EXTENSIONS OF STRONGLY π-REGULAR RINGS

HUANYIN CHEN, HAN DAN KOSE, AND YOSUM KURTULMAZ

Dedicated to Professor Abdullah Harmanci on his 70th birthday

Abstract. An ideal I of a ring R is strongly π-regular if for any $x \in I$ there exist $n \in \mathbb{N}$ and $y \in I$ such that $x^n = x^{n+1}y$. We prove that every strongly π-regular ideal of a ring is a B-ideal. An ideal I is periodic provided that for any $x \in I$ there exist two distinct $m, n \in \mathbb{N}$ such that $x^m = x^n$. Furthermore, we prove that an ideal I of a ring R is periodic if and only if I is strongly π-regular and for any $u \in U(I)$, $u^{-1} \in \mathbb{Z}[u]$.

1. Introduction

A ring R is strongly π-regular if for any $x \in R$ there exist $n \in \mathbb{N}, y \in R$ such that $x^n = x^{n+1}y$. For instance, all artinian rings and all algebraic algebra over a filed. Such rings are extensively studied by many authors from very different view points (cf. [1, 3, 4, 7, 9, 10, 11, 12, 13, 14]). We say that an ideal I of a ring R is strongly π-regular provided that for any $x \in I$ there exist $n \in \mathbb{N}, y \in I$ such that $x^n = x^{n+1}y$. Many properties of strongly π-regular rings were extended to strongly π-regular ideals in [5].

Recall that a ring R has stable range one provided that $aR + bR = R$ with $a, b \in R$ implies that there exists $y \in R$ such that $a + by \in R$ is invertible. The stable range one condition is especially interesting because of Evans' Theorem, which states that a module cancels from direct sums whenever has stable range one. For general theory of stable range conditions, we refer the reader to [5]. An ideal I of a ring R is a B-ideal provided that $aR + bR = R$ with $a \in 1 + I$, $b \in R$ implies that there exists $y \in R$ such that $a + by \in R$ is invertible. An ideal I is a ring R is stable provided that $aR + bR = R$ with $a \in I, b \in R$ implies that there exists $y \in R$ such that $a + by \in R$ is invertible. As is well known, every B-ideal of a ring is stable, but the converse is not true.

In [1, Theorem 4], Ara proved that every strongly π-regular ring has stable range one. This was extended to ideals, i.e., every strongly π-regular ideal of a
Theorem 2.1. We define I of a ring R and show that every strongly π-regular ring is stable (cf. [6]). The main purpose of this note is to extend these results, and show that every strongly π-regular ideal of a ring is a B-ideal. An ideal I of a ring R is periodic provided that for any $x \in I$ there exist two distinct $m, n \in \mathbb{N}$ such that $x^m = x^n$. Furthermore, we show that an ideal I of a ring R is periodic if and only if I is strongly π-regular and for any $u \in U(I)$, $u^{-1} \in \mathbb{Z}[u]$. Several new properties of such ideals are also obtained.

Throughout, all rings are associative with an identity and all modules are unitary modules. $U(R)$ denotes the set of all invertible elements in the ring R and $U(I) = (1 + I) \cap U(R)$.

2. Strongly π-regular ideals

The aim of this section is to investigate more elementary properties of strongly π-regular ideals and construct more related examples. For any $x \in R$, we define $\sigma_x : R \to R$ given by $\sigma_x(r) = xr$ for all $r \in R$.

Theorem 2.1. Let I be an ideal of a ring R. Then the following are equivalent:

1. I is strongly π-regular.
2. For any $x \in I$, there exists $n \geq 1$ such that $R = \ker(\sigma_x^n) \oplus \text{im}(\sigma_x^n)$.

Proof. (1) \Rightarrow (2) Let $x \in I$. In view of [5, Proposition 13.1.15], there exist $n \in \mathbb{N}, y \in I$ such that $x^n = x^{n+1}y$ and $xy = yx$. It is easy to check that $\sigma_x^n = \sigma_x^{n+1} \sigma_y$. If $a \in \ker(\sigma_x^n) \cap \text{im}(\sigma_x^n)$, then $a = \sigma_x^n(r)$ and $\sigma_x^n(a) = 0$. This implies that $x^{2n}r = \sigma_x^{2n}(r) = 0$, and so $a = x^n r = x^{n+1} y r = y x^{n+1} r = y^n x^{2n} r = 0$. Hence, $\ker(\sigma_x^n) \cap \text{im}(\sigma_x^n) = 0$. For any $r \in R$, we see that $r = (r - \sigma_x^n(y r)) + \sigma_x^n(y r)$, and then $R = \ker(\sigma_x^n) + \text{im}(\sigma_x^n)$, as required.

(2) \Rightarrow (1) Write $1 = a + b$ with $a \in \ker(\sigma_x^n)$ and $b \in \text{im}(\sigma_x^n)$. For any $x \in I$, $\sigma_x^n(1) = \sigma_x^n(b)$, and so $x^n \in x^{2n} R$. Thus, I is strongly π-regular. \square

Corollary 2.2. Let I be a strongly π-regular ideal of a ring R, and let $x \in I$. Then the following are equivalent:

1. σ_x is a monomorphism.
2. σ_x is an epimorphism.
3. σ_x is an isomorphism.

Proof. (1) \Rightarrow (2) In view of Theorem 2.1, there exists $n \geq 1$ such that $R = \ker(\sigma_x^n) \oplus \text{im}(\sigma_x^n)$. Since σ_x is a monomorphism, so is σ_x^n. Hence, $\ker(\sigma_x^n) = 0$, and then $R = \text{im}(\sigma_x^n)$. This implies that σ_x is an epimorphism.

(2) \Rightarrow (3) Since $R = \ker(\sigma_x^n) \oplus \text{im}(\sigma_x^n)$, it follows from $R = \text{im}(\sigma_x^n)$ that $\ker(\sigma_x^n) = 0$. Hence, σ_x is a monomorphism. Therefore σ_x is an isomorphism.

(3) \Rightarrow (1) is trivial. \square

Proposition 2.3. Let I be an ideal of a ring R. Then the following are equivalent:

1. I is strongly π-regular.
2. For any $x \in I$, RxR is strongly π-regular.
Proof. (1)⇒(2) Let $x \in I$. For any $a \in RxR$, there exists an element $b \in I$ such that $a^n = a^{n+1}b$ for some $n \in \mathbb{N}$. Hence, $a^n = a^{n+1}(ab^2)$. As $ab^2 \in RxR$, we see that RxR is strongly π-regular.

(2)⇒(1) For any $x \in I$, RxR is strongly π-regular, and so there exists $y \in RxR$ such that $x^n = x^{n+1}y$. Clearly, $y \in I$, and therefore I is strongly π-regular. □

The index of a nilpotent element in a ring is the least positive integer n such that $x^n = 0$. The index $i(I)$ of an ideal I of a ring R is the supremum of the indices of all nilpotent elements of I. An ideal I of a ring R is of bounded index if $i(I) < \infty$. It is well known that $i(I) \leq n$ if and only if I contains no direct sums of $n + 1$ nonzero pairwise isomorphic right ideals (cf. [9, Theorem 7.2]).

Theorem 2.4. Let R be a ring, and let

$$I = \{a \in R \mid i(RaR) < \infty\}.$$

Then I is a strongly π-regular ideal of R.

Proof. Let $x, y \in I$ and $z \in R$. Then $RxzR, RzxR \subseteq RxR$. This implies that $RxzR$ and $RzxR$ are strongly π-regular of bounded index. Hence, $xz, zx \in I$.

Obviously, $R(x - y)R \subseteq RxR + RyR$. For any $a \in R(x - y)R, a = c + d$ where $c \in RxR$ and $d \in RyR$. Since RxR is strongly π-regular, there exists some $n \in \mathbb{N}$ such that $c^n = c^{n+1}r$ for a $r \in R$. Let RyR is of bounded index m. Then $c^n = c^{nm+1}s$ for a $s \in R$. Hence, $a^{nm+1}s - a^n \in RyR$. As RyR is strongly π-regular, we can find $k \in \mathbb{N}$ and $d \in RyR$ such that

$$(a^{nm+1}s - a^n)^k = (a^{nm+1}s - a^n)^{k+1}d,$$

$$d = d(a^{nm+1}s - a^n)d,$$

$$d(a^{nm+1}s - a^n) = (a^{nm+1}s - a^n)d.$$

Hence,

$$\left((a^{nm+1}s - a^n) - (a^{nm+1}s - a^n)^2d\right)^k = (a^{nm+1}s - a^n)^k(1 - (a^{nm+1}s - a^n)d)^k,$$

$$= (a^{nm+1}s - a^n)^k(1 - (a^{nm+1}s - a^n)d),$$

$$= 0.$$

Therefore $a^{nm+1}s - a^n)^m = (a^{nm+1}s - a^n)^{m+1}$. As a result, $a^{nm} \in a^{nm+1}R$. Hence, we can find $r \in R$ such that $a^{nm} = a^{nm+1}(ar)$. Therefore I is a strongly π-regular ideal of R. □

Corollary 2.5. Let R be a ring of bounded index. Then

$$I = \{a \in R \mid RaR \text{ is strongly } \pi\text{-regular}\}$$

is the maximal strongly π-regular ideal of R.

Proof. Since R is of bounded index, so is RaR for any $a \in R$. In view of Theorem 2.4, $I = \{a \in R \mid RaR$ is strongly π-regular$\}$ is a strongly π-regular ideal of R. Thus we complete the proof by Proposition 2.3. \hfill \Box

Example 2.6. Let V be an infinite-dimensional vector space over a field F, let $R = \text{End}_F(V)$, and let $I = \{\sigma \in R \mid \dim F \sigma(V) < \infty\}$. Then I is strongly π-regular, while R is not strongly π-regular.

Proof. Clearly, I is an ideal of the ring R. We have the descending chain $\sigma(V) \supseteq \sigma^2(V) \supseteq \cdots$. As $\dim F \sigma(V) < \infty$, we can find some $n \in \mathbb{N}$ such that $\sigma^n(V) = \sigma^{n+1}(V)$. Since V is a projective right F-module, we can find some $\tau \in R$ such that the following diagram

$$
\begin{array}{c}
V \\
\downarrow \sigma^n \\
\sigma^{n+1}(V)
\end{array}
$$

commutes, i.e., $\sigma^{n+1} \tau = \sigma^n$. Hence, $\sigma^n = \sigma^{n+1}(\tau^2)$. Therefore I is a strongly π-regular ideal of R. Let ε be an element of R such that $\varepsilon(x_i) = x_i+1$ where $\{x_1, x_2, \ldots\}$ is the basis of V. If R is strongly π-regular, there exists some $m \in \mathbb{N}$ such that $\varepsilon^mR = \varepsilon^{m+1}R$, and so $\varepsilon^m(V) = \varepsilon^{m+1}(V)$. As $\varepsilon^m(x_i) = x_i+m$ for all i, we see that $\varepsilon^m(V) = \sum_{i \geq m} x_iF \neq \sum_{i \geq m+1} x_iF = \varepsilon^{m+1}(V)$. This gives a contradiction. Therefore R is not a strongly π-regular ring. \hfill \Box

Example 2.7. Let V be an infinite-dimensional vector space over a field F, let $R = \text{End}_F(V)$, and let $S = (\begin{smallmatrix} 0 & R \\ R & 0 \end{smallmatrix})$. Then $I = \{\sigma \mid \sigma = (\begin{smallmatrix} 0 & R \\ R & 0 \end{smallmatrix})\}$ is a strongly π-regular ideal of R, while S is not a strongly π-regular ring.

Proof. By the discussion in Example 2.6, R is not strongly π-regular. Hence, S is not strongly π-regular. As $I^2 = 0$, one easily checks that I is a strongly π-regular ideal of the ring S. \hfill \Box

An ideal I of a ring R is called a gs-π-ideal if for any $a \in I$ there exists some integer $n \geq 2$ such that a^nRa^n. For instance, every ideal of strongly regular rings is a gs-π-ideal.

Example 2.8. Every gs-π-ideal of a ring is strongly π-regular.

Proof. Let I be a gs-π-ideal of a ring R. Given $\pi^2 = \sigma$ in $I/(I \cap J(R))$, then $x^2 \in I \cap J(R)$. As I is a gs-π-ideal, we see that $Rx = x^2Rx^2 \subseteq J(R)$, i.e., $(RxR)^2 \subseteq J(R)$. As $J(R)$ is semiprime, it follows that $RxR \subseteq J(R)$, and so $x \in J(R)$. That is, $\pi = 0$. This implies that $I/(I \cap J(R))$ is reduced. For any idempotent $e \in I/(I \cap J(R))$ and any $a \in R/J(R)$, it follows from $(ea(\pi - e))^2 = 0$ that $ea(\pi - e) = 0$, thus $ea = eae$. Likewise, $ae = eae$. This implies that $ea = ae$. As a result, every idempotent in $I/(I \cap J(R))$ is central. For any $x \in I \cap J(R)$, there exists some $y \in R$ such that $x^2 = x^2yx^2$, and then $x^2(1 - yx^2) = 0$. This implies that $x^2 = 0$. Conversely, we let $x^2 = 0$. As I is a gs-π-ideal, we see that $Rx = x^2Rx^2 = 0$. That is, $(RxR)^2 \subseteq J(R)$, and
so \(x \in J(R) \). Therefore \(I \cap J(R) = \{ x \in I \mid x^2 = 0 \} \). Let \(x \in I \). Then there exists some \(n \geq 2 \) such that \(xRx = x^nRx^n \). Hence, \(x^2 = x^2yx^2 \). As \(x^2y \in I \) is an idempotent, we see that \(x^2 - x^6y^2 \in I \cap J(R) \). By the preceding discussion, we get \((x^2 - x^6y^2)^2 = 0 \). This implies that \(x^4 = x^5r \) for some \(r \in I \). Thus \(I \) is strongly \(\pi \)-regular.

3. Stable range condition

For any \(x, y \in R \), write \(x \circ y = x + y + xy \). We use \(x^{[n]} \) to stand for \(x \circ \cdots \circ x \) \((n \geq 1) \) and \(x^{[0]} = 0 \). The following result was firstly observed in \([8, \text{Lemma 1}] \), we include a simple proof to make the paper self-contained.

Lemma 3.1. Let \(x_i, y_j \in R \), and let \(p_i, q_j \in \mathbb{Z} \) \((1 \leq i \leq m, 1 \leq j \leq n) \). If \(\sum_i p_i = \sum_j q_j = 1 \), then \((\sum_i p_i x_i) \circ (\sum_j q_j y_j) = \sum_{i,j} (p_i q_j)(x_i \circ y_j) \). If \(\sum_i p_i = \sum_j q_j = 0 \), then \((\sum_i p_i x_i)(\sum_j q_j y_j) = \sum_{i,j} (p_i q_j)(x_i \circ y_j) \).

Proof. For any \(p_i, q_j \in \mathbb{Z} \), one easily checks that

\[
\sum_{i,j} (p_i q_j)(x_i \circ y_j) = (\sum_i p_i x_i)(\sum_j q_j y_j) + (\sum_j q_j y_j)(\sum_i p_i x_i) + (\sum_i p_i)(\sum_j q_j y_j).
\]

Therefore the result follows. \(\square \)

Lemma 3.2. Let \(I \) be a strongly \(\pi \)-regular ideal of a ring \(R \). Then for any \(x \in I \), there exists some \(n \in \mathbb{N} \) such that \(x^{[n]} = x^{[n+1]} \circ y = z \circ x^{[n+1]} \) for \(y, z \in I \).

Proof. Let \(x \in I \). Then \(-x - x^2 \in I \). Since \(I \) is a strongly \(\pi \)-regular ideal, there exists some \(n \in \mathbb{N} \) such that \((-x - x^2)^n = (-x - x^2)^{n+1} s = s(-x - x^2)^{n+1} \). Clearly, \(x - x^{[2]} = -x - x^2 \). Thus,

\[
(x - x^{[2]})^n = (x - x^{[2]})^{n+1} s = (x - x^{[2]})^{2n} t,
\]

where \(t = s^n \). Since \(\sum_{i=0}^{n} (-1)^i \binom{n}{i} = 0 \), it follows from Lemma 3.1 that

\[
\sum_{i=0}^{n} (-1)^i \binom{n}{i} (x^{[n-i]} \circ (x^{[2]})^i) = (x - x^{[2]})^n.
\]

Thus,

\[
(x - x^{[2]})^n = \sum_{i=0}^{n} (-1)^i \binom{n}{i} x^{[n+i]}
\]

\[
= x^{[n]} + \sum_{i=1}^{n} (-1)^i \binom{n}{i} x^{[n+i]}.
\]
Let \(u = \sum_{i=1}^{n} (-1)^{i+1} \binom{n}{i} x[i] \). Then \(u \circ x^n = x^n \circ u \). Since \(\sum_{i=1}^{n} (-1)^{i+1} \binom{n}{i} \) = 1, by using Lemma 2.1 again, \((x - x^2)^n = x^n - x^n \circ u \). Thus, we get

\[
x^n - x^n \circ u = (x^n - x^n \circ u)^2 t = (x^n - x^n \circ u)(x^n - x^n \circ u)(t - 0) = (x^{2n} - x^{2n} \circ u - x^{2n} \circ u + x^{2n} \circ u^2)(t - 0) = x^{2n} \circ (t - u \circ t - u \circ t + u^2 \circ t + u + u - u^2) - x^{2n} = x^{2n} \circ (u^2 t) - x^{2n}.
\]

Let \(v = x^{2n} \circ (u^2 t) - x^{2n} \). Then

\[
x^n = x^n \circ u + v = (x^n \circ u + v - 0) \circ u + v = x^n \circ u^2 + (v \circ u - u) + v = \cdots = x^n \circ u^{n+1} + \sum_{i=0}^{n} (v \circ u^i - u^i).
\]

Further,

\[
v \circ u^i - u^i = (x^{2n} \circ (u^2 t) - x^{2n} \circ u^i) \circ u^i - u^i = (x^{2n} \circ (u^2 t) - x^{2n} + 0) \circ u^i - u^i = x^{2n} \circ (u^2 t) \circ u^i - x^{2n} \circ u^i.
\]

Hence

\[
x^n = x^n \circ u^{n+1} + \sum_{i=0}^{n} (x^{2n} \circ (u^2 t) \circ u^i - x^{2n} \circ u^i).
\]

Further, we see that

\[
\sum_{i=0}^{n} (x^{2n} \circ (u^2 t) \circ u^i - x^{2n} \circ u^i) = x^{2n} \circ (\sum_{i=0}^{n} (u^2 t) \circ u^i - u^i) + 0) - x^{2n}.
\]

As \(\sum_{i=1}^{n} (-1)^{i+1} \binom{n}{i} \) = 1, we see that

\[
u^{n+1} = (\sum_{i=1}^{n} (-1)^{i+1} \binom{n}{i} x[i])^{n+1} = \sum_{i_1 + \cdots + i_n = n+1} C_{i_1, \ldots, i_n} x^{i_1 + i_2 + \cdots + i_n} = \sum_{i_1 + \cdots + i_n = n+1} C_{i_1, \ldots, i_n} x^{[1+i_2+i_3+\cdots+(n-1)i_n]}.
\]
It is easy to check that \(\sum_{i=1}^{n} u \) and so \(u^{[n+1]} = x^{[n]} \circ v, \) where \(v = \sum_{i=1}^{n} C_{i1, \ldots, in} x^{[1+i+\cdots+(n-1)i]} \). Therefore

\[
x^{[n]} = x^{[2n]} \circ v + x^{[2n]} \circ (\sum_{i=0}^{n} ((u^2t) \circ u^{[i]} - u^{[i]})) - x^{[2n]}
\]

\[
= x^{[2n]} \circ (v + \sum_{i=0}^{n} ((a^2t) \circ u^{[i]} - u^{[i]})) - 0
\]

\[
= x^{[2n]} \circ (v + \sum_{i=0}^{n} ((u^2t) \circ u^{[i]} - u^{[i]})).
\]

Let \(y = x^{[n-1]} \circ (v + \sum_{i=0}^{n} ((u^2t) \circ u^{[i]} - u^{[i]})). \) Then \(x^{[n]} = x^{[n+1]} \circ y \) with \(y \in I. \) Likewise, \(x^{[n]} = z \circ x^{[n+1]} \) for \(z \in I, \) as required. \(\square \)

Theorem 3.3. Every strongly \(\pi \)-regular ideal of a ring is a \(B \)-ideal.

Proof. Let \(I \) be a strongly \(\pi \)-regular ideal of a ring \(R. \) Let \(a \in 1 + I. \) Then \(a-1 \in I. \) In view of Lemma 2.2, we can find some \(n \in \mathbb{N}, b, c \in 1 + I \) such that \((a-1)^{[n]} = (a-1)^{[n+1]} \circ (b-1) = (c-1) \circ (a-1)^{[n+1]} \). One easily checks that \((a-1)^{[n]} = a^n - 1 \) and \((a-1)^{[n+1]} = a^{n+1} - 1. \) Therefore \(a^n = a^{n+1} \circ b = ca^{n+1}, \) and so \(a^n \in a^{n+1} R \cap Ra^{n+1}. \) According to [5, Proposition 13.1.2], \(a \in 1 + I \) is strongly \(\pi \)-regular. According to [5, Theorem 13.1.7], \(I \) is a \(B \)-ideal. \(\square \)

Corollary 3.4. Let \(I \) be a strongly \(\pi \)-regular ideal of a ring \(R, \) and let \(A \) be a finitely generated projective right \(R \)-module. If \(A = AI, \) then for any right \(R \)-modules \(B \) and \(C, \) \(A \oplus B \cong A \oplus C \) implies that \(B \cong C. \)

Proof. For any \(x \in I, \) we have \(n \in \mathbb{N} \) and \(y \in R \) such that \(x^n = x^{n+1} y \) and \(xy = yx. \) Hence \(x^n = x^n z x^n, \) where \(z = y^n. \) Let \(g = zx^n \) and \(e = g + (1-g)x^n g. \) Then \(e \in Rx \) is an idempotent. In addition, we have \(1 - e = (1-g)(1-x^n g) = (1-g)(1-x^n) \in Rx. \) Set \(f = 1-e. \) Then there exists an idempotent \(f \in I \) such that \(f \in Rx \) and \(1 - f \in Rx. \) Therefore \(I \) is an exchange ideal of \(R. \) In view of Theorem 3.3, \(I \) is a \(B \)-ideal. Therefore we complete the proof by [5, Lemma 13.1.9]. \(\square \)

Corollary 3.5. Let \(I \) be a strongly \(\pi \)-regular ideal of a ring \(R, \) and let \(a, b \in 1 + I. \) If \(aR = bR, \) then \(a = bu \) for some \(u \in U(R). \)

Proof. Write \(ax = b \) and \(a = by. \) As \(a, b \in 1 + I, \) we see that \(x, y \in 1 + I. \) In view of Theorem 3.3, \(I \) is a \(B \)-ideal. Since \(yx + (1-yx) = 1, \) there exists an element \(z \in R \) such that \(u := y + (1-yx)z \in U(R). \) Therefore \(bu = b(y + (1-yx)z) = by = a, \) as required. \(\square \)

Corollary 3.6. Let \(I \) be a strongly \(\pi \)-regular ideal of a ring \(R, \) and let \(A \in M_n(\mathbb{I}) \) be regular. Then \(A \) is the product of an idempotent matrix and an invertible matrix.
Proof. By virtue of Theorem 3.3, \(I \) is a \(B \)-ideal. As \(A \in M_n(I) \) is regular, we have a \(B \in M_n(I) \) such that \(A = ABA \). Since \(AB + (I_n - AB) = I_n \), we get \((A + (I_n - AB))B + (I_n - AB)(I_n - B) = I_n \) where \(A + (I_n - AB) \in I_n + M_n(I) \). Thus, we can find a \(Y \in M_n(R) \) such that \(U := A + (I_n - AB) + (I_n - AB)(I_n - B)Y \in GL_n(R) \). Therefore \(A = ABA = AB(A + (I_n - AB) + (I_n - AB)(I_n - B)Y) = ABU \), as required.

Let \(A \) be an algebra over a field \(F \). An element \(a \) of an algebra \(A \) over a field \(F \) is said to be algebraic over \(F \) if \(a \) is the root of some non-constant polynomial in \(F[x] \). An ideal \(I \) of \(A \) is said to be an algebraic ideal of \(A \) if every element in \(I \) is algebraic over \(F \).

Proposition 3.7. Let \(A \) be an algebra over a field \(F \), and let \(I \) be an algebraic ideal of \(A \). Then \(I \) is a \(B \)-ideal.

Proof. For any \(a \in I \), \(a \) is the root of some non-constant polynomial in \(F[x] \). So we can find \(a_m, \ldots, a_n \in F \) such that \(a_n a^n + a_{n-1} a^{n-1} + \cdots + a_0 a^0 = 0 \), where \(a_m \neq 0 \). Hence, \(a^m = -(a_n a^n + \cdots + a_{m+1} a^{m+1})a^{-1} = -a^{m+1}(a_n a^{n-1} + \cdots + a_{m+1})a^{-1} \). Set \(b = -(a_n a^{n-1} + \cdots + a_{m+1})a^{-1} \). Then \(a^m = a^{m+1}b \). Therefore \(I \) is strongly \(\pi \)-regular, and so we complete the proof by Theorem 3.3.

In the proof of Theorem 3.3, we show that for any \(a \in 1 + I \), there exists some \(n \in \mathbb{N} \) such that \(a^n = a^{n+1}b \) for a \(b \in 1 + I \) if \(I \) is a strongly \(\pi \)-regular ideal. A natural problem asks that if the converse of the preceding assertion is true. The answer is negative from the following counterexample. Let \(p \in \mathbb{Z} \) be a prime and set \(\mathbb{Z}_{(p)} = \{ a/b \mid b \not\in \mathbb{Z}p \text{ (in lowest terms)} \} \). Then \(\mathbb{Z}_{(p)} \) is a local ring with maximal \(p\mathbb{Z}_{(p)} \). Thus, the Jacobson radical \(p\mathbb{Z}_{(p)} \) satisfies the condition above. Choose \(p/(p+1) \in p\mathbb{Z}_{(p)} \). Then \(p/(p+1) \in J(\mathbb{Z}_{(p)}) \) is not nilpotent. This shows that \(p\mathbb{Z}_{(p)} \) is not strongly \(\pi \)-regular.

4. Periodic ideals

An ideal \(I \) of a ring \(R \) is periodic provided that for any \(x \in I \) there exist distinct \(m, n \in \mathbb{N} \) such that \(x^m = x^n \). We note that an ideal \(I \) of a ring \(R \) is periodic if and only if for any \(a \in I \), there exists a potent element \(p \in I \) such that \(a - p \) is nilpotent and \(ap = pa \).

Lemma 4.1. Let \(I \) be an ideal of a ring \(R \). If \(I \) is periodic, then for any \(x \in 1 + I \) there exist \(m \in \mathbb{N} \) such that \(x^m = x^{m+1}f(x) \).

Proof. For any \(a \in I \), there exists some \(n \in \mathbb{N} \) such that \(a^n = a^{n+1}(a^{m-n-1}) \) where \(m \geq n + 1 \). For any \(x \in 1 + I \), we see that \(x - 1 \in I \). As in the proof in Lemma 3.2, we can find \(f(t) \in R[t] \) such that \((x-1)^{[n]} = (x-1)^{[n+1]} \circ f(x-1) \). One easily checks that \((x-1)^{[n]} = x^n - 1 \) and \((x-1)^{[n+1]} = x^{n+1} - 1 \). Therefore \(x^n = x^{n+1}f(x) \), as required.
Lemma 4.2. Let R be a ring, and let $c \in R$. If there exist a monic $f(t) \in \mathbb{Z}[t]$ and some $m \in \mathbb{N}$ such that $mc = 0$ and $f(c) = 0$, then there exist $s, t \in \mathbb{N}(s \neq t)$ such that $c^s = c^t$.

Proof. Clearly, $\mathbb{Z}c \subseteq \{0, c, \ldots, (m - 1)c\}$. Write $f(t) = t^k + b_1t^{k-1} + \ldots + b_{k-1}t + b_k \in \mathbb{Z}[t]$. Then $c^{k+1} = -b_1c^k - \ldots - b_{k-1}c^2 - b_k c$. This implies that $\{c, c^2, c^3, \ldots\} \subseteq \{c, c^2, c^3, \ldots, c^k, 0, c, \ldots, (m - 1)c, c^2, \ldots, (m - 1)c^k\}$. That is, $\{c, c^2, c^3, \ldots\}$ is a finite set. Hence, we can find some $s, t \in \mathbb{N}, s \neq t$ such that $c^s = c^t$, as desired. \hfill \Box

As is well known, a ring R is periodic if and only if for any $x \in R$, there exist $n \in \mathbb{N}$ and $f(t) \in \mathbb{Z}[t]$ such that $x^n = x^{n+1}f(x)$. We extend this result to periodic ideals.

Lemma 4.3. Let I be an ideal of a ring R. If for any $x \in I$, there exist $n \in \mathbb{N}$ and $f(t) \in \mathbb{Z}[t]$ such that $x^n = x^{n+1}f(x)$, then I is periodic.

Proof. Let $x \in I$. If x is nilpotent, then we can find some $n \in \mathbb{N}$ such that $x^n = x^{n+1} = 0$. Thus, we may assume that $x \in I$ is not nilpotent. By hypothesis, there exist $n \in \mathbb{N}$ and $g(t) \in \mathbb{Z}[t]$ such that $x^n = x^{n+1}g(x)$. Thus, $x^n = x^{n+1}f(x)$, where $f(x) = x(g(x))^2 \in \mathbb{Z}[t]$. In addition, $f(0) = 0$. Let $e = x^n(f(x))^2$. Then $0 \neq e = c^2 \in R$ and $x^n = xe$. Set $S = cRe$ and $\alpha = ex = xe$. Then $f(\alpha) = ef(x)$. Further,

$$\alpha^n(f(\alpha))^n = e, \alpha^n = x^n, \alpha^n = \alpha^{n+1}f(\alpha).$$

Thus, $e = \alpha^n(f(\alpha))^n = \alpha^n(f(\alpha))^{n+1} = \alpha^n(f(\alpha))^n\alpha f(\alpha) = c\alpha f(\alpha) = \alpha f(\alpha)$. Write $f(t) = at^n + \ldots + a_1t + a_0$. Then $\alpha(a_1\alpha + \cdots + a_na^n) = e$. This implies that $(\alpha^{-1})^{n+1} - a_1(\alpha^{-1})^{n-1} - \cdots - a_n \in \mathbb{Z}[t]$. Then $g(t)$ is a monic polynomial such that $g(\alpha^{-1}) = 0$.

Let $T = \{me \in S \mid m \in \mathbb{Z}\}$. Then T is a subring of S. For any $me \in I$, by hypothesis, there exists $g(t) \in \mathbb{Z}[t]$ such that $(me)^p = (me)^{p+1}g(me) \in (me)^{p+1}T$. This implies that T is strongly π-regular. Construct a map $\varphi : Z \to T, m \mapsto me$. Then $Z/\text{Ker}\varphi \cong T$. As Z is not strongly π-regular, we see that $\text{Ker}\varphi \neq 0$. Hence, $T \cong \mathbb{Z}_q$ for some $q \in \mathbb{N}$. Thus, $qe = 0$. As a result, $q\alpha^{-1} = 0$. In view of Lemma 4.2, we can find some $s, t \in \mathbb{N}(s \neq t)$ such that $(\alpha^{-1})^s = (\alpha^{-1})^t$. This implies that $\alpha^s = \alpha^t$. Hence, $x^{ns} = x^{nt}$, as asserted. \hfill \Box

Theorem 4.4. Let I be an ideal of a ring R. Then I is periodic if and only if

(1) I is strongly π-regular,
(2) For any $u \in U(I)$, $u^{-1} \in \mathbb{Z}[u]$.

Proof. Suppose that I is periodic. Then I is strongly π-regular. For any $u \in U(I)$, it follows by Lemma 4.1 that there exist $m \in \mathbb{N}, f(t) \in \mathbb{Z}[t]$ such that $u^n = u^{n+1}f(u)$. Hence, $uf(u) = 1$, and so $u^{-1} \in \mathbb{Z}[u]$.

Suppose that (1) and (2) hold. For any $x \in I$, there exist $m \in \mathbb{N}$ and $y \in I$ such that $x^n = x^ny^m, y = yx^m$ and $xy = yx$ from [5, Proposition
13.1.15]. Set \(u = 1 - x^m y + x^m \). Then \(u^{-1} = 1 - x^m y + y \). Hence, \(u \in U(I) \).
By hypothesis, there exists \(g(t) \in \mathbb{Z}[t] \) such that \(ud(u) = 1 \). Further, \(x^m = x^m y (1 - x^m y + x^m) = x^m y u \). Hence, \(x^m u^{-1} = x^m y \), and so \(x^m = x^m y x^m = x^{2m} g(u) = x^{2m} x^m (g(u))^2 \). Write \((g(u))^2 = b_0 + b_1 u + \cdots + b_n u^n \in \mathbb{Z}[u] \). For any \(n \geq 0 \), it is easy to check that \(x^m u^i = x^m (1 - x^m y + x^m)^i \in \mathbb{Z}[x] \). This implies that \(x^m (g(u))^2 \in \mathbb{Z}[x] \). According to Lemma 4.3, \(I \) is periodic. \(\Box \)

It follows by Theorem 4.4 and Theorem 3.3 that every periodic ideal of a ring is a \(B \)-ideal.

Corollary 4.5. Let \(I \) be a strongly \(\pi \)-regular ideal of a ring \(R \). If \(U(I) \) is torsion, then \(I \) is periodic.

Proof. For any \(u \in U(I) \), there exists some \(m \in \mathbb{N} \) such that \(u^m = 1 \). Hence, \(u^{-1} = u^{m-1} \in \mathbb{Z}[u] \). According to Theorem 4.4, we complete the proof. \(\Box \)

Example 4.6. Let \(R = \left(\begin{array}{cc} \mathbb{Z} & \mathbb{Z} \\ \mathbb{Z} & 0 \end{array} \right) \) and \(I = \left(\begin{array}{cc} 0 & \mathbb{Z} \\ \mathbb{Z} & 0 \end{array} \right) \). Then \(I \) is a nilpotent ideal of \(R \); hence, \(I \) is strongly \(\pi \)-regular. Clearly, \(\left(\begin{array}{c} 0 \\ 1 \end{array} \right) \in U(I) \), but \(\left(\begin{array}{c} 1 \\ 1 \end{array} \right)^m \neq 0 \) for any \(m \in \mathbb{N} \). Thus, \(U(I) \) is torsion.

The example above shows that the converse of Corollary 4.6 is not true. But we can derive the following.

Proposition 4.7. Let \(I \) be an ideal of a ring \(R \). If \(\text{char}(R) \neq 0 \), then \(I \) is periodic if and only if

1. \(I \) is strongly \(\pi \)-regular,
2. \(U(I) \) is torsion.

Proof. Suppose that \(I \) is periodic. Then \(I \) is strongly \(\pi \)-regular. Let \(x \in U(I) \). Then \(x \) is not nilpotent. By virtue of Lemma 4.1, there exist \(m \in \mathbb{N} \), \(f(t) \in \mathbb{Z}[t] \) such that \(x^m = x^{m+1} f(x) \). As in the proof of Lemma 4.3, we have a monic polynomial \(g(t) \in \mathbb{Z}[t] \) such that \(g(a^{-1}) = 0 \). As \(\text{char}(R) \neq 0 \), we assume that \(\text{char}(R) = q \neq 0 \). Then \(qa^{-1} = 0 \). According to Lemma 4.2, we can find two distinct \(s, t \in \mathbb{N} \) such that \((a^{-1})^s = (a^{-1})^t \). Similarly to Lemma 4.3, \(x^{ts} = x^{st} \), and so \(x \) is torsion. Therefore \(U(I) \) is torsion. The converse is true by Corollary 4.5. \(\Box \)

References

HUANYIN CHEN
Department of Mathematics
Hangzhou Normal University
Hangzhou 310034, P. R. China
E-mail address: huanyinchen@yahoo.cn

HANDAN KOSE
Department of Mathematics
Ahi Evran University
Kirsehir, Turkey
E-mail address: handankose@gmail.com

YOSUM KURTULMAZ
Department of Mathematics
Bilkent University
Ankara, Turkey
E-mail address: yosum@fen.bilkent.edu.tr