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ABSTRACT

High throughput sequencing (HTS) platforms gener-
ate unprecedented amounts of data that introduce
challenges for processing and downstream analy-
sis. While tools that report the ‘best’ mapping loca-
tion of each read provide a fast way to process HTS
data, they are not suitable for many types of down-
stream analysis such as structural variation detec-
tion, where it is important to report multiple mapping
loci for each read. For this purpose we introduce
mrsFAST-Ultra, a fast, cache oblivious, SNP-aware
aligner that can handle the multi-mapping of HTS
reads very efficiently. mrsFAST-Ultra improves mrs-
FAST, our first cache oblivious read aligner capable
of handling multi-mapping reads, through new and
compact index structures that reduce not only the
overall memory usage but also the number of CPU
operations per alignment. In fact the size of the index
generated by mrsFAST-Ultra is 10 times smaller than
that of mrsFAST. As importantly, mrsFAST-Ultra intro-
duces new features such as being able to (i) obtain
the best mapping loci for each read, and (ii) return
all reads that have at most n mapping loci (within
an error threshold), together with these loci, for any
user specified n. Furthermore, mrsFAST-Ultra is SNP-
aware, i.e. it can map reads to reference genome
while discounting the mismatches that occur at com-
mon SNP locations provided by db-SNP; this signif-
icantly increases the number of reads that can be
mapped to the reference genome. Notice that all of
the above features are implemented within the index
structure and are not simple post-processing steps
and thus are performed highly efficiently. Finally,

mrsFAST-Ultra utilizes multiple available cores and
processors and can be tuned for various memory set-
tings. Our results show that mrsFAST-Ultra is roughly
five times faster than its predecessor mrsFAST. In
comparison to newly enhanced popular tools such as
Bowtie2, it is more sensitive (it can report 10 times or
more mappings per read) and much faster (six times
or more) in the multi-mapping mode. Furthermore,
mrsFAST-Ultra has an index size of 2GB for the en-
tire human reference genome, which is roughly half
of that of Bowtie2. mrsFAST-Ultra is open source and
it can be accessed at http://mrsfast.sourceforge.net.

INTRODUCTION

High Throughput Sequencing (HTS) technologies have
changed the way genomics research is conducted since their
inauguration in 2005 (1) and they continue to evolve with
the introduction of single molecule sequencing and more re-
cently nanopore sequencing. Although the HTS technolo-
gies have proven their power in cataloging normal human
genome variation (2,3), finding disease causing mutations
(4) and building de novo genome assemblies (5), the compu-
tational analysis of the data they generate is far from being
perfect.

Aside from de novo sequencing projects, all HTS-based
studies start with mapping the reads to a reference genome
(of the same, or another, closely related species). The im-
portance of read mapping was recognized by the field and
various computational tools have been developed for dif-
ferent purposes and constraints. Aligners based on the Bur-
rows Wheeler Transform (BWT) (6) together with Ferragina
Manzini (FM) search routine (7), such as BWA (8), Bowtie
(9), Bowtie2 (10) and SOAP2 (11), e.g. aim to achieve high
mapping speed through some reduction in mapping sensi-
tivity. Alternatively, hash based mappers such as mrFAST
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(12,13), mrsFAST (14), drFAST (15), RazerS (16), RazerS3
(17), SHRiMP (18), SHRiMP2 (19), ZOOM (20), SRmap-
per (21) and GSNAP (22) aim full sensitivity at the cost
of run time. Recently developed mappers, Masai (23) and
GEM (24), use a combination of the two approaches and
aim to provide the benefits of both mapping paradigms.
Typically, the advantages and disadvantages of a read map-
per depends on the needs of a project and the mapper
should be chosen based on the biological question in hand
(25,26). For example, in order to accurately detect structural
variants in HTS data, especially in the repeat regions of a
genome, one needs to obtain all mapping loci for each of
the reads (27–29). It is also recently shown that utilizing all
possible mapping positions result in higher recall and pre-
cision rates compared to using a single (best) mapping lo-
cation (29).

Note that, even when fully sensitive mappers are used,
many reads remain unmapped, primarily due to the se-
quencing errors associated with HTS platforms. In addi-
tion to these errors, some reads also involve real sequence
variants such as Single Nucleotide Polymorphism (SNPs)
(30), indels (31), balanced rearrangements (32) or dupli-
cations (33). Available mapping tools require a (typically
user defined) upper bound on the number of ‘errors’ it can
tolerate per read mapping, and treat real variants and se-
quencing errors identically––this reduces the mappability of
a significant number of reads. A mapper capable of distin-
guishing real variants from sequencing errors, will be able
to map more reads to the reference, effectively providing an
increased accuracy and sensitivity. Unfortunately, as each
read is mapped independently from the others and the ge-
nomic variants are detected only after the mapping process
is complete, real variants cannot be known a priori. How-
ever, many of the three to 4.5 million SNPs in a human
genome (in comparison to a reference genome) are shared
among individual genomes (3) and have been collected and
indexed in the dbSNP database. Therefore, a read mapper
which utilizes the common SNP information in dbSNP (or
any other genomic variation databases) can improve the
signal-to-noise ratio in alignments.

In this paper we introduce a new SNP-aware read mapper
developed for the Illumina platform, that we call mrsFAST-
Ultra, which improves the (i) mappability, (ii) mapping ac-
curacy and (iii) sensitivity by tolerating common, previ-
ously reported sequence variants and distinguishing them
from likely sequencing errors. Given a user defined error
threshold, mrsFAST-Ultra reduces the number of reads that
could not be mapped by any available mapper by 18%.
mrsFAST-Ultra achieves this while providing full sensitiv-
ity, i.e. it guarantees to find all mapping loci of each read
within a user defined error threshold, as per its predeces-
sors (12,14,15). As mentioned earlier, this feature is essen-
tial for accurate structural variant detection techniques (e.g.
VariationHunter (27,34), HYDRA (28), CNVeM (29)). As
a result, mrsFAST-Ultra has a significantly higher sensitiv-
ity compared to Bowtie2 in the ‘all mapping mode’ where
mrsFAST-Ultra reports at least 10 times more mapping loci
per read.

mrsFAST-Ultra introduces several additional improve-
ments over its predecessors, such as (i) requiring a substan-
tially smaller reference genome index file (which also im-

proves its cache performance), (ii) introducing new filters to
improve search space and (iii) supporting multithreading.
More specifically, mrsFAST-Ultra improves on the stor-
age requirement of the original mrsFAST, the first cache-
oblivious HTS read mapper, by a factor of 10. Note that al-
though mrsFAST-Ultra can potentially employ -multiple-
spaced seeds, we preferred to use a single non-spaced seed
to keep the index as compact as possible. The index size was
one of the limiting factors of the original mrsFAST in large
scale sequencing projects. As mentioned above, the com-
pactness of mrsFAST-Ultra’s index structure also reduces
the overall number of CPU operations and the I/O needs,
resulting in a factor of five improvement in the running time
in comparison to the original mrsFAST.

Finally, mrsFAST-Ultra introduces new features such as
(i) the ability to retrieve the single best mapping loci, (ii)
the ability to retrieve all reads which map to at most (a user
defined) n unique loci (within a user defined number of mis-
matches) and (iii) automatic parallelization if multiple cores
are available in the computing environment.

MATERIALS AND METHODS

mrsFAST-Ultra is a seed and extend aligner in the sense
that it works in two main stages: (i) it builds an index from
the reference genome for exact ‘anchor’ matching and (ii)
it computes all anchor matchings for each of the reads in
the reference genome through the index and extends each
match to both left and right; it reports the overall alignment
if it is within the user defined error threshold.

Indexing

In the indexing step, mrsFAST-Ultra slides a window of
size k = r/(e + 1) (where r is the read length and e is the
user defined error threshold) through the reference genome
and identifies all occurrences of each k-mer present in the
genome. For small values of k, mrsFAST-Ultra’s genome
index is an array of all possible k-mers in lexicographic or-
der. For each k-mer, the index keeps an array of all locations
the k-mer is observed in the reference genome. In case the
value of k is prohibitively large, only a prefix of user defined
size � (for each k-mer) is used for indexing. For each such
�-mer, its locations on the reference genome are then sorted
with respect to the k − �-mers following it. (In fact, for most
applications, even keeping track of all k − �-mers following
a particular �-mer is not necessary: we just hash these k −
�-mers via a simple checksum scheme.)

For further compacting the index, the reference genome
itself is first converted to a 3 bit per base encoding. The
genome sequence is stored in 8 byte long machine words
implying that each machine word contains 21 bases. In ad-
dition, the index of the reference genome actually does not
keep every occurrence of each k-mer, but rather keeps how
many occurrences of each k-mer is present in the genome.
The actual locations of the k-mers (seeds) are recalculated
each time the reference is loaded. This reduces the I/O re-
quirements of mrsFAST-Ultra significantly. One may think
that such a set up would increase the overall running time
of the search step but the savings from I/O reduction signif-
icantly offsets the cost of recalculating the k-mer locations
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on the fly. Overall, the storage requirement of the index we
construct for the human reference genome is 2GB, includ-
ing the reference genome sequence itself. This represents a
10-fold improvement in the index storage requirement of the
original mrsFAST.

Search

In this step, mrsFAST-Ultra processes the reads from an in-
put HTS data set and computes ‘all’ locations on the refer-
ence genome that can be aligned to each read within the
user-defined error threshold e. mrsFAST-Ultra is a fully
sensitive aligner meaning that it guarantees to find and re-
port all mapping locations of a given read within e mis-
matches. mrsFAST-Ultra achieves this by partitioning the
read into e + 1 non-overlapping fragments of length k for a
given error threshold e. Due to the pigeon hole principle, at
least one of these fragments should have an exactly match-
ing k-mer of the reference genome in each location the read
can be mapped to. The search step then validates whether
each location of the reference genome with an exact k-mer
match of the read is indeed a mapping location.

In order to perform the search step as fast as possible,
mrsFAST-Ultra loads the genome index (see above) to the
main memory and computes the locations of each k-mer
on-the fly––for significant savings in I/O. For each k-mer,
the number of locations in the reference genome is already
stored in the index, thus we can preallocate the required
memory for each array that keeps the locations of a given
k-mer. Once this extended reference genome index is set up
in the main memory, the remaining memory is allocated
for the reads. At each subsequent stage, mrsFAST-Ultra
retrieves sufficiently many (unprocessed) reads that can fit
in the main memory and searches them in the reference
genome simultaneously. (Alternatively, the user can specify
an upper bound on the memory usage.) These reads are also
indexed with respect to the e + 1 non-overlapping fragments
of size k it extracts from each read. Basically, for each pos-
sible fragment of length k, the read index keeps the read ID,
the fragment number and the direction the fragment is ob-
served in the read. Once the read index is set, it is compared
to the reference genome index, in a divide and conquer fash-
ion as per mrsFAST, in order to achieve cache obliviousness.
In other words, for each possible k-mer, the list of its occur-
rences in the reference genome is compared against the list
of its occurrences among the reads in a divide-and-conquer
fashion (rather than linear fashion) to ensure an optimal
cache performance at any level of the cache structure, within
a factor 2 (14).

Because mrsFAST-Ultra aims to be fully sensitive, it
needs to verify whether each reference genome location and
each corresponding read that have the same k-mer have in-
deed an alignment within the user defined error tolerance.
Note that, the value of k, set to r/(e + 1) can be too big
for creating an index that has an entry for every possible
k-mer from the four letter deoxyribonucleic acid (DNA) al-
phabet. Thus, the primary indexing is performed on a prefix
of length � = 12 for each k-mer and all locations/reads that
share this prefix are further sorted according to the k − �-
mer succeeding this prefix. This is achieved by hashing the k
− �-mer through a simple checksum scheme. As a result, the

divide-and-conquer comparison of reference genome loca-
tions and reads is performed on those entries that have the
same �-mer and the same checksum value for the succeed-
ing k − �-mer. The comparison for each genomic location
and a read involves the calculation of the Hamming distance
between the read and the k-mer location in the genome, ex-
tended by the appropriate length towards left and right. Be-
fore calculating the Hamming distance, mrsFAST-Ultra ap-
plies another filter that compares the number of As, Cs, Gs
and Ts in the read and the genomic locus; if the total num-
ber of symbol differences is more than 2e, then we do not
need to compute the Hamming distance explicitly as it will
be at least e + 1––above the error threshold. In comparison
to the original mrsFAST, our new search strategy signifi-
cantly reduces the number of Hamming distance calcula-
tions that is the main bottleneck for the search step. When
combined with reduced I/O (due to compact index repre-
sentation) and the introduction of new filters, this implies a
five factor reduction in the overall running time of search.

SNP awareness

The user has the option of setting mrsFAST-Ultra to tol-
erate known SNP locations in the mappings: i.e. in this
mode, SNPs in an alignment location simply do not con-
tribute to the error count in the Hamming distance compu-
tation provided that a SNP location’s base quality is above
user-defined threshold and it is matching the alternate al-
lele. For this feature, mrsFAST-Ultra parses dbSNP file in
VCF4 format (35) and generates a compact structure that it
uses for mapping. Although conceptually simple, this fea-
ture is highly desired by users as it significantly reduces the
number of reads that can not be mapped to anywhere in the
reference genome. In this mode, mrsFAST-Ultra reports the
number of SNPs in addition to the number of mismatches
per mapping location.

Best and limited mapping

mrsFAST-Ultra provides the user the option of returning
a single best mapping locus per read––which it performs
much faster than computing all mapping loci. As per BWA,
Bowtie2, SRmapper and others, a best mapping location
(on the reference genome) is considered to be one which
has the smallest number of differences with the read and
in the case of a tie one is chosen at random and assigned
a low mapping quality. In addition, mrsFAST-Ultra has
the option to return only mapping loci of reads which
map to at most n locations within the user-defined error
threshold. These features help the users to control the map-
ping multiplicity––which can grow prohibitively for further
downstream analysis.

Parallelization

mrsFAST-Ultra is designed to utilize the parallelism of-
fered by contemporary multicore architectures. The map-
ping task is simply partitioned into independent threads
each of which is executed by a single core. For efficiency pur-
poses, the only locks used by the threads are for allocating
memory and I/O.

 at B
ilkent U

niversity on June 8, 2015
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/


Nucleic Acids Research, 2014, Vol. 42, Web Server issue W497

Figure 1. Average Number of locations verified per k-mer extracted from
each read, as a function of k. Note that the maximum value of k for the
original mrsFAST is 14––even if higher values of k may be demanded by a
user.

RESULTS

We report on experiments we performed on a single PC,
equipped with an Intel(R) Xeon(R) CPU with four cores
and 12GB of RAM. We benchmarked a number of read
mapping software with parameters set as below––unless
otherwise stated.

� mrsFAST v2.5.0.4 (-e 6, for error threshold).
� mrsFAST-Ultra v3.2.0 (-e 6, for error threshold, -threads

1 for using a single CPU).
� BWA v0.6.2 (-n 6 for error threshold; -N for disabling

iterative search and reporting all mapping locations; -o 0
for disabling gaps).

� Bowtie2 v2.0.2 (-k 100 for reporting up to 100 map-
pings for each read, -a for reporting all mapping loca-
tions (Note that it was impractical to run Bowtie2 to re-
turn all mapping locations.); -rdg 1000,1000 for disabling
gaps on reads by increasing gap opening and gap exten-
sion penalty; -rfg 1000,1000 for disabling gaps on genome
by increasing gap opening and extension penalty).

� GEM v1.367.beta (-m 6 for error threshold 6; -d all for
reporting all mapping locations; -e 0 for disabling gaps).

� RazerS3 v3.1.1 (-i 94, provides 94% similarity for allow-
ing six errors in reads of length 100, -rr 100 for full sensi-
tivity; -ng for disabling gaps).

� GSNAP 2013-01-23 release (-m 6 for error threshold 6; -i
1000 for disabling gaps by increasing indel penalty).

� SRmapper v0.1.5 (-m 6 for error threshold 6; -s -1 for
considering all index locations per hit).

� Masai v0.7.1 (-e 6 for error threshold 6; -ng for disabling
gaps, -mapping-mode all for reporting all mapping loca-
tions).

We start with the indexing performance of the tools in
table 1. As can be seen mrsFAST-Ultra is not only (much)

Table 1. Reference genome indexing times and index sizes for complete
human genome (hg19)

Software Indexing time (min) Index size (GB)

mrsFAST-Ultra 8 2
mrsFAST 26 20
BWA 62 5.1
Bowtie2 107 3.8
GEM 181 4.1
RazerS3a NA NA
GSNAP 11 5.1
SRmapper 18 5.5
Masaib 105 15

aRazerS3 does not need a genome index for performing alignments.
bMasai requires 18.7GB of memory for indexing hg19. This could not be
executed on our benchmarking machine with a single CPU and 12GB of
RAM. Therefore Masai indexing has been performed on a different ma-
chine with 256GB of RAM and higher CPU power and I/O speed.

faster than all other tools in indexing time, but the index it
builds is (much) smaller than others, including those that
are based on the BWT. Note that Masai is one tool which
builds a very large index and thus cannot run efficiently on
a standard server––here we present Masai results on a Dell
server with 24 cores sharing 256GB of main memory. Even
then, Masai is 13 times slower than mrsFAST-Ultra running
on a standard PC (specifications above).

For the mapping stage, we measured the mapping per-
formance of the tools based on 2 million Illumina reads of
length 100 bp from NA18507 (SRA ID: SRR034939) indi-
vidual genome to the GRCh37 version of the human ref-
erence genome. We carried out a few experiments to evalu-
ate the performance of the above software. We did not al-
low any indels/gaps in these experiments to ensure fairness.
In the first experiment, we mapped the reads with an er-
ror threshold of 6% (i.e. 6 bp). Table 2 depicts the results
of this experiment. As can be seen, mrsFAST-Ultra reports
about 308M mapping locations for these reads, which is
more than the number of mapping locations reported by
any of the competing methods. In the SNP-aware mode
where we provided mrsFAST-Ultra with dbSNP32, the per-
centage of reads which could not be mapped drops by 18%
(roughly 2% of all reads). Unfortunately, Masai crashed in
this experiment. We only provide the performance of Masai
on chromosome 1. We exclude Masai from the rest of the
experiments.

In the second experiment, we set the appropriate param-
eters in each method to report 100, 1000 and all mapping
locations per read. Table 3 shows the running time of differ-
ent methods. Although the running time for GEM is better
than the other methods, it misses many mapping locations
as per BWA and Bowtie2.

In the third experiment (see Table 4), we ran all the
tools in the ‘best mapping’ mode with various error thresh-
olds. mrsFAST-Ultra was slower than GEM and BWA
when the error threshold was set to 2. However, GEM and
BWA had lower sensitivity when error threshold increased.
The only two tools that retained the sensitivity when error
threshold increased were RazerS3 and mrsFAST-Ultra with
mrsFAST-Ultra being the faster of the two. In the final ex-
periment, we compare mrsFAST-Ultra and GSNAP in their
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Table 2. Mapping 2M reads from NA18507 to GRCh37 with e ≤ 6

Software Time (min)
No. of mappings

(millions) % of reads mapped

1-thread 4-threads

mrsFAST-Ultra 71 21 308.302 90.55
mrsFAST-Ultra
(SNP) a

107 32 341.418 92.27

mrsFAST 362 NA 308.302 90.55
BWA 80 33 268.194 90.22
Bowtie2b 420 123 33.373 90.42
GEM 15 4 8.996 89.03
Razers3 528 234 50.653 90.55
GSNAP 184 60 5.117 77.44
SRmapper 166 NA 2.076 89.63

mrsFAST-Ultrac 6 2 21.866 11.71
Masaid 33 NA 21.829 11.70

All tools are set to report all mapping locations when possible.
aNote that the SNP-aware mrsFAST-Ultra employs dbSNP132 for this task. The base quality of SNP locations are higher than 99% (ASCII value 53).
The base is matching either of the major/minor alleles.
bFor Bowtie2, we report the time when it is set to return at most 1000 mappings per read––without this bound it does not complete the task in 12 h.
cTo be able to compare to Masai, we run mrsFAST-Ultra only on chr1.
dMasai crashes during indexing on the full human genome on our benchmarking machine. Results are shown only for mapping the reads to chr1.

Table 3. Running time (in min) for reporting n mapping locations per read

Software n = 100 n = 1000 n = ∞
mrsFAST-Ultra 58 62 71
BWA 69 69 80
Bowtie2a 35 420 NA
GEMb 14 15 16
RazerS3 382 420 528
GSNAP 183 184 184
SRmapper 166 166 166

aBowtie2 cannot complete the task in 12 h with the -a option.
bNote that although GEM provides the best speed, it has lower sensitivity and has a higher memory requirement in comparison to mrsFAST-Ultra (4.1GB
versus 2.5GB).

Table 4. Mapping of 2M reads in the best mapping mode, with an error threshold of 2, 4 and 6

Software e ≤ 2 e ≤ 4 e ≤ 6

Time (min)
% of reads

mapped Time (min)
% of reads

mapped Time (min) % reads mapped

mrsFAST-Ultra 9 80.97 13 87.63 57 90.55
BWA 4 80.97 11 87.52 18 90.22
Bowtie2 10 80.97 10 87.52 10 89.77
GEM 4 80.97 6 87.18 13 89.33
RazerS3 14 80.97 60 87.63 326 90.55
GSNAP 156 71.74 180 75.81 184 77.33
SRmapper 87 80.84 139 86.93 166 89.63

No indels/gaps allowed in any method. We report on both the running time and the percentage of reads mapped. Fastest run times for highest sensitivity
values are shown in boldface.

SNP-tolerant best mapping mode. The results are given in
Table 6.

Table 5 demonstrates the memory footprint of all tools
we benchmarked on 2M reads.

Finally, we show the effectiveness of mrsFAST-Ultra fil-
ters. In Figure 1, we calculated the expected number of the
locations that should be verified given varying values of
seed length k. It is not surprising that as the value of k in-
creases, the expected number of locations that should be
verified decreases. We also plot the average number of loca-

Table 5. Memory footprint of the tools on 2M reads

Software Memory footprint (GB)

mrsFAST-Ultra 2.5
BWA 3.2
Bowtie2 3.2
GEM 4.1
RazerS3 3.1
GSNAP 4.6
SRmapper 2.5
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Table 6. Comparing mrsFAST-Ultra and GSNAP in SNP-tolerant best
mapping mode

Software Time % of reads

mrsFAST-Ultra 90 min 92.27
GSNAP 207 min 77.63

tions verified by mrsFAST-Ultra for various k-mer + check-
sum length values. As shown in the figure, using checksum
filtration mimics the use of longer k-mer. In the figure we
demonstrate the average number of the locations verified af-
ter we incorporated the 1-gram filtration method.

DISCUSSION

As shown earlier (36), mapping RNA-Seq data to a refer-
ence genome causes a bias towards the reference genome
in Allele Specific Expression analyses. Although a num-
ber of methods have been proposed to solve this problem
(37,38), most of the proposed algorithms are computation-
ally costly. The cost can be reduced if the known SNPs can
be tolerated in the alignment step, therefore improving map-
ping accuracy.

In this paper we present mrsFAST-Ultra, a fully sensi-
tive and SNP-aware aligner developed for the Illumina plat-
form. We extend on our earlier algorithm, mrsFAST, to im-
prove mapping speed, reduce file size for its genome index
and add parallelization and SNP-awareness features. These
new features will help improve HTS analyses especially for
RNA-Seq for Allele Specific Expression.
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