙−𝑆𝑂

= 2
𝑣∗2𝐹

∫

∞

0
𝑈 (𝑦) cos

[

2𝑝∗𝐹 (𝜖)𝑦
]

𝑑𝑦.
(39)

The parameters 𝑙−𝑆𝑂 and 𝑙+𝑆𝑂 can be interpreted as the mean free
aths of backward and forward scatterings, correspondingly. The main
rgument in the selection of the internal vertices, given in Fig. 1, is
hat these vertices do not contain strongly oscillating factor of the type
xp(𝑖𝑘𝐹 𝑦𝑗 ). The vertices containing such kind of strongly oscillating
actor give a small contribution, in the parameter of selection 𝑘𝐹 𝑙 ≫ 1
r 𝜖𝜏− ≫ 1 for weak randomness, after integration over 𝑦𝑗 . The external
ertices, depicted in Fig. 2 contain the factor exp(𝑖𝜔𝑦∕𝑣), which does not
scillate strongly for the frequency of an external field, satisfying the
ondition 𝜔 ≪ 𝜖. The following expression corresponds to the external
ertex (a) in Fig. 2

𝑎) =
√

−𝑖
2ℏ𝑣∗𝐹

√

𝑖
2ℏ𝑣∗𝐹

𝑒−𝑖
𝑝∗,𝐹 −𝑝∗𝐹

ℏ 𝑦′
⎛

⎜

⎜

⎜

⎝

𝑒−𝑖𝑦′ , −
√

+
− 𝑒

−𝑖𝑦′

𝑒𝑖𝑦′ ,
√

+
− 𝑒

−𝑖𝑦′

⎞

⎟

⎟

⎟

⎠

×
⎛

⎜

⎜

⎝

𝑒𝑖𝑦′ , 𝑒−𝑖𝑦′

−
√

−
+ 𝑒

𝑖𝑦′ ,
√

−
+ 𝑒

−𝑖𝑦′

⎞

⎟

⎟

⎠

= 𝑒
−𝑖 𝜔

ℏ𝑣∗𝐹
𝑦′

ℏ𝑣∗𝐹
𝐼0.

(40)

All other external vertices are calculated in a similar way and have the
form:

(𝑏) = 𝑒
𝑖 𝜔
ℏ𝑣∗𝐹

𝑦′

ℏ𝑣∗𝐹
𝐼0; (𝑐) = 𝑒

−𝑖 𝜔
ℏ𝑣∗𝐹

𝑦

ℏ𝑣∗𝐹
𝐼0; (𝑑) = 𝑒

𝑖 𝜔
ℏ𝑣∗𝐹

𝑦

ℏ𝑣∗𝐹
𝐼0. (41)

The calculations show that all possible impurity vertices do not
differ from those given in Ref. Berezinskii [30], except that they are
written in a 2 × 2 matrix form and the Fermi velocity 𝑣∗𝐹 now depends
on the SO coupling constants.

5. Electron density distribution

Behavior of the density–density correlator 𝜒0(𝑦 − 𝑦′; 𝑡 − 𝑡′) at large
time |𝑡 − 𝑡′|≫ 𝜏0 and distance |𝑦 − 𝑦′|≫ 𝑙−𝑆𝑂 describes character of the
localization. The large time scale corresponds to low frequency case
𝜈 = 2𝜔𝜏0 ≫ 1, where the diagrams with large 𝑚 ≈ 𝜈−1 ≫ 1 give
main contribution to the correlators. This limit allows to transform
the discrete difference equations, Eqs. (45)–(51), to the differential
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Fig. 1. The possible internal impurity vertices given contribution in the weak randomness limit 𝜖𝐹 𝜏 ≫ 1. Single- and double-lines correspond to the retarded- and advanced Green’s
functions. The wavy-line shows the impurity vertex for the random potential. Vertices 𝑎′ , 𝑏′ and 𝑐′ differ from 𝑎, 𝑏 and 𝑐 by replacing the single lines by double lines.
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Fig. 2. The possible external vertices giving contribution to the essential diagrams.

quations in term of continuous variable 𝑝 = −𝑖𝜈𝑚. Routine calculations
how that 𝜒0(𝑦, 𝑡) yields a stationary distribution as 𝑡→ ∞

𝑝∞(𝑦) = 𝜒0(𝑦, 𝑡)|𝑡→∞

≈
( 𝜋
16

)
3
2 1
4𝑙−𝑆𝑂

(4𝑙−𝑆𝑂
|𝑦|

)3∕2

exp
(

−
|𝑦|
4𝑙−𝑆𝑂

)

. (42)

he distribution is depicted in Fig. 3. Four different cases, 𝑙𝑆𝑂
𝑙0

=
(𝑚∗ 𝛼̃)2
2𝜖 = 0; 0.5; 1 and 1.5, are presented in Fig. 3 by solid (red), dashed

cyan), dot-dashed (blue) and dotted (orange) curves, correspondingly,
here 𝑙−𝑆𝑂 = 𝑙0 + 𝑙𝑆𝑂 and 𝑙0 = 2ℏ2𝜖

𝑐𝑖𝑚𝑝𝑉0𝑚∗ , 𝑙𝑆𝑂 = ℏ2𝑚∗ 𝛼̃2

𝑐𝑖𝑚𝑝𝑉0
. The exponential

decay of the distribution function clearly shows that even two impu-
rities are enough to localize an electron in the 1𝐷 disordered system,
and the localization length 𝑙𝑙𝑜𝑐 = 4𝑙−𝑆𝑂. It is seen from the figure that
the peak becomes smaller with increasing 𝛼̃. This feature demonstrates
that the Rashba and Dresselhaus SO terms equally and independently
contribute to the localized state.

6. Conclusions

In this work, we study the effect of randomly distributed impurities
in a one-dimensional wire in the presence of Rashba and Dressel-
haus SO interactions. For this purpose, we constructed a diagrammatic
method as an extension of the Berezinskii technique to the problem
with spin–orbit interaction. It is worthy to notice that the results in this
work are not pure academic ones, but they can be used to understand
and to interpret the experimental measurements on a single dislocation
and on Si(557)-Au, Si(553)-Au and other Au chain structures on vici-
nal Si(111). Indeed, core of a dislocation consists of dangling bonds.
Strong deformation potential around the dislocation core attracts the
impurities, forming an impurity ‘cloud’ around the dislocation core. The
potential derivative in the radial direction is nonzero, which is a source
of the Rashba SO coupling in a single dislocation.
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Appendix. Derivation of the correlators

For 𝑦 > 𝑦′ a diagram for the average value of the correlator
+(𝑦, 𝑦′|𝜖 + 𝜔)𝐺−(𝑦′, 𝑦|𝜖) can be subdivided into three parts: right (to

he right of 𝑦), central (between 𝑦 and 𝑦′), and left (to the left of 𝑦′)
art. We denote the sum of the right-parts (left-parts) of all possible
iagrams, having 2𝑚 single- and 2𝑚 double-lines in the cross-section
y 𝑅𝑚(𝑦) (𝐿𝑚(𝑦′)), and the sum of the central parts of all diagrams by
𝑚′ ,𝑚(𝑦′, 𝑦). The selected vertices have such symmetry that they either
o not change the number of both single and double lines or change
he number of the lines symmetrically 𝛥𝑚 = 𝛥𝑚′ = ±1. The right-part
f the diagrams can be constructed by successively joining all internal
ertices in Fig. 1 to the right of already constructed right-part [30,34]
𝑑
𝑑𝑦
𝑅𝑚(𝑦) =

1
𝑙−𝑆𝑂

{

𝑚2𝑅𝑚−1(𝑦)𝑒
2𝑖𝜔𝑦∕𝑣∗𝐹 + 𝑚2𝑅𝑚+1(𝑦)𝑒

−2𝑖𝜔𝑦∕𝑣∗𝐹

− 2𝑚2𝑅𝑚(𝑦)
}

.
(43)

quation for the right-part 𝑅𝑚(𝑦) and left-part 𝑅𝑚′ (𝑦′) are simplified
fter replacements

𝑚(𝑦) = 𝑅𝑚𝑒
2𝑖𝑚𝜔𝑦∕𝑣∗𝐹 , and 𝑅𝑚′ (𝑦′) = 𝑅𝑚′𝑒−2𝑖𝑚

′𝜔𝑦′∕𝑣∗𝐹 , (44)

here 𝑅𝑚 and 𝑅𝑚′ obey the same equation

𝜈𝑚𝑅𝑚 + 𝑚2 (𝑅𝑚+1 + 𝑅𝑚−1 − 2𝑅𝑚
)

= 0 (45)

ith the boundary condition 𝑅0 = 1 and 𝜈 = 2𝜔𝜏−.
The equation for the central part 𝑍𝑚′ ,𝑚

(

𝑦′, 𝑦
)

reads

𝑑
𝑑𝑦
𝑍𝑚′ ,𝑚

(

𝑦′, 𝑦
)

= 𝑖𝜔
𝑣
𝑍𝑚′ ,𝑚

(

𝑦′, 𝑦
)

+ 1
𝑙−𝑆𝑂

{

𝑚2𝑍𝑚′ ,𝑚−1𝑒
−2𝑖𝜔𝑦∕𝑣∗𝐹

+ (𝑚 + 1)2𝑍𝑚′ ,𝑚+1𝑒
2𝑖𝜔𝑦∕𝑣∗𝐹

−
[

2𝑚2 + (𝑚 + 1)2
]

𝑍𝑚′ ,𝑚(𝑦′, 𝑦)
}

. (46)

ubscript 𝑚 (𝑚′) in the central part show that there are 2𝑚+1 (2𝑚′ +1)
ingle and double lines in the cross-section at 𝑦−0 (𝑦′+0). The boundary
ondition for 𝑍𝑚′ ,𝑚(𝑦′, 𝑦) as 𝑦→ 𝑦′ + 0

𝑚′ ,𝑚
(

𝑦′, 𝑦′ + 0
)

= 𝛿𝑚′ ,𝑚. (47)

eft-, central- and right-parts are combined and summed up for each
air of the external vertices. Final expression for the correlators can be
hown

𝑎(𝑘, 𝜔) =
2𝑙−𝑆𝑂
𝜋

∑

𝑚
𝑃 𝑎𝑚(𝜔)

{

𝑄𝑎𝑚(𝑘, 𝜔) +𝑄
𝑎
𝑚(−𝑘, 𝜔)

}

, (48)

where

𝑃 0(𝜔) = 1 (𝑅 + 𝑅 ); and 𝑃 1(𝜔) = 𝑅 − 𝑅 . (49)
𝑚 2 𝑚 𝑚+1 𝑚 𝑚 𝑚+1
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Fig. 3. Distribution of the electron density 𝑝∞(𝑦) in the localized state for |𝑦|≫ 𝑙−𝑆𝑂 .
The central part is replaced by new block 𝑄𝑚 by means of the following
transformation

𝑄𝑎𝑚(𝑘, 𝜔) =
1

4𝑙−𝑆𝑂

∞
∑

𝑚′=0
∫

∞

𝑦′
𝑑𝑦𝑒𝑖𝑘(𝑦

′−𝑦)𝑒−2𝑖𝜔𝑚
′𝑦′∕𝑣∗𝐹𝑍𝑚′ ,𝑚(𝑦′, 𝑦)𝑒

2𝑖𝜔𝑚𝑦∕𝑣∗𝐹 𝑃 𝑎𝑚′ ,

(50)

and obeys the recurrence equation

𝑖𝜈
(

𝑚 + 1
2

)

𝑄𝑎𝑚+(𝑚 + 1)2
(

𝑄𝑎𝑚+1 −𝑄
𝑎
𝑚
)

−𝑚2 (𝑄𝑎𝑚 −𝑄𝑎𝑚−1
)

−𝑖𝜅𝑄𝑎𝑚+𝑃
𝑎
𝑚 = 0,

(51)

where 𝜅 = 𝑘𝑙−𝑆𝑂. Solution of Eqs. (45), (51) with (48) allows to calculate
the expression for the density–density (13) and charge–charge (14)
correlators.
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