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This study provides a comparative assessment on the different techniques of classifying human
activities performed while wearing inertial and magnetic sensor units on the chest, arms and legs. The
gyroscope, accelerometer and the magnetometer in each unit are tri-axial. Naive Bayesian classifier,
artificial neural networks (ANNs), dissimilarity-based classifier, three types of decision trees, Gaussian
mixture models (GMMs) and support vector machines (SVMs) are considered.A feature set extracted
from the raw sensor data using principal component analysis is used for classification. Three different
cross-validation techniques are employed to validate the classifiers. A performance comparison of
the classifiers is provided in terms of their correct differentiation rates, confusion matrices and
computational cost. The highest correct differentiation rates are achieved with ANNs (99.2%), SVMs
(99.2%) and a GMM (99.1%). GMMs may be preferable because of their lower computational
requirements. Regarding the position of sensor units on the body, those worn on the legs are the most
informative. Comparing the different sensor modalities indicates that if only a single sensor type is
used, the highest classification rates are achieved with magnetometers, followed by accelerometers
and gyroscopes. The study also provides a comparison between two commonly used open source
machine learning environments (WEKA and PRTools) in terms of their functionality, manageability,

classifier performance and execution times.
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1. INTRODUCTION

With the rapid advances in micro electro-mechanical systems
(MEMS) technology, the size, weight and cost of commer-
cially available inertial sensors have decreased considerably
over the last two decades [1]. Miniature sensor units that contain
accelerometers and gyroscopes are sometimes complemented
by magnetometers. Gyroscopes provide angular rate informa-
tion around an axis of sensitivity, whereas accelerometers pro-
vide linear or angular velocity rate information. There exist
devices sensitive around a single axis, as well as two- and tri-
axial devices. Tri-axial magnetometers can detect the strength
and direction of the Earth’s magnetic field as a vector quantity.

Until the 1990s, the use of inertial sensors was mostly limited
to aeronautics and maritime applications because of the high
cost associated with the high accuracy requirements. The avail-
ability of lower cost, medium performance inertial sensors has
opened up new possibilities for use (see Section 5).

The main advantages of inertial sensors is that they are self-
contained, non-radiating, non-jammable devices that provide
dynamic motion information through direct measurements in
3D. On the other hand, because they rely on internal sensing
based on dead reckoning, errors at their output, when integrated
to get position information, accumulate quickly and the position
output tends to drift over time. The errors need to be modeled
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and compensated for, or reset from time to time when data from
external absolute sensing systems become available.

A recent application domain of inertial sensing is automatic
recognition and monitoring of human activities. This is a
research area with many challenges and one that has received
tremendous interest, especially over the last decade. Several
different approaches are commonly used for the purpose of
activity monitoring. One such approach is to use sensing sys-
tems fixed to the environment, such as vision systems with
multiple video cameras [2–5].Automatic recognition, represen-
tation and analysis of human activities based on video images
has had a high impact on security and surveillance, entertain-
ment and personal archiving applications [6]. Reference [7]
presents a comprehensive survey of the recent studies in this
area, where in many, points of interest on the human body are
pre-identified by placing visible markers such as light-emitting
diodes on them and recording their positions by optical or
magnetic imaging techniques. For example, [8] considers six
activities, including falls, using the Smart infrared motion
capture system. In [9], walking anomalies such as limping,
dizziness and hemiplegia are detected using the same system.
In [10], a number of activity models are defined for pose
tracking and the pose space is explored using particle filtering.

Using cameras fixed to the environment (or other ambient
intelligence solutions) may be acceptable when activities are
confined to certain parts of an indoor environment. If cameras
are being used, the environment needs to be well illuminated
and almost studio like. However, when activities are performed
indoors and outdoors and involve going from place to place
(e.g. commuting, shopping, jogging), fixed camera systems
are not very practical because acquiring video data is difficult
for long-term human motion analysis in such unconstrained
environments. Recently, wearable camera systems have been
proposed to overcome this problem [11]; however, the other
disadvantages of camera systems still exist, such as occlusion
effects, the correspondence problem, the high cost of processing
and storing images, the need for using multiple camera
projections from 3D to 2D, the need for camera calibration and
cameras’ intrusions on privacy.

Using miniature inertial sensors that can be worn on the
human body instead of employing sensor systems fixed to the
environment has certain advantages. As stated in [12], ‘activity
can best be measured where it occurs.’ Unlike visual motion
capture systems that require a free line of sight, miniature
inertial sensors can be flexibly used inside or behind objects
without occlusion. 1D signals acquired from the multiple axes
of inertial sensors can directly provide the required information
in 3D. Wearable systems have the advantages of being with
the user continuously and having low computation and power
requirements. Earlier work on activity recognition using body-
worn sensors is reviewed in detail in [13–16]. More focused
literature surveys overviewing the areas of rehabilitation and
biomechanics can be found in [17–19].

Camera systems and inertial sensors can be used comple-
mentarily in many situations. In a number of studies, video
cameras are used only as a reference for comparison with iner-
tial sensor data [20–23], whereas in others, data from these two
sensing modalities are integrated or fused [24, 25]. Joint use of
visual and inertial sensors has attracted considerable attention
recently because of the robust performance and potentially wide
application areas [26, 27]. Fusing data from inertial sensors and
magnetometers are also reported in the literature [21, 28, 29].
In this study, however, we have chosen to use a wearable sys-
tem for activity recognition because of the various advantages
mentioned above.

Activity spotting is a well-known subclass of activity
recognition tasks, where the starting and finishing points
of well-defined activities are detected based on sequential
data [30]. The classifiers used for activity spotting tasks can
be divided into instance- and model-based classifiers, where
the latter dominates the area. The advantages of instance-based
classifiers are their simple structure, lower computational cost
and power requirement, and their ability to deal with classes
encountered for the first time during the test procedure [31].
On the other hand, in large-scale tasks, they cannot effec-
tively handle changes in circumstances such as inter-subject
variability.

Some of the problems with activity spotting are optimizing
the number and configuration of the sensors and synchronizing
them. Zappi et al. [32] propose sensor selection algorithms
to develop energy-aware systems that deal with the power
vs. accuracy trade-off. In another study, Ghasemzadeh [33]
introduces the concept of ‘motion transcripts’ and proposes
distributed algorithms to reduce power requirements. In [34],
a method is developed for human full-body pose tracking
and activity recognition based on the measurements of a
few body-worn inertial orientation sensors. Reference [35]
focuses on recognizing activities characterized by a hand motion
and an accompanying sound for assembly and maintenance
applications. Multi-user activities are addressed in [36]. The
focus of [37] is to investigate inter-subject variability in a large
dataset.

Within the context of the European research project
OPPORTUNITY, mobile opportunistic activity and context
recognition systems are developed [38]. Another European
Union project (wearIT@work) focuses on developing a context-
aware wearable computing system to support a production
or maintenance worker by recognizing his/her actions and
delivering timely information about activities performed [39].
A survey on wearable sensor systems for health monitoring
and prognosis and the related research projects are presented
in [40]. The main objective of the European Commission’s
seventh framework project CONFIDENCE is the development
and integration of innovative technologies to build a care system
for the detection of short- and long-term abnormal events (such
as falls) or unexpected behaviors that may be related to a
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health problem in the elderly [41]. This system aims to improve
the chances of timely medical intervention and give the user
a sense of security and confidence, thus prolonging his/her
independence.

The classification techniques used in previous activity
recognition research include threshold-based classification,
hierarchical methods, decision trees (DTs), the k-nearest
neighbor (k-NN) method, artificial neural networks (ANNs),
support vector machines (SVMs), naive Bayesian (NB) model,
Bayesian decision-making (BDM), Gaussian mixture models
(GMMs), fuzzy logic and Markov models, among others. The
use of these classifiers in various studies is detailed in an
excellent review paper focused on activity classification [42]. In
some studies, the outputs of several classifiers are combined to
improve robustness; however, there exists only a small number
of studies that compare two or more classifiers using exactly the
same set of input feature vectors. These studies are summarized
in Table 1 and provide some insight on the relative performance
of the different classifiers. The comparisons in some of these
studies, however, are based on only a small number of
subjects (1–3). According to the results, although it appears
that DTs and BDM provide the best accuracy, the reported
performance differences may not always be statistically
significant. Furthermore, contradictory studies exist [42]. It is
stated in the same reference that ‘There is need for further
studies investigating the relative performance of the range of
different classifiers for different activities and sensor features
and with large numbers of subjects. For example, techniques
such as SVM and Gaussian mixture models show considerable
promise but have not been applied to large datasets.’

Due to the lack of common ground among studies, results
published so far are fragmented and difficult to compare,
synthesize and build upon in a manner that allows broad
conclusions to be reached. There is a rich variety in the
number and type of sensors and subjects used, activities
considered and methods employed for data acquisition. Usually,
the modality and configuration of sensors are chosen without
strong justification, depending more on what is convenient,
rather than on performance optimization. The segmentation
(windowing) of signals, the generation, selection and reduction
of features, and the classifiers used also differ significantly.
The variety of choices made in the studies since 1999 and
their classification results are summarized in Table 1. It would
not be appropriate to make a direct comparison across the
classification accuracies of the different studies, because there
is no common ground between them. Comparisons among
different classifiers should be made based on the same dataset
in order to be fair and meaningful. Optimal pre-processing and
feature selection may further enhance the performance of the
classifiers, and sometimes can be more important than classifier
choice. There is an urgent need for establishing a common
framework so that the subject can be treated in a unified and
systematic manner. Consensus on activity monitoring protocols,

the variables to report, a standardized set of activities and
sensor configurations would be highly beneficial to this research
area.

Many works have demonstrated 85–97% correct recognition
of activities based on inertial sensor data; the main problem
with many of these, however, is that the subjects are provided
with instructions and highly supervised while performing the
activities. A system that can recognize activities performed in
an unsupervised and naturalistic way with correct recognition
rates above 95% would be of high practical value and interest.
Another important concern is the computational cost and real-
time operability of recognition algorithms. Classifiers designed
should be fast enough to provide a decision in real time
or with only a very short delay. Therefore, in our opinion,
performance criteria and design requirements for an activity
recognition system are accuracies above 95% and (near) real-
time operability.

This study follows up on our earlier work reported in [16],
where miniature sensor units comprised inertial sensors and
magnetometers fixed to different parts of the body are used
for activity classification. The main contribution of the earlier
article is that unlike previous studies, it uses many redundant
sensors and extracts a variety of features from the sensor signals.
Then, it performs an unsupervised feature transformation
technique that allows considerable feature reduction through
automatic selection of the most informative features. It also
provides a systematic comparison between various classifiers
used for human activity recognition based on a common dataset.
It reports correct differentiation rates, confusion matrices and
computational requirements of the classifiers.

In this study, we evaluate the performance of additional
classification techniques and investigate sensor selection and
configuration issues based on the previously acquired dataset.
The classification methodology in terms of feature extraction
and reduction and cross-validation techniques is the same
as [16]. The classification techniques we compare in this study
are the NB classifier, ANNs, the dissimilarity-based classifier
(DBC), as well as three types of DTs, GMMs and SVMs. We
ask subjects to perform the activities in their own way; we do
not provide any instructions on how the activities should be
performed. We present and compare the experimental results
considering correct differentiation rates, confusion matrices,
cross-validation techniques, machine learning environments
and computational requirements. The main purpose and
contribution of this article is to identify the best classifier,
the most informative sensor type and/or combination, and the
most suitable sensor configuration on the body. We consider
all possible sensor-type combinations of the three sensor
modalities (seven combinations altogether) and the position
combinations of the given five positions on the body (31
combinations altogether). We note activities that are most
confused with each other and compare the computational
requirements of the classification techniques.
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TABLE 1. A summary of the earlier studies on activity recognition indicating the wide variety of choices made.

Activities
Reference Sensors No. type Subjects Classifiers used and classification rates

Aminian et al. [20] 1D acc (×2) 4 pos, mot 4M 1F Physical activity detection algorithm: 89.3%
Kern et al. [12] 3D acc (×12) 8 pos, mot 1M BDM: 85–89%
Mathie et al. [43] 3D acc (×1) 12 pos, mot, trans 19M 7F Hierarchical binary DT: 97.7%
Bao and Intille [44] 2D acc (×5) 20 pos, mot 13M 7F C4.5 DT: 84.26%, 1-NN: 82.70%, NB: 52.35%, DTable: 46.75%
Allen et al. [45] 3D acc (×1) 8 pos, mot 2M 4F Adopted GMM: 92.2%, GMM: 91.3%, rule-based heuristics: 71.1%
Pärkkä et al. [46] 3D acc, mag, other (total 23) 7 pos, mot 13M 3F Automatic DT: 86%, custom DT: 82%, ANN: 82%
Maurer et al. [47] 2D acc (×1), light sensor (×1) 6 pos, mot 6 C4.5 DT: 87.1% (wrist), NB and k-NN: not reported but both < 87.1%
Pirttikangas et al. [48] 3D acc (×4), heart rate (×1) 17 pos, mot 9M 4F k-NN: 90.61%, ANN: ∼81%

9 k-NN: 92.89%, ANN: 89.76%
Ermes et al. [49] 3D acc (×2), GPS (×1) 9 pos, mot 10M 2F Hybrid model: 89%, ANN: 87%, custom DT: 83%, automatic DT: 60%
Yang et al. [50] 3D acc (×1) 8 pos, mot 3M 4F ANN: 95.24%, k-NN: 87.18%
Luštrek and Kaluža [8] video tags (×12) 6 pos, mot 3 SVM: 96.3%, 3-NN: 95.3%, RF-T: 93.9%, bagging: 93.6%,Adaboost: 93.2%,

C4.5 DT: 90.1%, RIPPER decision rules: 87.5%, NB: 83.9%
Tunçel et al. [51] single-axis gyro (×2) 8 mot 1M BDM: 99.3%, SVM: 98.4%, 1-NN: 98.2%,

DTW: 97.8%, LSM: 97.3%, ANN: 88.8%
Khan et al. [52] 3D acc (×1) 15 pos, mot, trans 3M 3F Hierarchical recognizer (LDA+ANN): 97.9%
Altun et al. [16] 3D acc-gyro-mag unit (×5) 19 pos, mot 4M 4F BDM: 99.2%, SVM: 98.8%, 7-NN: 98.7%, DTW: 98.5%,

ANN: 96.2%, LSM: 89.6%, RBA: 84.5%
Ayrulu and Barshan [53] single-axis gyro (×2) 8 mot 1M Features extracted by various wavelet families as input to ANN: 97.7%
Lara et al. [54] 3D acc (×1), vital signs 5 pos, mot 7M 1F Additive Logistic Regression (ALR): 95.7%,

Bagging using ten J48 classifiers (BJ48): 94.24%
Bagging using ten Bayesian network classifiers (BBN): 88.33%

Aung et al. [55] video tags (Vicon system) 3 mot 8 Wavelet transform + manifold embedding + GMM: 92%
3D acc (×2) (gait)
3 datasets

From left to right: the reference details, number and type of sensors [acc, accelerometer; gyro, gyroscope; mag, magnetometer; GPS, global positioning system; other, other type
of sensors], number and type of activities classified [pos, posture; mot, motion; trans, transition], number of male (M) and female (F) subjects, the classifiers used and their correct
differentiation rates sorted from maximum to minimum.
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The study also provides a comparison between two
commonly used open source machine learning environments
in terms of their functionality, manageability, classification
performance and execution times of the classifiers employed.
Our research group implemented the compared classification
techniques in [16], whereas the classifiers considered in this
study are provided in two open source environments in
which a wide variety of choices are available. We use the
Waikato environment for knowledge analysis (WEKA) and
the pattern recognition toolbox (PRTools). WEKA is a Java-
based collection of machine learning algorithms for solving
data mining problems [56, 57]. PRTools is a MATLAB-based
toolbox for pattern recognition [58]. Since WEKA is executable
in MATLAB, MATLAB is used as the master software to
manage both environments.

The rest of this paper is organized as follows: Section 2 briefly
describes the data acquisition, features used and activities
performed. In Section 3, we state the classifiers used and
outline the classification procedure. In Section 4, we present the
experimental results of the performance of the classifiers, sensor
selection and configuration, and execution times, and also
compare the two machine learning environments. In Section 5,
we note several application areas of activity recognition. We
present our conclusions and suggest future research directions
in Section 6.

2. DATA ACQUISITION, FEATURES AND
ACTIVITIES

We use five MTx 3-DOF orientation trackers (Fig. 1),
manufactured by Xsens Technologies [59]. Each MTx unit has
a tri-axial accelerometer, a tri-axial gyroscope and a tri-axial
magnetometer, thus the sensor units acquire 3D acceleration,
rate of turn and the strength of the Earth’s magnetic field.
Each motion tracker is programmed via an interface program
called MT Manager to capture the raw or calibrated data with a
sampling frequency of up to 512 Hz.

Accelerometers of two of the MTx trackers can sense
up to ±5g and the other three can sense in the range of

±18g, where g = 9.80665 m/s2 is the standard gravity. All
gyroscopes in the MTx unit can sense in the range of ±1200◦/s
angular velocities. The magnetometers measure the strength
of the Earth’s magnetic field along three orthogonal axes and
their vectoral combination provides the magnitude and the
direction of the Earth’s magnetic north. In other words, the
magnetometers function as a compass and can sense magnetic
fields in the range of ±75 μT.

We use all three types of sensor data in all three dimensions.
The sensors are placed on five different points on the subject’s
body, as depicted in Fig. 2a. Since leg motions, in general, may
produce larger accelerations, two of the ±18g sensor units are
placed on the sides of the knees (the right-hand side of the
right knee (Fig. 2b) and the left-hand side of the left knee), the
remaining ±18g unit is placed on the subject’s chest (Fig. 2c),
and the two ±5g units on the wrists (Fig. 2d).

The five MTx units are connected with 1 m cables to a device
called the Xbus Master, which is attached to the subject’s belt
(Fig. 3a) and transmits data from the units to the receiver using
a BluetoothTM connection. The receiver is connected to a laptop
computer via a USB port. Two of the five MTx units are directly
connected to the Xbus Master and the remaining three are
indirectly connected by wires through the other two (Fig. 3b).

We classify 19 activities using body-worn miniature inertial
sensor units: sitting (A1), standing (A2), lying on the back and on
the right side (A3 and A4), ascending and descending stairs (A5

and A6), standing still in an elevator (A7) and moving around in
an elevator (A8), walking in a parking lot (A9), walking on
a treadmill with a speed of 4 km/h in flat and 15◦ inclined
positions (A10 and A11), running on a treadmill with a speed
of 8 km/h (A12), exercising on a stepper (A13), exercising on a
cross trainer (A14), cycling on an exercise bike in horizontal and
vertical positions (A15 and A16), rowing (A17), jumping (A18)
and playing basketball (A19).

Each activity listed above is performed by eight volunteer
subjects (four female, four male; ages 20–30) for 5 min. Details
of the subject profiles are given in [60]. The experimental
procedure was approved by Bilkent University Ethics
Committee for Research Involving Human Subjects, and all
subjects gave their informed written consent to participate

FIGURE 1. (a) MTx with sensor-fixed coordinate system overlaid and (b) MTx held between two fingers (both parts of the figure are reprinted
from [59]).
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FIGURE 2. Positioning of the Xsens units on the body.

FIGURE 3. (a) MTx blocks and Xbus Master (the picture is reprinted
from http://www.xsens.com/images/stories/products/PDF_Brochures/
mtx leaflet.pdf) and (b) connection diagram of MTx sensor blocks
(body part of the figure is from http://www.answers.com/body
breadths).

in the experiments. The subjects are asked to perform the
activities in their own way, and are not restricted in this sense.
While providing no instructions regarding the activities likely
results in greater inter-subject variations in speed and amplitude
than providing instructions does, we aim to mimic real-life
situations, where people walk, run and exercise in their own
fashion. The activities are performed at the Bilkent University
Sports Hall, in Bilkent’s Electrical and Electronics Engineering
Building, and in a flat outdoor area on campus. Sensor units

are calibrated to acquire data at 25 Hz sampling frequency.
The 5-min signals are divided into 5-s segments, from which
certain features are extracted. In this way, 480 (= 60 × 8)

signal segments are obtained for each activity. Our dataset is
publicly available at the UCI Machine Learning Repository
(http://archive.ics.uci.edu/ml/).

After acquiring the signals as described above, we obtain
a discrete-time sequence of Ns elements, represented as an
Ns × 1 vector s = [s1, s2, . . . , sNs

]T. For the 5-s time windows
and the 25-Hz sampling rate, Ns = 125. The initial set of
features we use before feature reduction is the minimum and
maximum values, the mean value, variance, skewness, kurtosis,
autocorrelation sequence and the peaks of the discrete Fourier
transform (DFT) of s with the corresponding frequencies.
Details on the calculation of these features, their normalization
and the construction of the 1170 × 1 feature vector for each of
the 5-s signal segments are provided in [16, 61]. A good feature
set should minimize feature redundancy and show only small
variations among repetitions of the same activities and across
different subjects but should vary considerably between differ-
ent activities. When correlations are considered, features with
high intra-class but low inter-class correlations are preferable.

The initially large number of features is reduced from 1170 to
30 through principal component analysis (PCA) [62] because
not all features are equally useful in discriminating between
the activities [63]. After feature reduction, the resulting feature
vector is an N ×1 vector x = [x1, x2, . . . , xN ]T, where N = 30
here. The reduced dimension of the feature vectors is determined
by observing the eigenvalues of the covariance matrix of the
1170 × 1 feature vectors, sorted in Fig. 4a in descending order.
The 30 eigenvectors corresponding to the largest 30 eigenvalues
(Fig. 4b) are used to form the transformation matrix, resulting
in 30 × 1 feature vectors. Scatter plots of the first five features
selected by PCA are illustrated in Fig. 5.
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FIGURE 4. (a) All eigenvalues (1170) and (b) the first 50 eigenvalues of the covariance matrix sorted in descending order [16].
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FIGURE 5. Scatter plots of the first five features selected by PCA.

3. CLASSIFICATION TECHNIQUES

We associate a class with each of the 19 activity types and label
each feature vector x in the training set with the class that it
belongs to. The total number of available feature vectors is
constant but the way we distribute them between the training
set and the test set depends on the cross-validation technique
we employ (see Section 4.1). The test set is used to evaluate the
performance of the classifier. The classification techniques we
compare in this study are the NB classifier, ANNs, the DBC,
three types of DTs, GMMs and SVMs. The three types of DTs
are J48 trees (J48-T), NB trees (NB-T) and random forest trees

(RF-T). Details on the implementation of these classifiers and
their parameters can be found in [61]. These are employed to
classify the 19 different activities using the 30 features selected
by PCA.

4. EXPERIMENTAL RESULTS

4.1. Cross-validation techniques

A total of 9120 (= 60 feature vectors × 19 activities ×
8 subjects) feature vectors are available, each containing the
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30 reduced features of the 5-s signal segments. In the training
and testing phases of the classification methods, we use the
repeated random sub-sampling (RRSS), P -fold and L1O cross-
validation techniques.

In RRSS, we divide the 480 feature vectors from each activity
type randomly into two sets so that the first set contains 320
feature vectors (40 from each subject) and the second set
contains 160 (20 from each subject). Therefore, two-thirds
(6080) of the 9120 feature vectors are used for training and
one third (3040) for testing. This is repeated 10 times and the
resulting correct differentiation percentages are averaged. The
disadvantage of this method is that some observations may never
be selected in the testing or the validation phase, whereas others
may be selected more than once. In other words, validation
subsets may overlap.

In P -fold cross validation, the 9120 feature vectors are
divided into P = 10 partitions, where the 912 feature vectors in
each partition are randomly selected, regardless of the subject
or class they belong to. One of the P partitions is retained as the
validation set for testing, and the remaining P −1 partitions are
used for training. The cross-validation process is then repeated
P times (the folds), so that each of the P partitions is used
exactly once for validation. The P results from the folds are then
averaged to produce a single estimate. The random partitioning
is repeated 10 times and the average correct differentiation
percentage is reported. The advantage of this validation method
over RRSS is that all feature vectors are used for training and
testing, and each feature vector is used for testing exactly once
in each of the 10 runs.

In subject-based L1O cross validation, the 7980 (= 60
vectors × 19 activities × 7 subjects) feature vectors of seven of
the subjects are used for training and the 1140 feature vectors
of the remaining subject are used in turn for validation. This is
repeated eight times, taking a different subject out for testing in
each repetition. This way, the feature vector set of each subject is
used once for testing (as the validation data). The eight correct
classification rates are averaged to produce a single estimate.
This is the same as P -fold cross validation, with P being
equal to the number of subjects (P = 8), and all the feature
vectors in the same partition being associated with the same
subject.

Given the purpose of this study, once the system is trained,
it is important to be able to correctly classify the activities
of subjects encountered for the first time. The capability of
the system in this respect is only measured by means of
L1O cross validation. The RRSS and P -fold cross-validation
approaches are valid only when the same subjects are to be
used in the testing stage to evaluate the classifiers. The L1O
scheme allows objective activity recognition as it treats the
subjects as units, without having data samples from trials of
the same subject contained within both training and testing
partitions. Therefore, we consider the L1O results to be the
most meaningful.

4.2. Correct differentiation rates

The classifiers used in this study are available in two
commonly used open source machine learning environments:
WEKA, a Java-based software [57]; and PRTools, a MATLAB
toolbox [58]. The NB and ANN classifiers are tested in both
environments to compare the implementations of the algorithms
and the environments themselves. The SVMs and the three types
of DTs are tested using WEKA. PRTools is used for testing the
DBC and GMM for cases where the number of mixtures in the
model varies from one to four.

The classifiers are tested based on every combination of
sensor type and a finite number of given sensor locations.
First, data corresponding to all possible combinations of the
three sensor types (seven combinations altogether) are used
for classification; the correct differentiation rates and standard
deviations over 10 runs are provided in Table 2. Because L1O
cross validation would give the same classification percentage
if the complete cycle over the subject-based partitions were
repeated, its standard deviation is zero. We also depict correct
differentiation rates in the form of bar graphs (Fig. 6) for
better visualization. Then, data corresponding to all possible
combinations of sensor locations (31 combinations altogether)
are used for the tests and the correct differentiation rates are
shown in Tables 3 and 4.

All three cross-validation techniques are used in the tests. We
observe that 10-fold cross validation has the best performance,
followed by RRSS, with slightly lower rates. This occurs
because the former uses a larger fraction of the dataset
for training (RRSS: 2

3 , 10-fold: 9
10 , L1O: 7

8 of the whole
dataset). Subject-based L1O has the smallest rates in all cases
because each subject performs the activities in a different
manner. Outcomes obtained by implementing L1O indicate
that the dataset should be sufficiently comprehensive in terms
of the diversity of the subjects’ physical characteristics. It is
expected that data from each additional subject with distinctive
characteristics included in the training set will improve the
correct classification rate of newly introduced feature vectors.

Among the DTs, RF-T is superior in all cases because it
performs majority voting; each of the ten DTs casts a vote
representing its decision and the class receiving the largest
number of votes is considered to be the correct one. This method
achieves an average correct differentiation rate of 98.6% for
10-fold cross validation when data from all sensors are used
(Table 2). NB-T seems to perform the worst of all DTs because
of its feature independence assumption.

Generally, the best performance is expected from the
ANNs and SVMs for classification problems involving multi-
dimensional continuous feature vectors [64]. L1O cross-
validation results for each sensor combination indicate their
great capacity for generalization.As a consequence, they are less
susceptible to overfitting than classifiers such as GMM. ANNs
and SVMs are the best classifiers of the group and usually have
slightly better performance than GMM1 (99.1%); both exhibit
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TABLE 2. Correct differentiation rates and the standard deviations based on all classifiers, cross-validation methods and both environments.

Gyroscopes only Accelerometers only Magnetometers only

Classifier RRSS 10-fold L1O RRSS 10-fold L1O RRSS 10-fold L1O

(a) Only a single sensor type used for classification
WEKA

NB 66.7 ± 0.45 67.4 ± 0.15 56.9 80.5 ± 0.67 80.8 ± 0.09 73.6 89.0 ± 0.37 89.5 ± 0.08 79.3
ANN 79.8 ± 0.71 84.3 ± 0.17 60.9 92.5 ± 0.51 95.3 ± 0.07 79.7 97.5 ± 0.28 98.6 ± 0.06 81.5
SVM 80.1 ± 0.43 84.7 ± 0.14 61.2 91.2 ± 0.61 94.6 ± 0.09 81.0 98.1 ± 0.09 98.8 ± 0.04 84.8
NB-T 62.3 ± 1.22 67.8 ± 0.73 36.4 74.8 ± 1.42 79.0 ± 0.61 55.9 90.9 ± 0.85 94.3 ± 0.33 52.3
J48-T 61.9 ± 0.66 68.0 ± 0.35 45.2 75.8 ± 0.85 80.9 ± 0.33 62.8 90.0 ± 0.60 93.8 ± 0.15 65.8
RF-T 73.1 ± 0.58 78.3 ± 0.34 53.3 86.0 ± 0.51 89.7 ± 0.16 72.2 96.9 ± 0.25 98.1 ± 0.12 78.2

PRTools
NB 63.9 ± 0.67 67.7 ± 0.30 49.7 77.3 ± 0.66 81.2 ± 0.22 66.5 91.9 ± 0.36 93.5 ± 0.17 74.1
ANN 59.9 ± 5.38 59.5 ± 0.89 48.6 76.2 ± 2.58 75.4 ± 1.29 67.5 90.2 ± 2.07 89.6 ± 0.97 78.3
DBC 68.5 ± 0.81 69.7 ± 0.30 56.9 81.9 ± 0.52 82.2 ± 0.26 74.6 91.0 ± 0.88 92.0 ± 0.33 82.6
GMM1 79.8 ± 0.50 82.2 ± 0.14 57.1 93.3 ± 0.48 95.1 ± 0.07 74.8 96.2 ± 0.33 96.5 ± 0.04 42.6
GMM2 76.8 ± 0.82 83.4 ± 0.26 42.5 90.7 ± 0.66 95.5 ± 0.12 58.2 96.2 ± 0.47 97.3 ± 0.18 22.6
GMM3 71.4 ± 1.30 83.1 ± 0.24 37.3 86.0 ± 1.31 95.3 ± 0.13 53.0 94.2 ± 0.87 – –
GMM4 64.7 ± 1.39 82.6 ± 0.25 32.1 77.4 ± 1.37 94.8 ± 0.25 44.2 89.8 ± 1.54 – –

Gyroscope +Accelerometer Gyroscope + Magnetometer Accelerometer + Magnetometer

Classifier RRSS 10-fold L1O RRSS 10-fold L1O RRSS 10-fold L1O

(b) Combinations of two sensor types used for classification
WEKA

NB 84.6 ± 0.55 85.2 ± 0.13 76.3 92.1 ± 0.27 92.2 ± 0.09 85.1 92.8 ± 0.41 92.7 ± 0.09 87.2
ANN 95.1 ± 0.24 96.9 ± 0.09 82.6 98.5 ± 0.14 99.0 ± 0.04 87.5 98.7 ± 0.15 99.2 ± 0.04 92.2
SVM 95.0 ± 0.19 96.7 ± 0.07 83.3 98.6 ± 0.16 99.0 ± 0.04 86.1 98.5 ± 0.12 99.0 ± 0.03 89.5
NB-T 81.7 ± 1.66 86.5 ± 0.37 57.2 92.0 ± 0.69 94.9 ± 0.30 61.3 91.1 ± 0.81 93.7 ± 0.31 64.9
J48-T 82.5 ± 1.11 87.0 ± 0.19 66.2 90.7 ± 1.27 94.5 ± 0.15 75.0 89.9 ± 0.55 93.1 ± 0.12 79.8
RF-T 91.9 ± 0.43 94.5 ± 0.15 77.7 97.5 ± 0.22 98.4 ± 0.06 81.8 96.9 ± 0.26 98.1 ± 0.10 86.0

PRTools
NB 84.2 ± 0.36 86.9 ± 0.16 71.2 93.8 ± 0.43 95.4 ± 0.09 77.2 93.1 ± 0.50 94.1 ± 0.07 81.8
ANN 81.2 ± 3.85 81.4 ± 1.36 71.9 91.6 ± 2.59 91.4 ± 1.28 84.6 93.0 ± 1.97 92.1 ± 0.82 87.1
DBC 85.3 ± 0.71 86.2 ± 0.41 76.5 92.9 ± 0.64 93.0 ± 0.47 85.2 93.2 ± 0.70 93.5 ± 0.24 85.7
GMM1 96.0 ± 0.30 97.1 ± 0.10 79.3 98.6 ± 0.12 98.9 ± 0.03 64.6 98.7 ± 0.23 99.1 ± 0.03 69.8
GMM2 93.9 ± 0.42 96.9 ± 0.07 50.7 96.9 ± 1.68 98.7 ± 0.06 35.9 97.5 ± 1.01 99.0 ± 0.06 46.9
GMM3 88.9 ± 0.90 96.7 ± 0.11 44.1 93.3 ± 1.04 98.7 ± 0.06 29.8 93.2 ± 1.85 98.8 ± 0.07 39.8
GMM4 81.5 ± 1.70 96.4 ± 0.15 37.9 86.1 ± 3.43 98.6 ± 0.09 26.1 85.9 ± 4.67 98.6 ± 0.09 34.0

All three sensor types

Classifier RRSS 10-fold L1O

(c) All three sensor types used for classification
WEKA
NB 93.9 ± 0.49 93.7 ± 0.08 89.2
ANN 99.1 ± 0.13 99.2 ± 0.05 91.0
SVM 99.1 ± 0.09 99.2 ± 0.03 89.9
NB-T 94.6 ± 0.68 94.9 ± 0.16 67.7
J48-T 93.8 ± 0.73 94.5 ± 0.17 77.0
RF-T 98.3 ± 0.24 98.6 ± 0.05 86.8

PRTools
NB 96.5 ± 0.46 96.6 ± 0.07 83.8
ANN 93.0 ± 3.05 92.5 ± 1.61 84.2
DBC 94.7 ± 0.60 94.8 ± 0.16 89.0
GMM1 99.1 ± 0.20 99.1 ± 0.02 76.4
GMM2 98.8 ± 0.17 99.0 ± 0.03 48.1
GMM3 98.2 ± 0.30 98.9 ± 0.07 37.6
GMM4 97.3 ± 0.37 98.8 ± 0.07 37.0
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FIGURE 6. Comparison of classifiers and combinations of different sensor types in terms of correct differentiation rates using (a) RRSS, (b) 10-
fold and (c) L1O cross validation. The sensor combinations represented by the different colors in the bar chart are identified in the legends. gyro,
gyroscope; acc, accelerometer; mag, magnetometer.
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TABLE 3. All possible sensor unit combinations and the corresponding correct classification rates for the classifiers in WEKA using RRSS,
10-fold and L1O cross validation.

Units used NB ANN SVM NB-T J48-T RF-T NB ANN SVM NB-T J48-T RF-T

(a) RRSS
— — — — — — — +T 70.5 92.2 91.0 69.8 70.5 83.5
RA 67.5 92.1 91.2 73.3 71.9 84.4 +T 81.7 95.8 96.1 81.9 79.4 92.1
LA 69.2 89.7 92.7 68.2 69.3 83.1 +T 82.4 96.0 96.3 81.9 79.2 92.8
RL 87.0 95.7 94.9 80.5 82.1 89.9 +T 86.2 97.2 97.0 85.1 85.3 94.3
LL 86.3 96.9 95.6 82.4 84.0 90.0 +T 85.8 97.5 97.0 84.2 84.8 94.1
RA + LA 78.4 94.0 95.6 81.7 79.7 91.8 +T 87.0 97.3 97.4 87.8 85.4 95.2
RL + LL 88.8 97.3 96.8 87.6 88.8 94.9 +T 90.8 97.9 97.9 90.5 89.7 96.4
RA + RL 89.0 97.1 97.2 86.5 86.2 94.6 +T 90.1 97.9 98.2 88.6 87.4 96.3
LA + LL 89.7 97.6 97.5 85.7 86.6 94.7 +T 91.8 98.1 98.0 87.9 87.8 96.2
RA + LL 88.9 97.7 97.6 85.9 85.7 94.7 +T 90.3 98.0 98.1 88.4 87.8 96.2
LA + RL 90.3 97.4 97.5 85.8 85.3 94.2 +T 90.3 97.9 98.0 88.1 86.6 96.3
RA + LA + RL 90.9 98.3 98.3 88.4 87.6 96.3 +T 92.9 98.4 98.7 90.5 88.8 97.1
RA + LA + LL 90.8 98.0 98.4 89.6 88.8 96.6 +T 92.3 98.4 98.6 90.2 89.5 97.0
RA + RL + LL 91.1 98.2 98.1 90.1 89.6 96.7 +T 92.5 98.5 98.7 91.2 90.8 97.3
LA + RL + LL 91.6 98.2 98.2 91.3 90.7 97.1 +T 92.7 98.2 98.5 91.3 91.3 97.6
RA + LA + RL + LL 92.2 98.7 98.7 91.5 90.6 97.7 +T 93.9 99.1 99.1 94.6 93.8 98.3

(b) 10-fold
— — — — — — — +T 71.5 95.3 95.7 77.5 78.2 89.4
RA 67.3 95.5 95.1 80.5 79.7 89.8 +T 82.7 97.5 97.8 87.1 86.1 95.2
LA 70.0 92.6 96.2 76.0 76.6 88.5 +T 83.5 97.7 97.9 87.8 86.3 95.7
RL 87.5 97.6 96.8 86.1 86.3 93.2 +T 86.4 98.4 98.3 90.0 89.4 96.4
LL 87.0 98.2 97.6 87.1 87.7 93.2 +T 86.1 98.6 98.4 89.9 89.9 96.6
RA + LA 79.1 95.5 97.5 87.4 86.3 94.9 +T 87.9 98.0 98.5 91.4 90.0 97.0
RL + LL 89.0 98.5 98.1 91.2 92.1 96.6 +T 91.0 98.8 98.8 93.3 93.1 97.7
RA + RL 89.2 97.8 98.4 90.4 90.6 96.7 +T 90.5 98.5 98.8 92.7 91.3 97.6
LA + LL 90.2 98.5 98.5 90.1 90.1 96.5 +T 92.2 98.6 98.8 92.0 92.0 97.7
RA + LL 89.2 98.6 98.5 90.3 90.1 96.7 +T 90.8 98.8 98.9 92.7 91.8 97.6
LA + RL 90.6 98.4 98.4 90.3 89.5 96.4 +T 91.2 98.7 98.7 92.5 91.4 97.7
RA + LA + RL 91.1 98.9 99.0 92.2 92.0 97.8 +T 93.2 98.9 99.1 94.1 92.8 98.1
RA + LA + LL 90.9 98.7 99.0 92.8 92.3 97.8 +T 92.4 99.0 99.1 93.2 93.1 98.1
RA + RL + LL 91.2 98.9 98.9 93.7 93.0 97.9 +T 93.0 98.9 99.1 94.6 94.3 98.4
LA + RL + LL 91.5 98.7 98.9 94.0 93.7 98.0 +T 93.0 98.9 99.0 94.6 94.3 98.4
RA + LA + RL + LL 92.4 99.1 99.1 95.0 94.3 98.6 +T 93.7 99.2 99.2 94.9 94.5 98.6

(c) L1O cross validation
— — — — — — — +T 58.8 67.1 70.3 40.2 49.1 58.7
RA 57.8 64.2 67.6 36.0 43.6 55.9 +T 71.9 78.4 80.5 46.2 57.8 69.7
LA 55.6 64.3 65.5 37.9 42.9 55.8 +T 73.9 77.6 80.4 46.2 56.1 69.6
RL 78.5 81.7 83.4 65.0 67.7 77.2 +T 78.6 83.5 85.6 58.0 66.6 78.9
LL 78.6 82.7 84.1 60.3 70.5 76.8 +T 78.5 86.1 87.6 61.1 66.9 80.1
RA + LA 66.7 75.5 76.3 42.7 52.6 65.7 +T 76.5 82.9 83.9 48.7 65.8 76.4
RL + LL 81.9 85.6 86.2 65.0 76.4 83.2 +T 83.6 89.4 89.0 68.3 75.7 84.5
RA + RL 83.0 84.3 86.3 66.4 72.4 81.5 +T 84.7 88.4 88.5 60.8 72.1 83.0
LA + LL 83.3 83.6 84.8 61.2 70.9 81.3 +T 84.7 86.5 87.0 60.4 71.6 83.3
RA + LL 82.5 86.1 85.4 58.6 70.0 79.7 +T 83.4 89.5 88.9 61.4 71.6 83.0
LA + RL 83.2 85.7 84.9 59.9 72.1 80.3 +T 83.7 87.5 86.6 59.1 73.5 82.2
RA + LA + RL 84.7 85.5 86.0 61.7 72.6 82.5 +T 86.2 88.9 88.4 60.5 74.8 85.6
RA + LA + LL 84.5 85.6 85.6 65.4 73.0 81.1 +T 86.7 89.5 89.1 63.7 72.8 86.1
RA + RL + LL 85.6 86.6 86.7 66.5 76.3 84.3 +T 86.7 90.6 89.8 65.9 76.4 86.5
LA + RL + LL 84.8 86.7 85.8 68.2 77.4 85.2 +T 86.8 88.5 88.7 66.3 78.4 87.0
RA + LA + RL + LL 86.8 86.1 86.4 67.3 78.4 86.2 +T 89.2 91.0 89.9 67.7 77.0 86.8

The last six columns display the results when the torso unit is added (+T) to the sensor combination given in the first column.
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TABLE 4. All possible sensor unit combinations and the corresponding correct classification rates for the classifiers in PRTools using RRSS,
10-fold and L1O cross validation.

Units used NB ANN DBC GMM1 GMM2 GMM3 GMM4 NB ANN DBC GMM1 GMM2 GMM3 GMM4

(a) RRSS
— — — — — — — — +T 67.9 71.4 77.8 93.9 91.1 85.8 73.1
RA 68.3 66.1 76.1 91.9 88.1 84.3 76.7 +T 82.2 77.4 85.9 96.7 94.4 88.7 80.8
LA 67.7 68.6 76.2 92.2 90.1 84.5 76.2 +T 83.9 83.0 86.5 96.7 93.9 85.7 75.4
RL 83.9 85.2 86.3 95.8 94.6 91.8 85.4 +T 85.7 84.7 88.7 98.0 95.8 92.6 85.1
LL 83.9 82.4 85.3 96.6 95.8 92.7 84.7 +T 85.9 87.4 88.4 98.2 95.5 91.7 85.2
RA + LA 79.0 76.3 83.7 95.7 93.0 87.5 80.3 +T 89.4 85.5 88.3 97.6 94.9 89.6 82.0
RL + LL 88.3 86.4 89.3 97.9 96.8 93.6 85.4 +T 91.3 90.8 91.5 98.7 97.5 94.1 86.8
RA + RL 88.0 84.4 89.1 97.9 96.6 92.5 84.8 +T 92.0 88.9 91.4 98.4 96.5 92.6 80.1
LA + LL 88.7 86.3 89.4 97.9 96.5 92.1 85.6 +T 92.1 90.7 91.9 98.3 96.8 91.5 84.0
RA + LL 87.8 88.5 89.3 97.9 96.7 92.9 85.5 +T 92.5 89.7 91.8 98.3 97.0 92.8 84.9
LA + RL 88.3 90.3 89.8 97.6 96.1 90.9 85.1 +T 90.9 89.8 91.5 98.2 96.3 92.1 86.1
RA + LA + RL 90.8 87.7 91.4 98.3 96.7 91.9 83.3 +T 93.8 91.4 92.9 98.6 96.8 91.5 84.5
RA + LA + LL 91.0 89.0 91.4 98.3 97.3 91.4 85.1 +T 93.4 91.4 93.3 98.7 97.2 92.0 86.3
RA + RL + LL 91.5 91.0 91.4 98.6 97.3 94.4 87.0 +T 93.7 93.1 93.6 98.7 97.8 93.0 86.1
LA + RL + LL 92.7 92.0 91.7 98.6 97.6 94.2 87.8 +T 94.4 93.0 93.8 98.7 97.6 93.0 86.9
RA + LA + RL + LL 93.1 92.4 93.0 98.9 97.3 93.9 87.0 +T 96.5 93.0 94.7 99.1 98.8 98.2 97.3

(b) 10-fold
— — — — — — — — +T 73.5 71.2 79.5 95.2 96.3 95.9 95.4
RA 72.8 67.7 77.3 93.3 94.8 94.8 94.2 +T 86.2 80.0 86.8 97.7 97.3 97.1 96.7
LA 72.5 68.0 77.1 93.5 95.1 95.0 94.6 +T 87.8 81.5 87.3 97.5 97.5 97.3 96.8
RL 87.0 84.5 87.1 96.7 97.4 97.3 97.0 +T 88.1 85.0 89.1 98.4 98.5 98.3 98.1
LL 87.7 82.6 86.3 97.4 97.7 97.6 97.3 +T 89.3 86.1 89.3 98.7 98.7 98.4 98.3
RA + LA 83.9 76.2 84.5 96.8 96.9 96.8 96.1 +T 91.6 84.3 89.6 98.3 97.9 97.7 97.4
RL + LL 91.3 87.7 89.6 98.5 98.5 98.3 98.0 +T 93.3 89.8 92.0 99.0 98.8 98.7 98.6
RA + RL 90.3 85.9 89.6 98.3 98.4 98.2 97.9 +T 93.8 88.7 92.0 98.6 98.6 98.4 98.2
LA + LL 91.3 88.6 90.1 98.4 98.5 98.3 98.1 +T 94.0 90.5 92.4 98.8 98.6 98.6 98.4
RA + LL 90.4 87.0 89.9 98.5 98.4 98.2 97.9 +T 94.1 89.6 92.1 98.8 98.6 98.5 98.4
LA + RL 91.1 88.1 90.5 98.2 98.4 98.2 98.0 +T 93.4 90.5 92.4 98.6 98.5 98.4 98.2
RA + LA + RL 92.7 88.0 91.8 98.8 98.7 98.5 98.2 +T 95.1 90.2 93.4 98.9 98.7 98.6 98.4
RA + LA + LL 93.0 88.8 91.8 98.8 98.7 98.6 98.4 +T 94.8 91.2 93.3 99.0 98.8 98.6 98.3
RA + RL + LL 93.3 89.4 92.2 98.9 98.8 98.7 98.5 +T 94.6 91.8 94.0 99.0 98.8 98.8 98.6
LA + RL + LL 94.3 88.8 91.9 98.9 98.8 98.8 98.6 +T 95.7 92.4 94.0 99.0 98.9 98.9 98.7
RA + LA + RL + LL 94.4 91.5 93.2 99.1 99.0 99.0 98.8 +T 96.6 92.5 94.8 99.1 99.0 98.9 98.8

(c) L1O cross validation
— — — — — — — — +T 53.1 60.2 66.0 48.9 30.4 25.7 23.4
RA 48.7 59.8 63.4 44.2 26.2 20.8 23.5 +T 64.8 70.5 74.5 60.7 30.5 23.6 21.5
LA 50.3 57.2 59.8 45.7 33.2 27.0 21.0 +T 61.8 73.9 75.8 63.3 42.2 30.8 25.3
RL 75.6 78.4 79.7 71.1 55.5 50.0 47.2 +T 73.8 79.7 81.3 71.2 51.7 41.1 37.6
LL 72.7 75.2 78.4 70.1 57.4 53.6 48.8 +T 74.4 76.7 81.6 70.9 46.4 42.2 29.8
RA + LA 58.6 66.4 71.4 54.0 31.2 22.8 18.5 +T 66.8 74.7 79.2 65.0 37.2 31.6 22.4
RL + LL 79.3 80.7 83.8 73.9 57.6 52.5 47.8 +T 79.8 83.7 86.0 73.6 47.3 43.2 39.9
RA + RL 78.4 81.4 81.7 73.7 49.4 42.1 34.9 +T 77.6 82.0 85.4 75.0 46.5 39.0 33.4
LA + LL 78.5 79.9 82.2 72.2 50.9 39.0 31.0 +T 76.8 83.5 84.9 71.4 46.6 40.8 29.1
RA + LL 76.1 79.7 83.4 72.2 42.1 35.4 29.5 +T 77.9 82.7 84.0 75.4 43.2 35.8 28.9
LA + RL 77.7 81.5 82.0 73.2 54.6 44.8 36.7 +T 78.0 83.1 84.5 73.2 46.9 43.1 39.9
RA + LA + RL 75.9 81.4 85.2 73.3 46.5 42.5 29.8 +T 79.7 83.4 85.7 72.2 43.5 41.1 34.0
RA + LA + LL 77.5 81.3 84.4 74.2 45.0 37.0 26.8 +T 79.2 82.8 87.5 75.4 46.6 33.6 24.9
RA + RL + LL 80.0 82.9 85.3 73.9 51.3 43.8 35.9 +T 82.4 85.3 87.4 75.1 48.7 39.4 36.4
LA + RL + LL 79.3 83.8 86.4 74.1 51.4 44.2 36.0 +T 82.6 87.1 87.8 74.4 47.5 45.0 37.7
RA + LA + RL + LL 80.7 85.4 86.5 74.3 46.0 43.2 36.1 +T 83.8 84.2 89.0 76.4 48.1 37.6 37.0

The last six columns display the results when the torso unit is added (+T) to the sensor combination given in the first column.
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99.2% for 10-fold cross validation when the feature vectors
extracted by the joint use of all sensor types are employed for
classification (Table 2c). L1O cross-validation accuracies are
significantly better than GMM1.

The ANN implemented in PRTools does not perform as well
as the one in WEKA. Before training an ANN with the back-
propagation algorithm, it should be properly initialized. The
most important parameters to initialize are the learning and
momentum constants and the initial values of the connection
weights. PRTools does not allow the user to choose the values
of these two constants even though they play a crucial role
in updating the weights. Without proper values, it is difficult
to provide the ANN with suitable initial weights; therefore,
the correct differentiation rates of the ANN implemented in
PRTools do not reflect the true potential of the classifier.

Considering the outcomes obtained based on 10-fold cross
validation and each sensor combination, it is difficult to
determine the number of mixture components to be used in
the GMM method. The average correct differentiation rates
are quite close to each other for GMMs with one, two and
three components (GMM1, GMM2 and GMM3). However, in
the case of RRSS, and especially for L1O cross validation, the
rates decrease rapidly as the number of components in the
mixture increases. This may occur because the dataset is not
sufficiently large to train GMMs with more than one component:
it is observed in Table 2a that GMM3 and GMM4 could not be
trained due to insufficient data when only magnetometers are
used. Another reason could be overfitting [65]. While multiple
Gaussian estimators are exceptionally complex for classifying
training patterns, they are unlikely to result in acceptable
classification of novel patterns. Low differentiation rates of the
GMM for L1O in all cases support the overfitting condition.
Despite the lower rates obtained with this method for the L1O
case, however, it is the third-best classifier, with a 99.1% average
correct differentiation rate based on 10-fold cross validation
when data from all sensor types are used (Table 2c).

Comparing the classification results based on the different
sensor combinations indicates that if only a single sensor type
is used, the best correct differentiation rates are obtained by
magnetometers, followed by accelerometers and gyroscopes.
For a considerable number of classifiers, the rates achieved
by using the magnetometer data alone are higher than those
obtained by using the data of the other two sensors together.
It can be observed in Fig. 6 that for almost all classifiers
and all cross-validation techniques, the magnetometer bar is
higher than the gyro+accelerometer bar, except for the GMM,
ANN and NB-T used in L1O cross validation. It can be stated
that the features extracted from the magnetometer data, which
slowly vary in nature, may not be sufficiently diverse for
training the GMM classifier. This statement is supported by
the results provided in Table 2a, where we see that GMM3

and GMM4 cannot be trained with magnetometer-based feature
vectors. The best performance (98.8%) based on magnetometer
data is achieved with the SVM using 10-fold cross validation

(Table 2a). Outcomes of the combination of gyroscopes with
the other two sensors are usually worse than the combination
of accelerometer and magnetometer. The joint use of all three
types of data provides the best classification performance, as
expected.

When all 31 combinations of the sensor units at different
positions on the body are considered, GMM usually has the
best performance for all cross-validation techniques, except
L1O (Tables 3 and 4). In L1O cross validation, ANNs and
SVMs are superior. In 10-fold cross validation (Table 4b),
correct differentiation rates achieved with GMM2 are better than
GMM1 in the tests where a single unit or the combination of
two units is used. The units placed on the legs (RL and LL)
seem to be the most informative. Comparing the cases where
feature vectors are extracted from single sensor-unit data, it is
observed that the highest correct classification rates are achieved
with these two units. They also improve the performance of the
combinations in which they are included.

4.3. Confusion matrices

Based on the confusion matrices of the different techniques
presented in [61], the activities that are most confused with each
other are A7 and A8. Since both are performed in an elevator, the
corresponding signals contain similar segments. A2 and A7, A13

and A14, as well as A9, A10 and A11 are also confused from time
to time for similar reasons.A12 and A17 are the two activities that
are almost never confused. The results based on the confusion
matrices are summarized in Table 5 to report the performance
of the classifiers in distinguishing each activity. The feature
vectors that belong to A3, A4, A5, A6, A12, A15, A17 and A18

are classified with above-average performance by all classifiers.
The remaining feature vectors cannot be classified well by some
classifiers.

4.4. Comparison of the two machine learning
environments

In comparing the two machine learning environments in this
study, algorithms implemented in WEKA appear to be more
robust to parameter changes than those in PRTools. In addition,
WEKA is easier to work with because of its graphical user
interface (GUI), which displays detailed descriptions of the
algorithms along with their references and parameters when
needed. PRTools does not have a GUI and the descriptions of
the algorithms given in the references are insufficient. However,
PRTools is more compatible with MATLAB. Nevertheless, both
machine learning environments are powerful tools for pattern
recognition.

The implementation of the same algorithm in WEKA and
PRTools may not turn out to be exactly the same; for instance,
the correct differentiation rates obtained with the NB and
ANN classifiers do not match. Higher rates are achieved
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TABLE 5. The performances of the classifiers in distinguishing different activity types.

Activities

Classif. Tech. A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19

WEKA
NB a a g e g g a a a a a e a p e g e g g
ANN e e g e e g g a g g g e g e e e e e g
SVM e e e e e e g a e e g e e e e e e e g
NB-T g a g g g g a p a a a g a a g g g g a
J48-T g a g g g g p p a a a e a a g a g g g
RF-T g g g e g g a a g g g e g g g g e e g

PRTools
NB g g g g g g a a a a a e g g g g e g g
ANN a a g a g g p p a a a g g g g g g a a
DBC e g g g g g g g a g e e g g e e e e g
GMM1 e g g g g g g a g g e e g g e e e e g
GMM2 e g g g g g g a g g g e g g e e e e g
GMM3 e g g g g g g a g g g e g g e g e e g
GMM4 g g g g g g a a g g g e g g e e e e g

These results are based on the confusion matrices given in [61], according to the number of feature vectors of a certain activity that the classifier
correctly classifies out of 480 [p, poor (<400); a, average (400–459); g, good (460–479); e, excellent (exactly 480)].

with NB implemented in PRTools because the distribution of
each feature is estimated using histograms; WEKA uses a
normal distribution to estimate the PDFs. Considering the ANN
classifier, PRTools does not allow the user to set the values
for the learning and momentum constants that play a crucial
role in updating the connection weights. Therefore, the ANN
implemented in PRTools does not perform as well as the one in
WEKA.

4.5. Comparison with earlier studies

To the best of our knowledge, other than the results of our
research group, the highest reported correct classification rate
in earlier studies (97.9%) is achieved through a hierarchical
recognizer based on 3D accelerometer data (see Table 1) [52].
However, this result is not directly comparable with ours or other
results because of the lack of common ground, as explained
in Section 1. The previously reported results by our research
group indicate that BDM provides a correct classification rate
of 99.2% with relatively small computational cost and storage
requirements [16]. In this study, the same rate of 99.2% is
achieved with ANN and SVM in WEKA. This is higher than
those reported for the same two classifiers in [16] by 3 and 0.4%
(for 10-fold) and 16.7 and 2.3% (for L1O), respectively. These
differences arise both from the implementation of the algorithms
and the variation in the random distribution of the feature vectors
in the partitions obtained by using RRSS and 10-fold cross
validation. The high classification rates achieved with BDM and
GMM1 in these studies illustrate the high estimation efficiency

of multi-variate Gaussian models for activity recognition tasks.
However, these models may not be suitable when subject-based
L1O cross validation is employed; for occasions where high
generalization accuracy is required, they need to be replaced
with ANNs or SVMs.

Although both are based on the Bayesian approach, the NB
classifier is much simpler than BDM because of its feature
independence assumption. The average correct classification
rates previously reported by our group for BDM using RRSS
and 10-fold cross-validation techniques are 99.1 and 99.2%,
respectively [16], whereas these rates drop to 96.5 and 96.6%
for NB in this study (Table 2c). Thus, the NB assumption
of independence (given the class), though simplifying, is not
necessarily a better choice.

4.6. Computational considerations

We compare the performances of the classifiers implemented
in the two machine learning environments in terms of their
execution times. The master software MATLAB is run on
a computer with a Pentium (R) Dual-Core CPU E520 at a
clock frequency of 2.50 GHz, 2.00 GB of RAM, and operated
with Microsoft Windows XP Home Edition. Execution times
are measured separately for the training and test stages
and are provided in Table 6. The results correspond to the
time it takes to complete a full L1O cross-validation cycle.
In other words, each classifier is run eight times for all
subjects and the total time of the complete cycle for each
classifier is recorded. Given that these classifiers are to be
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TABLE 6. Execution times of training and test
steps for all classification techniques based on
the full cycle of the L1O cross-validation method
and both environments.

Times (s)

Classifier Training Test

WEKA
NB 1.66 20.44
ANN 2416.00 4.50
SVM 355.32 2356.97
NB-T 2610.90 2.65
J48-T 24.09 2.65
RF-T 57.47 2.80

PRTools
NB 0.68 0.48
ANN 547.77 0.44
DBC 98.55 1.41
GMM1 1.33 0.46
GMM2 161.70 0.58
GMM3 129.44 0.72
GMM4 118.02 1.06

used in real time, it is desirable to keep the test times at a
minimum.

Considering WEKA, test times can be misleading because
apart from the time consumed for calculating the correct
differentiation rate, several other performance criteria, such as
various error parameters and confusion matrices, are calculated
during the test step. The time consumed for those calculations
are included in the total time (given in Table 6) but the actual test
times should be much shorter. In contrast, computational times
in PRTools are quite consistent. Therefore, it is not possible to
compare these two environments in terms of their classification
speed.

Among the DTs, NB-T has the longest training time
(because an NB classifier must be trained for every leaf node),
whereas J48-T has the shortest. There is hardly any difference
between DT test times. Therefore, taking into account its high
classification accuracy, RF-T seems to be a good compromise.
DTs perform better than the other classifiers in terms of their
testing durations in WEKA.

The training and testing of the ANNs and SVMs, identified to
be the best in terms of classification accuracy, take much longer
than the other classifiers. SVMs require the longest testing time
because they use a Gaussian kernel for mapping and consider
all possible pairwise combinations of classes. Therefore, ANNs
are preferable to SVMs. On the other hand, GMM1, with its
short training and test time requirements, could be considered
(except for the L1O case, where the choice would be ANNs or
SVMs). The DBC, with its moderate correct classification rates

and longest test time, is not preferable among the classifiers
used in PRTools.

5. APPLICATION AREAS

The human activity monitoring and classification techniques
presented in this work can be utilized in diverse areas. Those
related to medicine include remote diagnosis and treatment of
disorders [66], preventive care, chronic disease management
(e.g. Parkinson’s disease, multiple sclerosis, epilepsy, gait dis-
orders), tele-rehabilitation [67], tele-surgery [68] and biome-
chanics [18, 69]. In tele-rehabilitation, proper performance of
daily physical therapy exercises assigned, for example, after a
stroke or surgery, can be remotely monitored and proper feed-
back provided to the patient and doctor [70]. Further, abnormal
behaviors and emergency situations such as falls or changes in
vital signs can be detected almost instantly and timely medical
intervention thus provided [71–73]. Remote monitoring of the
physically or mentally disabled, the elderly and children can
be achieved indoors and outdoors [43] and cognitive assistance
provided when needed. An emerging application area is behav-
ioral medicine, where body-worn inertial sensors can be used
for metabolic energy expenditure estimation, diet and medicine
monitoring and management, lifestyle coaching and improving
personal fitness and wellbeing. For example, a fitness applica-
tion could use real-time activity information to encourage users
to perform opportunistic activities.

Wearable sensor technology can be used in the areas of
physical education, training, sports science [49] and performing
arts to guide the individual to improve his/her skills and prevent
injury. The best and most ergonomic way to use a tool or
a machine can be taught to workers in complex industrial
environments [46]. In animation and film making, wearable
sensors could be used in a complementary fashion with cameras
to develop realistic animated models. In entertainment, more
realistic and appealing video games can be produced when
body-worn inertial sensors are integrated into the game and
motion classifiers are embedded for recognizing a player’s
moves [74, 75].

Automatic recognition of the emotional qualities (aspects)
of body movements from captured motion data is a recently
developing area worth mentioning [76]. Body posture and
bodily expressions may provide important clues on people’s
emotional and mental states. In many applications (e.g.
rehabilitation, human-robot interaction, cooperation of robots,
computer games, military activities), joint knowledge of the
type of activity performed and the emotional state under
which it is performed can facilitate the intervention to affect
people’s cognitive and affective processes. Combining the
work proposed in this paper with that in [77] would, for
example, allow an automatic adaptation of the game for either
entertainment purpose or for physical rehabilitation.

Today’s advanced cell phone industry provides many
opportunities as well; for example, developing applications for
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smart phones using embedded 3D inertial sensors to monitor
daily activities would be highly beneficial to the users [78].

6. CONCLUSIONS AND FUTURE WORK

We present the results of a comparative study where the features
extracted from miniature inertial sensor and magnetometer
signals are used for classifying human activities. The main
contributions of this study are (i) to compare and identify
the classifier(s) that satisfy the performance requirements
and design criteria for an activity recognition system on
a common basis, (ii) to determine the most informative
sensor modality and/or combination and (iii) to determine
the most suitable wearable sensor configuration. We compare
a number of classifiers based on the same dataset in terms
of their correct differentiation rates, confusion matrices, and
computational cost. We believe that it is important to compare
classifiers on a common basis, using the same dataset acquired
from a sufficiently large number of subjects performing
a large number of activities. The study also provides a
comparison between two commonly used open source machine
learning environments (WEKA and PRTools) in terms of their
functionality, manageability, classification performance and
execution times of the classifiers employed. In general, theANN
and SVM classifiers implemented in WEKA result in the best
classification performance, despite their high computational
cost. The rates achieved with the GMM1 classifier are very
close to ANN and SVM (except when validated by L1O)
and its computational requirements are lower. Thus, GMM is
a suitable technique that achieves a reasonable compromise
between accuracy and computational cost in the design of
an activity recognition system. GMM meets the performance
requirements and design criteria for a classifier outlined in the
introductory section.

Comparing different sensor modalities determines that if only
a single sensor type is used, the highest classification rates are
achieved with magnetometers, followed by accelerometers and
gyroscopes. Magnetometers also improve the performance of
the sensor combinations in which they are included. It should
be kept in mind, however, that magnetometer outputs can be
easily distorted by metal surfaces and ferromagnetic materials
in the vicinity of the sensor and thus may provide misleading
information. Regarding sensor positions on the body, those worn
on the legs provide the most valuable information on activities.
The extensive comparison between the various combinations of
sensor modalities and their positioning on the body provided
in this paper may accord valuable guidance to researchers who
work on activity classification in the area of wearable, mobile
and pervasive computing.

We implement and compare a number of different cross-
validation techniques in this study. The correct classification
rates obtained by subject-based L1O cross validation are usually
lower, whereas those obtained by 10-fold cross validation
are, in general, the highest. Despite the satisfactory correct

differentiation rates obtained with RRSS cross validation, that
technique has the disadvantage that some feature vectors may
never be used for testing, whereas others may be used more than
once. In 10-fold and L1O cross validation, all feature vectors
are used equally for training and testing, and each feature vector
is used for testing exactly once. The L1O validation gives the
lowest scores because the training and the test sets in the other
two validation schemes contain feature vectors with higher
similarity since they originate from the same combination of
subjects. Therefore, the models learn on very similar instances
that they are also tested on. This is not the case for L1O since data
in the training set cannot come from the same subject (or trial)
as in the test sets. L1O preserves the idiosyncratic variations
among people, and is the most relevant cross-validation scheme
for this context.

There are several possible future research directions to pursue
in activity recognition and classification.

It is desirable to feed activity classifiers with the most
informative and discriminative features. The features can be
chosen specifically for each activity and sensor type, and thus
activity-sensor-feature relevance could be further investigated.

An activity recognition system should be able to recognize
and classify as many activities as possible while maintaining
the performance already achieved; therefore, the activity
spectrum could be broadened to include recognizing high-
level activities that are composed of a variety of sub-
activities and vary strongly across individuals (e.g. shopping,
commuting, housework, office work). A set of unclassified/
unknown/unexpected activities could be included to prevent the
system from making incorrect decisions.

Another research challenge is the need for less supervision.
Supervised learning requires large amounts of fully labeled
activity data to train the classifiers. This is not necessary for the
unsupervised case.A very limited amount of work has been done
in applying unsupervised techniques to activity classification,
and thus further work is required [79]. Incremental learning [80]
and learning based on incomplete data are other directions to
pursue. Techniques could be developed to reduce or eliminate
intra- and inter-subject variability of the data [37].

Detection of falls during daily activities and their classi-
fication has not been sufficiently investigated [73] due to the
difficulty of performing realistic experiments in this area [14],
especially for involuntary falls. Falls typically occur while
performing activities of daily living; therefore, they may be
included among the set of activities as a special and important
class.
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