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Abstract—We present a parametric equivalent circuit model 
for a circular CMUT in collapsed mode. First, we calculate 
the collapsed membrane deflection, utilizing the exact electri-
cal force distribution in the analytical formulation of mem-
brane deflection. Then we develop a lumped element model of 
collapsed membrane operation. The radiation impedance for 
collapsed mode is also included in the model. The model is 
merged with the uncollapsed mode model to obtain a simula-
tion tool that handles all CMUT behavior, in transmit or re-
ceive. Large- and small-signal operation of a single CMUT can 
be fully simulated for any excitation regime. The results are in 
good agreement with FEM simulations.

I. Introduction

Accurate modeling of capacitive micromachined ul-
trasonic transducers (CMUTs) is essential to reach 

a successful design without trial and error. Because a 
CMUT’s mechanical operation is distributed and nonlin-
ear, its modeling is not straightforward. There have been 
several approaches reported in the literature. The most 
reliable, and very commonly used, method has been fi-
nite element modeling (FEM) [1]–[3]. In the finite element 
analysis environment, the operation of a CMUT mem-
brane can be simulated with high accuracy at the cost of 
extensive computation and time consumption. This com-
putation cost forces researchers to use alternative methods 
for predicting CMUT operation. These methods include 
characterization of CMUT behavior using experimental 
observations [4]–[6], analytical calculation of the distrib-
uted membrane bending and the electrical-mechanical 
energy transfer efficiency [7]–[10], and defining lumped 
elements to develop models suitable for dynamic simula-
tions. Electrical circuit elements constitute a convenient 
basis for lumped element modeling. Starting from Mason’s 
model for acoustic transducers [11], equivalent circuit 
modeling has been improving as a powerful alternative to 
FEM [9], [12]–[15], especially for array modeling [16]–[18]. 
The studies directed toward understanding and modeling 
mutual impedance of CMUT arrays [2], [4], [17], [19], [20] 

have helped to improve the accuracy of lumped element 
simulations.

CMUTs are commonly used in large arrays. The opera-
tion of large CMUT arrays can only be predicted using 
lumped element modeling, because the computation cost 
of FEM exponentially increases with increasing cell count. 
Currently, the uncollapsed-mode operation of CMUT ar-
rays is well understood through equivalent circuit model 
simulations [17]. The mechanical and electrical properties 
of uncollapsed-mode operation are perfectly adapted to 
the lumped model [21].

On the other hand, the collapsed-mode operation has 
not been completely modeled so far, because it has not 
been possible to obtain an analytical expression for the 
collapsed membrane bending.

Collapsed mode offers high coupling efficiency, as 
shown in [22]. In [23], it was observed that a CMUT can 
produce higher transmit power in collapsed mode than in 
uncollapsed mode. To explore this mode further, and per-
form array simulations, it is necessary to obtain a lumped 
element model. An equivalent circuit model for collapsed 
mode was previously introduced in [24]; however, it was 
not a fully parametric model. Numerical calculations of 
the bending profile of a specific CMUT design were adapt-
ed to the model; hence, new numerical calculations had 
to be carried out for every new set of design parameters. 
Also, the bending profile calculations were done utilizing 
Timoshenko’s [25] uniform force solution, and this unifor-
mity approximation did not result in high accuracy.

In this work, a fully parametric model for a CMUT 
in collapsed mode is obtained. First, the collapsed mem-
brane bending is calculated with high accuracy, utilizing 
the nonuniform electrostatic force expression in Timosh-
enko’s equation instead of the uniform force approxima-
tion. The calculations are then adapted to the lumped 
element model of [21]. We model the collapsed-mode op-
eration of a single CMUT at FEM accuracy, including the 
self-radiation impedance of collapsed mode [26]. We also 
merge the model with the uncollapsed mode part given in 
[18] and obtain a single model for the entire large-signal 
operation of the CMUT.

II. Calculation of Bending Profile  
in Collapsed Mode

Fig. 1 shows a CMUT cell in the collapsed mode; Table 
I lists the description of relevant variables.
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A. Accurate Formulation of Deflection-Force Relation

Timoshenko [25] provides the formulation for the bend-
ing profile x(r) for a circularly symmetrical pressure dis-
tribution P(r) on a circular plate as
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where r is the radial variable, and D = Etm3 212(1 )/ − υ .
A convenient approach for calculation of uncollapsed 

membrane bending is to approximate all forces with an 
equivalent uniform pressure distribution across the mem-
brane. This way, x(r) can be expressed analytically and can 
also be used to obtain analytical expressions for lumped 
electrical force, capacitance, and mechanical compliance.

On the other hand, this uniform pressure approxima-
tion does not yield accurate results for a collapsed mem-
brane, because the electrical force distribution is highly 
nonuniform in collapsed mode. In previous studies [24], it 
was observed that the calculated contact radius turns out 
to be smaller than expected when the force distribution 
on the membrane is assumed to be uniform. In reality, the 
electrical force increases significantly close to the contact 
point because of the decreased gap, exerting a higher pull-
ing force in this region compared with the periphery.

We utilize the real force distribution, which we call the 
model force, in Timoshenko’s equation:
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Here, the pressure term P(r) is replaced with the electri-
cal force density at every point on the membrane, added 
to the remaining uniformly distributed static pressure Pb. 
Pb accounts for the ambient atmospheric or hydrostatic 
pressure. tge is the effective gap height, with tge = tg +  
ti/εr, where tg is the gap height, ti is the insulator thick-
ness, and εr is the relative dielectric permittivity of the 
insulator, as given in Table I. The electrical force density 

is the electrostatic force on the unit area capacitor with a 
gap tge − x(r), having a voltage V across it.

There is no analytical solution for x(r) of (2). We first 
normalize the variables and rearrange (2) into the generic 
form
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where the normalized variables are
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Pg is the pressure that corresponds to a peak membrane 
displacement of tge at zero bias (x(0) = 1), and Vr is the 
collapse voltage at vacuum [21]:
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The boundary conditions of the differential equation in 
(3) can be written as
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The input parameters are V/Vr, Pb/Pg, and tg/tge. The 
resulting b  and x r( ) are calculated using the algorithm 
described in the next section.

B. Solution Algorithm

Our strategy of solving (3) under the boundary condi-
tions of (6) is expressing the force term in such a way that 
an analytical solution can be obtained. If the pressure 
term can be expressed as a Kth degree polynomial, as in
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an analytical solution exists:

Fig. 1. The dimensional parameters of a CMUT in collapsed mode.

TABLE I. Description of Parameters. 

a Membrane radius
b Contact radius in case of collapse
x(r) Displacement profile
ε0 Dielectric permittivity of air
εr Relative dielectric permittivity of insulator
tg Gap height
ti Insulator thickness
tge Effective gap height: tge = tg + ti/εr
tm Membrane thickness
E Young’s modulus of membrane material
υ Poisson’s ratio of membrane material
ρ Density of membrane material
D Flexural rigidity of membrane material
ρ0 Density of immersion medium
c0 Speed of sound in immersion medium
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where A1, A2, A3, and A4 are the constants of integration.
We use (8) in our iterative solution routine as shown in 

Fig. 2 and as follows:

	 0) 	Given the physical parameters, the normalized static 
force, and the excitation voltage, start with an initial 
guess of the pressure distribution. To enable faster 
convergence, the following linearly varying distribu-
tion is used as the initial guess:1
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	 1) 	A polynomial with coefficients cn (n = 0, 1, …, K) is 
fitted to the pressure distribution. To achieve con-
vergence in all cases, we set K = 14. Substituting 
this polynomial into (7), an analytical expression for 
x r( ) in (8) with five unknowns (A1, A2, A3, A4, and 
b ) is obtained. The first four boundary conditions in 
(6) are solved with a symbolic math package to ex-
press Ai in terms of b . Then, the last boundary con-
dition is used to determine b  by finding the zero-
crossing point.

	 2) 	Using the obtained bending profile, x r( ), the new 
pressure distribution is calculated through the elec-

trical force density expression in the right-hand side 
of (3):
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	 3) 	Go to step 1 and repeat until b  converges to a value 
within �0.1% difference between successive itera-
tions.

Plots for x r( ) calculations are given in Fig. 3, showing 
the difference between the bending profiles obtained with 
uniform pressure approximation, and model force with Pb 
= 0. There are four cases for a CMUT of tg/tge = 0.9. In 
the uncollapsed mode, close to the collapse point, where 
xP = x(0) = 0.45 (normalized peak displacement), the two 
profiles are very similar. This means that the uniform 
pressure approximation can be used for predicting uncol-
lapsed-mode operation. However, as the displacement in-
creases and the membrane enters the unstable region, the 
profiles start to diverge from each other, as seen in the xP 
= 0.7 plot. At the snapback point where the membrane 
barely touches bottom, and in the collapsed mode, the dif-
ference is even larger. At snapback, the uniform pressure 
approximation gives V = 0.55Vr and xR = 0.402 (normal-
ized rms displacement),2 whereas the model force results 
in V = 0.58Vr and xR = 0.358.

C. Results: Collapse and Snapback

The transduction force, capacitance, and compliance of 
a CMUT are determined by the deflection profile. The pro-
file depends both on the normalized static pressure, which 
is uniformly distributed, and on the electrical force. In the 
model presented in this work, the effect of the profile is 
uniquely summarized in rms displacement. Although one 
can have the same rms displacement for different combina-
tions of normalized static ambient pressure and electrical 
force, for a given pair of Pb/Pg and tg/tge, electrical force 

Fig. 2. Demonstration of iterative algorithm for solving x r( ). 

Fig. 3. Normalized deflection profiles of uniform pressure-loaded (V = 0) 
and model force-loaded (Pb = 0) membranes with tg/tge = 0.9. Both 
profiles have the same peak displacements (xP  = 0.45 and 0.7) in uncol-
lapsed mode, and the same contact radius at snapback (b  = 0) and in 
collapsed mode (b  = 0.25). 

1	The initial pressure should be sufficiently high to make the membrane 
collapse. 2	This is defined by xR = 1 ( ) 2 ( )2

0

2
/ dπ πa rx r r
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and the model elements can be uniquely defined as func-
tions of rms displacement.

In Fig. 4, the normalized rms displacement (xR =  
xR/tge) is plotted as a function of normalized bias voltage 
(V/Vr), similar to the CMUT biasing chart of [21]. The 
uncollapsed mode static analysis result for vacuum (Pb = 
0), obtained with the uniform pressure approximation 
given in Fig. 5 of [21] is shown here with a dashed curve. 
The model force result shown in the plot (solid curve) is 
obtained also in vacuum, and the electrical force distribu-
tion on the membrane is highly nonuniform in the unsta-
ble region and in the collapsed region. Results obtained 
with the uniform pressure approximation of electrical 
force considerably diverge from the model force results in 
these regions. This is the source of the error in the predic-
tion of snapback voltage in [24].

The transition from the uncollapsed mode to the col-
lapsed mode happens at a voltage level where the mem-
brane quickly passes through the unstable region and 
reaches a new balance point in the collapsed region (up-
ward arrow). The snapback transition from the collapsed 
mode (at zero contact radius) to the uncollapsed mode 
occurs at a lower voltage (downward arrow).

III. Lumped Element Model of a Single CMUT  
in Collapsed Mode

The static calculations of collapsed membrane bending 
are used to define the elements in the lumped model of 
Fig. 5.

As seen from the electrical side, the CMUT behaves 
like a capacitor whose value depends on instantaneous 
membrane displacement. On the left side of Fig. 5, this 
is represented with C0, the undeflected membrane capaci-
tance, and two current sources, iC and iV [21]
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where C is the instantaneous electrical capacitance.
In the electrical analogy of CMUT mechanics, the 

through and across variables are the rms velocity vR and 
the corresponding energy-conserving rms force fR [21]. On 
the right side of Fig. 5, we see the rms forces acting on the 
membrane: the electrical force fR, the force resulting from 
ambient pressure FRb, and the dynamic external force fRI.

The membrane exerts a restoring force determined by 
its compliance CRm. In the uncollapsed mode, the compli-
ance has a fixed value [21] of
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The instantaneous values of C and CRm, and hence the 
transduction force, are determined by the instantaneous 
rms displacement. The static and instantaneous values are 
the same for each of these lumped model elements and 
force.

Because the through variable in the model is chosen as 
rms velocity, the model inductance, which conserves the 
energy, is the mass of the membrane [18], [21], [24]:

	 L a tRm m= .2π ρ 	 (12)

The dynamic lumped element model is completed by 
terminating the acoustic port by appropriate radiation im-
pedance [25]. The radiation impedance ZRR is dependent 
on the instantaneous contact radius, and consequently on 
rms displacement.

A large set of static bending calculations is obtained to 
define the lumped parameters’ dependence on xR, tg/tge, 
and Pb/Pg. For each bending profile solution, C is calcu-
lated first and it is used to find fR and CRm.

Static analysis solutions for x r( ) are obtained at seven 
different values of tg/tge = 0.4, 0.5, 0.6, 0.65, 0.73, 0.82, 
and 0.9, and interpolation can be done for intermediate 
values. When tg/tge is less than 0.4, the profile is the same 
as for uniform force distribution. When tg/tge is chosen 
larger than 0.9, the iterations do not converge; hence, the 
model is valid up to this value.

For each tg/tge value, Pb/Pg = 0, 0.2, 1, and 2 cases are 
analyzed, because the intermediate values can be accu-

Fig. 4. Normalized displacement xR as a function of normalized applied 
voltage VDC/Vr in uncollapsed and collapsed modes for tg/tge = 0.73. 

Fig. 5. The equivalent electrical circuit model of a CMUT with the 
through variable vR.
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rately interpolated from the data obtained at those static 
pressure levels.

For each case, solutions are obtained at 50 values of 
(V/Vr) between the normalized snapback voltage (the 
voltage level at which the membrane exits collapse mode) 
and a large value, 10. Therefore, a total of 1400 normal-
ized cases are analyzed. With each sweep of (V/Vr), keep-
ing tg/tge and Pb/Pg fixed, we obtained curves of C, CRm, 

and b .

A. Capacitance

The capacitance C for a given deflection profile x r( ) is

	 C C
r
x r r=

2
1 ( )0
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∫ −
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In Fig. 6, the calculated C/C0 values are plotted as a 
function of xR for different values of tg/tge. For demonstra-
tion purposes, only the Pb/Pg = 0.2 case is given. When 
the membrane is uncollapsed, normalized capacitance is 
not affected by tg/tge. In collapsed mode, the membrane 
can approach the substrate more for larger values of tg/tge 
(thin insulator), and both the capacitance and the rms 
displacement can be comparatively large. As tg/tge de-
creases (larger insulator thickness), both the displacement 
and the capacitance assume smaller values. The dashed 
line is the plot of uncollapsed mode capacitance calculated 
using the formula of uniform pressure approximation giv-
en in the Appendix. The collapsed mode calculations start 
with the snapback, so the initial points on solid lines cor-
respond to the transition from collapsed mode to uncol-
lapsed mode. However, those points do not coincide with 
the dashed plot because of the slight error caused by uni-
form pressure approximation.

B. Electrical Force

The electrical force is the energy-conserving force, de-
fined as
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The d /dC xR term is introduced into the lumped model. 
With C/C0 data in hand, d /dC xR is numerically calcu-
lated for all tg/tge and Pb/Pg. Capacitance and capaci-
tance derivative are defined as separate functions of xR for 
every Pb/Pg and tg/tge pair.3

C. Compliance

The compliance of the membrane is defined as the ratio 
of xR to the rms force on the membrane. In our deflection 
profile calculations, this force is the sum of the static elec-
trical force FR and the static uniform force FRb:

	 C
x

F FRm
R
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Normalized compliance C CRm Rm/
0
 is plotted with re-

spect to xR in Fig. 7 for different tg/tge values with Pb/Pg 
= 0. In the stable region of the uncollapsed mode, the 
membrane behaves like a linear spring of compliance CRm0

. 
In the unstable region of the uncollapsed mode, the com-
pliance assumes higher values than CRm0

. When the mem-
brane comes in contact with the bottom layer (this is also 
the snapback point), the compliance decreases nonlinearly 
with increasing displacement. The membrane becomes 
stiffer at larger contact radii. The point of contact is de-
termined by the thickness of insulator. For the tg/tge = 0.4 
case, the insulator is so thick that the membrane touches 
the bottom layer without experiencing instability. On the 
other hand, for tg/tge = 0.9, there is a wide region of insta-
bility at the end of which the compliance reaches a high 
value.

In Fig. 8, the normalized compliance is plotted for dif-
ferent levels of ambient pressure Pb/Pg (the tg/tge = 0.73 
case is shown). At vacuum, the membrane starts with zero 
deflection at V = 0, whereas there is an initial deflection 
for Pb/Pg = 0.2, 1 or 2. For Pb/Pg = 1 or 2, the ambient 
pressure is so large that the membrane touches bottom 
even at V = 0; hence it is always in collapse mode. For 
Pb/Pg = 2, the initial deflection is larger, and the initial 
compliance is correspondingly smaller. In the collapsed 
mode, the compliance at the same displacement turns out 
to be larger for higher ambient pressure.

D. Contact Radius

Fig. 9 shows the normalized contact radius, b , as a 
function of xR for two values of Pb/Pg and for different 
values of tg/tge. For Pb/Pg = 1, ambient pressure is strong 
enough to make the membrane touch the bottom layer 

Fig. 6. Normalized electrical capacitance as a function of normalized rms 
displacement. Pb/Pg = 0.2 and tg/tge = 0.4, 0.5, 0.6, 0.65, 0.73, 0.82, 
and 0.9. 

3	Observing that the Pb/Pg dependencies of capacitance and capaci-
tance derivative are weak, it is possible to use the Pb/Pg = 0.2 data for 
all values of static pressure.
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even at zero voltage, so the Pb/Pg = 1 plots start at non-
zero b  values.

We observe significant differences between the solid and 
dashed plots of the tg/tge = 0.9 case. Close to snapback, 
they assume very different xR values at the same contact 
radius. This is because the bending profiles of uniform 
pressure-deflected and electrical force-deflected mem-
branes are considerably different in collapsed mode.

To adapt all these calculations to the lumped model, 
polynomials are fitted to the numerical results of C CxR( ) 0/ , 
d /dC x xR R( ) , C CxRm R Rm( )

0
/ , and b xR( ). The polynomial 

coefficients are given in the Appendix.

E. Self-Radiation Impedance in Collapsed Mode

The interaction between the CMUT membrane and the 
radiation medium is determined by the velocity profile of 
the membrane. In uncollapsed mode, the entire membrane 
surface is active, whereas the periphery beyond the con-
tact point is the active region in collapsed mode. The radi-
ation impedance of this type of membrane is given in [26]:

	 Z a c R ka jX kaRR = { ( ) ( )}.2
0 0 1 1π ρ + 	 (17)

The real and imaginary parts of normalized radiation im-
pedance are plotted in Fig. 10 as a function of ka (k is the 

wavenumber) for different values of b . Here, the b  = 0 
curve is the same as the uncollapsed mode self-radiation 
impedance.

For the equivalent circuit model, we recorded those re-
sults at 13 values of contact radii, up to b  = 0.6. The re-
quired ZRR value is interpolated dynamically in the con-
tact radius space.

IV. Comparison of Lumped Model Simulations  
and FEM Analysis

The equivalent electrical circuit is simulated with a 
time-domain circuit simulator capable of handling fre-
quency-domain input data.4 Parameter values used in the 
following simulations are given in Table II.

In Fig. 11, the positive and negative ramp signal re-
sponse (in water) is given. The medium pressure is as-
sumed to be zero. FEM5 simulations are added for compar-
ison. The collapse timing is the same for both simulations, 
whereas there is a slight difference in snapback timing. 
According to the model, the snapback occurs at 31.5 V. 
FEM simulation predicts the snapback at 32 V. Because 
a single CMUT is considered, the radiation resistance is 
rather low and the membrane is lightly loaded. At the 
frequency of oscillation in uncollapsed mode, ka is small at 
about 0.2 and the approximate value of the radiation im-
pedance ZRR is 42.4 (1 + j10) μN·s/m. The quality factor 
of the radiation impedance is already about 10. The mass 
of the membrane increases this further. So, the bandwidth 
is quite small, and slowly decaying oscillations are ob-
served after the sudden pull and release of the membrane.

In the collapsed mode, the resonance frequency is not 
fixed, because the membrane compliance decreases with 
increasing deflection. Fig. 12 depicts the resonance fre-
quency, at which the maximum amount of real power is 
delivered to the medium, as a function of the dc bias volt-
age. Here, the CMUT of Table II is driven in water with 
an ac signal of 1 V peak voltage. The uncollapsed region 

Fig. 7. Normalized compliance of the membrane as a function of normal-
ized rms displacement. Pb/Pg = 0 and tg/tge = 0.4, 0.5, 0.6, 0.65, 0.73, 
0.82 and 0.9. 

Fig. 8. Normalized compliance of the membrane as a function of normal-
ized rms displacement for tg/tge = 0.73 and Pb/Pg = 0, 0.2, 1 and 2. 
Black dots show the initial displacements at V = 0. 

Fig. 9. Normalized contact radius as a function of normalized rms dis-
placement for Pb/Pg = 0, 1, and tg/tge = 0.4, 0.5, 0.6, 0.65, 0.73, 0.82, 
and 0.9. b  = 0 corresponds to snapback point. 

4	Advanced Design System (Agilent Technologies Inc., Santa Clara, 
CA).

5	FEM simulations are carried out in Ansys 13.0 (Ansys Inc., Canons-
burg, PA). A 2-D axisymmetric model of a single CMUT is created as in 
[26].
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is also plotted. As the bias voltage is increased toward the 
collapse voltage, the resonance frequency decreases slight-
ly; but as soon as the membrane collapses, the membrane 
stiffening occurs, and the resonance frequency increases. 
As the collapse radius gets bigger, the membrane becomes 
even stiffer and the resonance frequency increases mono-
tonically. The dashed line in the same figure shows the 
amplitude of the pressure on the medium radiation resis-
tance at the corresponding resonance frequencies. Note 
that at a bias voltage of 100 V, the CMUT generates a 
pressure of more than 55 kPa/V.

As an application of the model, a CMUT cell in water 
at ambient pressure is driven with a 50 V pulse with 10 ns 
rise and fall times. The maximum instantaneous pressure 
across the membrane surface is plotted as a function of 
membrane radius a. The other dimensions of the CMUT 
cell are kept fixed at tm = 1 μm, ti = 0.1 μm, and tg = 
0.1 μm. The solid curve of Fig. 13 gives the maximum 
instantaneous pressure obtained at the rising edge of the 
voltage pulse (collapsing), and the dashed line gives the 
maximum pressure at the falling edge (at snapback).

As the radius of the membrane is increased, the collapse 
voltage decreases. For a < 11.4 μm, the collapse voltage 
is higher than 50 V; hence, collapse never occurs. The 
resulting pressure is relatively low. When a > 11.4 μm, 
collapse occurs on the rising edge. The pressure maximum 
increases almost 10 times. As a is increased further, the 
membrane is driven more and more in the deep-collapse 
mode. The pressure maximum at the rising edge increases 
monotonically as the cell radius is increased. This predic-
tion is consistent with the measurement results of CMUTs 
in deep-collapse mode [23]. On the other hand, the pres-
sure maximum at the falling edge seems to be saturated 
around a constant value.

V. Conclusion

In this work, the deflection profile of a circular CMUT 
in collapsed mode is numerically calculated by introduc-
ing a radially dependent electrical force into Timoshen-
ko’s equation. Using this force profile, the deflection and 
the snapback point are calculated precisely. A large set 
of numerical solutions is used to define the elements of 
the equivalent circuit model for the collapsed mode. The 

Fig. 10. The real (upper figure) and imaginary (lower figure) parts of 
self-radiation impedance of a CMUT in collapsed mode as a function of 
ka for various normalized contact radii, b . 

TABLE II. Parameters of CMUT Cell Used in Simulations. 

E 110 GPa
υ 0.27
εr 5.4
ρ 3.1 g/cm3

a 30 μm
tm 1.2 μm
ti 0.4 μm
tg 0.2 μm

Fig. 11. The collapse and snapback behavior of the CMUT of Table II in 
water, predicted by lumped element and FEM simulations (Pb = 0). 

Fig. 12. The resonance frequency of a single CMUT (Table II, in wa-
ter, Pb = 1 atm) and the pressure on the real part of the self-radiation 
impedance at the resonance frequency as a function of bias voltage, as 
predicted by the lumped element model. 

Fig. 13. The maximum instantaneous pressure at the membrane surface 
as a function of radius, at the rising (collapsing) and falling (snapback) 
edges of a 50 V pulse at ambient pressure in water. 
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model is merged with the uncollapsed mode model. We 
can predict any large or small-signal operation of a single 
CMUT in the order of a minute. The effect of any param-
eter on the performance can be determined very quickly 
and the model can be used to optimize CMUT geometries 
for the highest transmit power, the best receive sensitivity, 
or the optimum driving voltage waveform.

Simulations with the model show that high transmit 
pressures can be achieved by operating in deep-collapse 
mode. As future work, we will introduce the mutual im-
pedance of collapsed CMUTs to model arrays of collapsed 
mode CMUTs.

Appendix

Table III lists all the uncollapsed- and collapsed-mode 
expressions for lumped parameters, and the mode transi-
tion conditions. For the uncollapsed mode, we have non-
linear equations [21]. For the collapsed mode, we have 
polynomials for tg/tge = 0.4, 0.5, 0.6, 0.65, 0.73, 0.82, and 
0.9, and Pb/Pg = 0, 0.2, 1, and 2.

Continuous transition between collapsed and uncol-
lapsed regions is ensured by defining the transition points 
exactly at the intersections of uncollapsed and collapsed 
mode expressions.

The coefficients of the polynomials and the transition 
points are provided in supplementary documents ( ). As 
an example, the tg/tge = 0.73, Pb/Pg = 0.2 case is given 
in Table IV. Simulations at intermediate tg/tge and Pb/Pg 
values can be performed using interpolation. For tg/tge = 
0.58 and Pb/Pg = 0.4, the instantaneous capacitance and 
compliance should be calculated as

	 C C Ct t t t t tg ge g ge g ge/ / /=0.58 =0.5 =0.6= 0.2 0.8+ 	

	 C C CRm P P Rm P P Rm P Pb b b/ =0.4 / =0.2 / =1= 0.75 0.25
g g g

+ .	

Polynomials are sensitive to coefficient precision, and the 
provided precision should be conserved when they are 
used in a model.

The normalized compliance is valid for xR/tg < 0.8, and 
the lumped model is not guaranteed to converge to a solu-
tion beyond this value.

The medium impedance is dependent on the frequency, 
and also on the contact radius in collapsed mode. Its value 
is introduced through lookup tables. There is a single 
lookup table for uncollapsed mode, whereas there are 12 
lookup tables of collapsed mode for b  = 0.05, 0.1, 0.15, 
0.2, …, 0.55, 0.6. Impedance at intermediate b  values 
should be interpolated. All of the lookup tables for R1(ka) 
+ jX1(ka) are given as s2p files in the supplementary doc-
ument ( ). The frequency parameter corresponds to ka 
in all files.
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