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1. Introduction

There are several different approaches to the problem of the uniqueness of Gibbs states.
The most vigorous and comprehensive is the method of cluster expansions, where the
local characteristics of a field are depicted in terms of clusters. Unfortunately, this
method needs a small parameter and works only in the low-temperature ferromagnetic
or high temperature regions, in the region of large magnetization, etc. The concept
of cluster expansions goes back to [1]. Later on, the rigorous mathematical theory of
cluster expansions was developed in [2–11]. The other known theory called the ‘Dubrushin
uniqueness method’, which is based on a kind of contraction argument and which is the
method of estimating the overall interaction of a spin with all other spins [12]. There is also
a unique condition applicable only to 1D models, which requires the finiteness of the total
interaction energy of the spin on any two complementary half-lines [13–17]. An alternative
method for establishing the absence of phase transition reduces the uniqueness problem
to that of the percolation of special clusters [18]. This method is especially powerful in
1D models with very slowly decreasing potentials when the classical methods mentioned
above fail to work. The origin of the main idea of this method goes back to [19], where
the uniqueness theorem for 1D antiferromagnetic models was established. An apparent
deficiency of this method is the fact that it works only in models with a unique ground
state. In the present paper we generalize the method by eliminating the condition of
ground state uniqueness.

2. The main result

Let G be connected, a countable infinite and locally finite graph. We assume that the spin
variables φ(x) ∈ Φ, where Φ is a finite set. Let:

H0(φ) =
∑
<x,y>

J(φ(x),φ(y))

where the summation is taken over all the nearest neighbors 〈x, y〉;x, y ∈ G, and
J(φ(x),φ(y)) is a translationally invariant function.
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Consider a model on G with the formal Hamiltonian:

H(φ) = H0(φ) +
∑
B⊂G

U(φ(B)) (1)

where φ(B) denotes the restriction of the configuration φ to the set B, and the potential
U(φ(B)) is a translationally invariant function. On the potential U(φ(B)) we impose a
natural condition, necessary for the existence of the thermodynamic limit:∑

B⊂G:x∈B
|U(φ(B))| < const (2)

where the const does not depend on the configuration φ.
Let V be a finite volume in G. The concatenation of the configurations φ(V ) and φi

we denote by φ � φi : φ � φi(x) = φ(x) if x ∈ V , and φ � φi(x) = φi(x) if x ∈ G− V . The
finite-volume of the Gibbs distribution corresponding to the boundary conditions φi is:

Pi
V(φ|φi) =

exp(−β(H(φ � φi) −H(φi)))
Ξ(V ,φi)

where β is the inverse temperature and the partition function Ξ(V ,φi) =∑
φ∈V exp(−βHV (φ � φi) − H(φi)). A probability measure P on the configuration space

ΦG is said to be an infinite-volume Gibbs measure if for each V and for P almost all φi

in ΦG we have:

P(φ(V )|φi(G− V ) = Pi
V(ϕ|φi) (3)

where P(φ(V )|φi(G− V ) is a conditional probability of φ(V ) given φi(G− V ).
For each A ⊂ G the boundary δ(A) of A is the set of all the points not belonging to

A but incident to A. Let φ be a fixed configuration:

exp(−βH(φ)) = exp(−βH0(φ)) exp(−β
∑
B⊂G

U(φ(B)))

= exp(−βH0(φ))
∏
B⊂G

exp(−βU(φ(B)))

= exp(−βH0(φ))
∏
B⊂G

(1 + exp(−βU(φ(B)) − 1)

= exp(−βH0(φ))
∏
B⊂G

(1 + γB) (4)

where γB = exp(−βU(φ(B))) − 1. Now, by expanding (4) we get:

exp(−βH(φ)) = exp(−βH0(φ))
∑
q⊂M

∏
γB (5)

where M is the set of all B ⊂ G except pairs of the nearest neighboring points. In other
words, instead of one configuration φ with an interaction of H(φ) and a statistical weight
of exp(−βH(φ)) we get infinitely many copies φq of the configuration (each copy φq is
equipped with different sub-interactions q, and each q is the union of some subsets B)
each with a statistical weight of exp(−βH0(φ))

∏
B∈q γB. The main point in this new
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representation is that if in any sub interaction-equipped configuration two points are not
connected by an interaction element, then the two points are not interacting: We have
‘got rid of’ long-range interactions [18] and the Markov property holds: If we define Gibbs
measures by using the weights (5) as in (3), then P(φq(V )|φi(G − V ) only depends on
φi(δV ∪ q).

Suppose that φ′
p and φ′′

q are two configurations equipped with the sub-interactions p
and q, respectively. Let D ⊂ G be the set of all points x ∈ G on which configurations φ′

q1
and φ′′

q2
disagree: φ′

p �= φ′′
q Two points x, y ∈ D are adjacent if dist(x, y) = 1. Two points

x, y ∈ D are interaction connected if x, y ∈ B ∈ p, or x, y ∈ B ∈ q. A path from x̄ ∈ D
to ȳ ∈ D is a sequence of vertices x1 = x̄,x2, . . . ,xl = ȳ, where for each i = 1, 2, . . . , l− 1
the points xi and xi+1 are adjacent or interaction connected. We say that the set of points
D∗ ⊂ D is a path of disagreement, if any two points x, y ∈ D∗ there is a path from x to y.

Let μ1 and μ2 be two Gibbs measures for the same interaction.

Theorem 1. Suppose that the (μ1 × μ2)(φ′
p,φ

′′
q) probability of the event is an infinite

path of disagreement corresponding to zero. Then μ1 = μ2.

Proof. Let A be an arbitrary finite set of vertices and φ(A) be any configuration on
A. In order to prove the theorem we have to prove that μ1(φ(A)) = μ2(φ(A)). For each
pair (φ′

p,φ
′′
q) the cluster of disagreement CA = C(A,φ′,φ′′) containing A is the set A and

all lattice points x ∈ Zν for which there exists a path of disagreement connecting x and
A ∪ δ(A). Let T : Ω × Ω → Ω × Ω be the transformation which exchanges φ′ and φ′′ on
CA: T (φ′

p,φ
′′
q) = (ψ′

p,ψ
′′
q ) where

ψ′
p(x) =

{
φ′′
p(x) if x ∈ CA
φ′
p(x) otherwise

ψ′′
q (x) =

{
φ′
q(x) if x ∈ CA
φ′′
q(x) otherwise

The transformation T is readily one-to-one. If there is no infinite disagreement cluster
for pair (φ′,φ′′) then by Markov the property of Gibbs measures

(μ1 × μ2)(φ′
p,φ

′′
q) = (μ1 × μ2)(ψ′

p,ψ
′′
q ). (6)

Therefore, since CA is finite with probability one, (5) is held with probability one.
Finally, by (5):

μ1(φ(A)) =
∑

(φ′
p,φ′′

q ):φ′
p(A)=φ(A)

(μ1 × μ2)(φ′
p × φ′′

q)

=
∑

(ψ′
p,ψ′′

q ):ψ′′
q (A)=φ(A)

(μ1 × μ2)(ψ′
p × ψ′′

q )) = μ2(φ(A))

where the summation in
∑

(ψ′
p,ψ′′

q ):ψ′′
q (A)=φ(A) is taken over by all the pairs of equipped

configurations (φ′
p,φ

′′
q) such that there is no infinite path of disagreement connected to

A and φ′
p(A) = φ(A); the summation in

∑
(ψ′

p,ψ′′
q ):ψ′′

q (A)=φ(A) takes over all the pairs of
the equipped configurations (ψ′

p,ψ
′′
q ) such that there is no infinite path of disagreement

connected to A and ψ′′
q (A) = φ(A). The proof is complete. �
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3. Applications and final remarks

Now we apply the disagreement-percolation criterion to the ferromagnetic Ising model
with long-range interaction on Z2 with the following Hamiltonian:

H(φ) = −
∑

x,y∈Z2,dist(x,y)=1

φ(x)φ(y) −
∑

x,y∈Z2,dist(x,y)>1

c−dist(x,y)φ(x)φ(y) = H0 +H1 (7)

Theorem 2. There are positive constants β0 and c0 as for all non-negative β < β0 and
c < c0 the model (7) has a unique limiting Gibbs state.

Proof. The uniqueness of Gibbs states will be proved by employing theorem 1. Let
μ1 and μ2 be two Gibbs measures corresponding to the Hamiltonian (7). In order to do
this we will prove that the (μ1 × μ2) probability of the event is an infinite path of zero
disagreement. Let Pi

V(ϕ|φi) be the finite volume Gibbs distribution corresponding to the
Hamiltonian H0, given a finite volume V ⊂ Z2 and boundary conditions φi. Let x′ ∈ V .
Since the model (7) is ferromagnetic there is a β1, such that for all β < β1:

Pi
V(φ(x′) = 1|φi) � e4β

e4β + e−4β < 0.501 (8)

The first inequality in (8) is due to Griffiths inequality (the probability of +1 is
maximal when all other spins are +1). The second inequality is due to the fact that

e4β

e4β+e−4β = 1
2 at β = 0 and the dependence on β is continuous. A similar inequality holds

for the probability of Pi
V(φ(x′) = −1|φi). Since the interaction in the model (7) is pair-

wise the interaction elements are γB = γ(x, y) = exp(±βc−dist(x,y)) − 1. There is β2, so
that for β < β2 we have γ(x, y) � c−dist(x,y). We choose β0 = min(β1, β2). If two points
of disagreement are connected by some interaction element we will assume that these
two points are connected through the shortest path of the neighboring lattice points. All
the lattice points lying on the path will be called interaction points. If the path connects
points x′ = (a′, b′) and y′ = (a′′, b′′) and |a′−a′′| = t1 and |b′−b′′| = t2, then by arithmetic-
quadratic mean inequality t1 + t2 � 2

√
t21 + t22 =

√
2|ρ|. By a uniform ‘distribution’ of the

weight c−dist(x,y) to all t = t1 + t2 interaction points we get γ(x, y) � (
√

2
√
c)t. This means

that the statistical weight of the interaction between the two points over the interaction
path is the product of the weights of the interaction points, each not exceeding

√
2
√
c.

Thus, by Peierls’ argument the probability that a given lattice point is an interaction
point is also at most

√
2
√
c (let x be a lattice point, to each configuration equipped with

sub-interactions for which x is an interaction point in the numerator we correspond a
configuration equipped with sub-interactions for which x is not an interaction point in
the denominator). Since we are considering a pair of configurations, the probability that
a lattice point is an interaction point is at most 1− (1−c

1√
2 )2. Choosing a c0 such that for

all c < c0 we have 1 − (1 − c
1√
2 )2 < 0.05. Now we are ready to estimate the disagreement

paths. By (8) the probability that the lattice point x is a point of disagreement is at most
2 · 0.501 · 0.501 < 0.5021. Since the path of disagreement consists of disagreement lattice
points and possible interaction points then the probability of an infinite path of disagree-
ment is no greater than the probability of site percolation with p = 0.5021+0.05 = 0.5521.
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Since the site percolation threshold for Z2 exceeds 0.556 (see [23]) the probability of infi-
nite disagreement-percolation is zero and by theorem 1 we are done. �

Theorem 1 is proved by the method of coupling using Gibbs measures. Different
methods involving coupling ideas were previously [20–22]. The term ‘disagreement’ we
adopt from [21] and [22]. The similar disagreement uniqueness condition for models
with an interaction of neighboring spins was firstly formulated in [21]. The crucial
transformation of T (φ′,φ′′) = (ψ′,ψ′′) in the proof of theorem 1 is also taken from [21].
In [19] the uniqueness of Gibbs states in 1D with long-range antiferromagnetic Ising
models has been proved again by the method of coupling two independent realizations.
Afterwards this method was generalized for models with a unique ground state [18]. The
method employed in [18, 19] also uses the finite-volume version of the transformation
T (φ′,φ′′) = (ψ′,ψ′′). In [18,19] the undesirable products of coupling are clusters connecting
the set A with the boundary conditions. When these clusters are negligible, the two Gibbs
states become completely continuous with respect to each other and coincide. Since the
models in [18, 19] have a unique ground state, the disagreement clusters are defined as
clusters not coinciding with a unique ground state. Thus, theorem 1 generalizes theorem 1
of [18] for models with long-range interaction (in a case when only neighboring spin
variables interact, theorem 1 becomes theorem 1 of [21]) and generalizes theorem 2 of [18]
for models having more then one ground state. That is why in this section we have applied
the disagreement-percolation uniqueness criterion (theorem 1) to models (7) having more
than one ground state.
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