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A topology optimization framework is developed for smart materials with tunable microstructures. The framework

addresses spatial and temporal design variables in a unified setting so as to deliver the optimal periodic microstructure

with stimulus-sensitive constituents. The optimal topology allows the macroscopic response of the microstructure to

track a time-dependent cyclic path in the stress–strain space with minimal error. The relevant homogenization-based

variational analysis for the sensitivity-based optimization framework incorporates not only material variables but also

the geometry information regarding the unit cell. Extensive numerical investigations demonstrate the ability of the

developed approach to deliver optimal topologies for realizable target macroscopic paths. The error in optimization

increases monotonically with the degree of unrealizability, yet the critical role of the microstructure in minimizing the

error in comparison to a pure time optimization approach is demonstrated in all cases.

KEY WORDS: space–time topology optimization, homogenization, tunable microstructures, smart mate-
rials, programmable composites

1. INTRODUCTION

Topology optimization is a well-established methodology for designing microstructured materials. Starting with the
pioneering homogenization-based approach in Bensøe and Kikuchi (1988), advances in computational frameworks
(Wu et al., 2021) in combination with novel manufacturing techniques (Liu et al., 2018) have enabled the practical
application of this methodology in a broad range of settings. Because conventional optimal microstructure designs are
typically targeted for a specific objective, their static nature does not allow them to adapt to time-varying demands.
The ability of the macroscopic response to follow such demands so as to deliver improved response at all times can
be important and is exemplified in the application of morphing materials (Kuder et al., 2013; Wenz et al., 2021) and
novel actuators (Kallio et al., 2007; Li et al., 2014) among others. In general, this might be achieved by extending
microstructural analysis and design toward macroscopic tunability.

Tunability might be achieved by allowing the microstructure to respond to an external stimuli, such as thermal
(Cai et al., 2021; Restrepo et al., 2016a) and magnetic (Jackson et al., 2018; Li et al., 2010) fields, as well as electrical
(Kuder et al., 2013; Shan et al., 2015), fluidic (Zhang et al.,2018), electrochemical (Xia et al., 2019), and light (Gump
et al., 2004) excitation. Essentially relying on the existence of multiple phases with varying degrees of sensitivity to
the stimuli, the programmable behavior that such smart materials display cannot be achieved without the critical role
of the microstructure (Cai et al., 2021). In many of these cases, notably for magnetorheological materials (Kallio
et al., 2007), the macroscopic response is continuously variable in a controllable manner based on the stimulus signal.
In the case of predefined programming, for instance through deformation (Clausen et al., 2015) and multiple stages
of buckling (Haghpanah et al., 2016b; Rafsanjani et al., 2015) or through mechanistic on–off approaches (Haghpanah
et al., 2016a), continuity and controllability are limitedyet the approach still offers a degree of flexibility that cannot
be achieved by conventional materials or by metamaterials with static properties (Lee et al., 2012).

1543–1649/24/$35.00 © 2024 by Begell House, Inc. www.begellhouse.com 15
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The analysis of the type of the previously tunable microstructures summarized can be carried out via approximate
approaches, in particular, for trusslike morphologies (Wenz et al., 2021; Zhang et al., 2018), or through a more detailed
numerical approach in the presence of significant nonlinearities (Rafsanjani et al., 2015; Restrepo et al., 2016b).
However, an inverse study that addresses material design within a general topology optimization framework so as to
achieve a target smart response in an optimal fashion without any restriction on the microstructural features is lacking
in the literature.

The goal of the present study is to present such a framework inthe context of homogenization. Within this
framework, the focus is on both spatial optimization with respect to the microstructural geometry as well as on tem-
poral optimization with respect to the tunability of the constituents. The resulting optimization framework treats the
topology in space and time in a unified setting and aims to identify the microstructure that has stimulus-responsive
constituents distributed to attain a target time-varying macroscopic response with minimal error. On the basis of the
study in Özcan et al. (2020), which forms a foundation for the presentwork, the motivation for this approach is
twofold. Firstly, the ability to realize the target macroscopic smart response critically relies on the microstructure.
As a consequence, significant error may be observed if the stimulus-sensitive microscopic phases are distributed in
ana priori prescribed morphology and one seeks to determine the external signals that should be delivered to them
toward optimal tracking of the target response, which is a pure time optimization problem. Secondly, even when the
target smart response is realizable for the prescribed microstructure, the practical identification of how the external
signals should vary over time to minimize the tracking errorrelies on control theory. An implementation based on
control theory is essential in the application of smart materials in the presence of uncertainties but is computation-
ally inefficient for assessing the optimality of candidate microstructures for minimal error. The space–time topology
optimization framework to be developed will circumvent both of these difficulties.

In realizing this goal, the emphasis will be on the optimization framework without an explicit formulation of
the constitutive link between the external stimulus and themicroscopic response. At most, two stimulus-responsive
phases will be admitted and their response will be limited toelasticity at all times. It is anticipated that the developed
framework is a first step toward the incorporation of detailed models for the constitutive response. On the other
hand, in view of the central role of the spatial topology, theoptimization of the periodic material distribution will be
realized within a unit cell geometry, which will simultaneously evolve toward the optimal configuration. This offers
an additional degree of freedom in optimization, the importance of which is often overlooked.

In order to address the stated goals, the variational analysis of the design framework will first be provided, starting
with a brief statement of the homogenization problem that isfollowed by a sensitivity analysis with respect to material
and geometry variables. Next, the tunable features of the microstructure will be introduced and the unified space–
time optimization framework is discussed. Extensive numerical investigations will first highlight the importance of
geometry optimization as well as the critical role of the microstructure in ensuring the optimal reflection of tunability
toward the macroscopic response. Target responses range from realizable cyclic paths in the macroscopic stress–strain
space to unrealizable ones where the combined space–time approach will nevertheless perform significantly better
than a pure time optimization approach on predefined microstructures. The practical application of the resulting
designs within a control implementation will additionallybe addressed, and the study will be concluded with a
discussion of the capabilities and future extensions that are offered.

2. VARIATIONAL DESIGN ANALYSIS

2.1 Homogenization Problem

A periodic composite is considered with a unit cellY that is assigned a position vectory. Assuming a linearly elastic
microscopic responseσ = Eǫ that remains so at all times, the microstructure topology inY is associated with a
time-dependent elasticity tensor distributionE(y, t). Indicating averaging for a generic variableQ overY through
the notation〈Q〉 = |Y|

−1 ∫

Y
Q dv, the macroscopic response is characterized by the tensorE(t), which relates

average stress and strain at a given time, as follows:

σ̄ = 〈σ〉 (1a)
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ǭ = 〈ǫ〉 (1b)

σ̄ = Eǭ (1c)

where the stress field is such that it induces anti-periodic tractions on∂Y , whereas the strain field is associated with
periodic displacements. Noting thatE displays appropriate minor and major symmetries with respect to its indices,
the components ofE are then determined through the following classical expression (Sanchez-Palencia, 1980):

Γkl
pq = δkpδlq +Λkl

pq (2a)

Eijkl =
〈

Eijpq Γ
kl
pq

〉

(2b)

whereδij is the Kronecker delta. The tensorΛ
kl = ∇λ

kl is associated with the periodic vector fieldλkl(y, t), which
satisfies the cell problem

∂

∂yj

(

Eijpq Γ
kl
pq

)

= 0 (3)

that ensures the symmetry ofλ
kl with respect tok andl so thatE clearly displays minor symmetries.

2.2 Material Variable Sensitivity

Within a design problem,E(y, t) depends on a set of material variables that parametrize its distribution. Indicating a
prescribed functional relation to a generic material variableζ through the notationE[ζ], Eqs. (2a) and (2b) implicitly
implies a macroscopic parametrizationE[ζ]. The sensitivity expression∂Eijkl/∂ζ that will be required within a
numerical optimization scheme is typically derived through the adjoint method (Bendsøe and Sigmund, 2004). Here,
a compact variational formulation is briefly noted. To this end, note that the direct evaluation of the sensitivity via
Eq. (2b) requires calculating the term∂Λkl

pq/∂ζ by employing the sensitivity of Eq. (3), which is unfavorable in view
of the large number of variables. To avoid its appearance, the weak form of the cell problem (3) is constructed by
introducing a periodic vector fieldη, as follows:

〈

∂ηp

∂yq
Epqrs Γ

kl
rs

〉

= 0 (4)

Upon choosingη asλij and∂λij/∂ζ, respectively, the weak form implies the relations

〈

Λij
pq Epqrs Γ

kl
rs

〉

= 0,

〈

∂Λij
pq

∂ζ
Epqrs Γ

kl
rs

〉

= 0 (5)

When the first vanishing average is added to Eq. (2b), one obtains the following alternative expression:

Eijkl =
〈

Γij
pq Epqrs Γ

kl
rs

〉

(6)

that also clarifies the major symmetry ofE with respect to its indices. Upon invoking the second vanishing average
together with this symmetry and recalling Eq. (2a), the sensitivity of Eq. (6) now takes the following practical form:

∂Eijkl

∂ζ
=

〈

Γij
pq

∂Epqrs

∂ζ
Γkl
rs

〉

(7)

In view of the variational structure of the finite element method, this form delivers an exact sensitivity at arbitrary
mesh resolutions.
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2.3 Geometry Variable Sensitivity

A fixed unit cell geometry, such as a cube, can restrict the design space and therefore lead to an arrest of the mi-
crostructure development during topology optimization (C¸ akal et al., 2019). Periodicity allows one to define the
nonunique but smallest possible [i.e., primitive (Ashcroft and Mermin, 1976)] unit cell as a parallelepiped. Therefore,
full flexibility can be assigned to the unit cell geometry by constructing it through the linear transformationy = Ayo

of a reference cubeYo with position vectoryo. Here, all components of the tensorA or only selected quantities that
are associated with it can be incorporated into the optimization scheme in order to relax the objective further toward
the extremum. Indicating such a generic geometric quantitywith γ, the sensitivity ofE[ζ;γ] with respect to this
new design variable must be determined because the macroscopic elasticity tensor is now parametrically dependent
onA as well. For this purpose, introducing the notation〈Q〉o = |Yo|

−1 ∫

Yo
Q dvo and noting that〈Q〉 = 〈Q〉o, the

sensitivity of Eq. (6) with respect toγ may be stated as follows:

∂Eijkl

∂γ
=

∂

∂γ

〈

Γij
pq Epqrs Γ

kl
rs

〉

o

=

〈

∂Λij
pq

∂γ
Epqrs Γ

kl
rs

〉

o

+

〈

Γij
pq Epqrs

∂Λkl
rs

∂γ

〉

o

(8)

Additionally defining∇o = ∂/∂yo andB = A−1, one may write

Υ
kl = ∇oλ

kl, Λ
kl = Υ

klB (9)

such that the first of the two similar terms within Eq. (8) takes the following form:
〈

∂Λij
pq

∂γ
Epqrs Γ

kl
rs

〉

o

=
∂Bmq

∂γ

〈

Υij
pm Epqrs Γ

kl
rs

〉

+

〈

∂

∂yq

(

∂λijp
∂γ

)

Epqrs Γ
kl
rs

〉

(10)

The latter integral vanishes in view of Eq. (4) upon choosingη as∂λij/∂γ. Analyzing the remaining term within
Eq. (8) in a similar manner and noting∂B/∂γ = −B(∂A/∂γ)B, one obtains the sensitivity expression

∂Eijkl

∂γ
= −

∂Amn

∂γ

(

Bnq

〈

Λij
pm Epqrs Γ

kl
rs

〉

+
〈

Γij
pq Epqrs Λ

kl
rm

〉

Bns

)

(11)

Similar to Eq. (7), this expression ensures an efficient sensitivity evaluation based onλkl alone. In this work, the
entirety ofA is subject to optimization, i.e.,γ coincides with its components. Because the homogenizationframework
does not account for the absolute size of the unit cell, it will be found convenient to enforce|Y| = |Yo| through the
isochoric deformation constraintdetA = 1, the sensitivity of which can easily be evaluated through Jacobi’s formula
for optimization purposes.

The importance of the unit cell geometry is often overlooked, but this had already been recognized in the pio-
neering study of Bensøe and Kikuchi (1988). Despite the factthat the present approach was developed independently,
a very recent review on topology optimization (Wu et al., 2021) summarizes a limited number of works involving
some type of unit cell geometry relaxation and recognizes the study by Barbarosie and Toader (2014) as the only
approach that allows full relaxation. The formulation in Barbarosie and Toader (2014) overlaps with the approach
presented herein; although the sensitivity analysis, despite reaching the same expression, follows a different route.
Because Barbarosie and Toader (2014) has been acknowledgedonly in a handful of studies and never invoked in any
of these to the best of the authors’ knowledge, it is anticipated that the alternative and significantly more compact
sensitivity analysis pursued above will be of interest. Moreover, such unrestricted unit cell geometry optimization has
not been applied in a three-dimensional setting, which willbe carried in the numerical investigations.

3. TUNABLE MICROSTRUCTURE DESIGN

3.1 Space–Time Topology

The tunable composite will be subject to topology optimization at both temporal and spatial levels. Within a bimaterial
setting, the microstructure is described through two elasticity tensorsE(1) andE(2). Following recent approaches
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(Ansari et al., 2018; Bou Matar et al., 2012; Palacios et al.,2022; Trainiti et al., 2019), tunability is introduced into
the design framework by endowing each material with the ability to respond to a time-dependent external stimulus
φ(α)(t). As in Ansari et al. (2018), Trainiti et al. (2019), andÖzcan et al. (2020), instead of modeling the constitutive
relation to the stimulus, the time-dependence of eachE

(α) is explicitly invoked through a material-specific temporal
variableτ(α)(t) ∈ [0, 1] such that

E
(α)[τ(α)] = E

(α)
min +

(

E
(α)
max − E

(α)
min

)

τ(α)(t) (12)

The variableτ(α)(t) is associated with the temporal topology of the microstructure. The spatial topology is now
introduced in a standard density-based setting through an additional material variableρ(y) ∈ [0, 1] such that

E[ρ, τ(1), τ(2)] = E
(1) +

(

E
(2) −E

(1)
)

ρη(y) (13)

whereη is a fixed parameter. In order to embed a scale into the space–time variations ofE and also to avoid possi-
ble discretization dependence that would hinder convergence of the topology with discretization refinement,τ(α)(t)
andρ(y) are generally defined through the filtering of actual design variablesk(α)(t) ands(y), respectively. There-
fore, the space–time topology of the elasticity tensor willbe denoted throughE[s, k(1), k(2)], leading to a similar
parametrization of its macroscopic counterpartE. Within the numerical investigations, eachE(α) will be associated
with an isotropic response that is characterized by a Young’s modulusE(α) and a Poisson’s ratioν(α). The latter
will be fixed at a value of 0.3 for simplicity throughout this work. Instead of invoking the space–time formulation
of Eqs. (12) and (13) throughE(α), they are now directly applied to the variable elastic properties with the modulus
amplitude∆E(α) and the limits

E
(α)
min = E(α)

o −∆E(α), E(α)
max = E(α)

o +∆E(α) (14)

It is highlighted that the temporal variationE(α)(t) at each point of the designed microstructure is completely
identified once the optimalτ(α)(t) is determined. At this point, the constitutive relation betweenE(α) and the external
stimulusφ(α) may be inverted for each point in time to determine the physical variationφ(α)(t) that delivers the
desiredE(α)(t). Therefore,τ(α) solely serves as an intermediate variable, which enables the decoupling of the exact
details of the constitutive relation from the optimizationof the temporal variationE(α)(t).

3.2 Discrete Optimization

The time optimization framework will aim to determine the temporal topologyk(α)(t) so as to adaptE to a time-
varying target response. The space optimization framework, on the other hand, will introduce flexibility toward this
goal by seeking the spatial topologys(y) in a suitable unit cell geometry that is defined throughA, which will
help accomplish this adaptation with minimal error. For anygiven{s, k(1), k(2);A}, E is determined via Eq. (6). Its
sensitivity with respect to any of the material design variabless andk(α) is delivered through Eq. (7) while Eq. (11)
delivers its sensitivity with respect to the components ofA.

With respect to material design within a finite element framework, the microstructure is discretized withNm ×
Nm linear elements, elementI ∈ {1, 2, . . . , N2

m} being assigned a spatial material design variablesI ∈ [0, 1].
Similarly, restricting the temporal variations to periodic ones in view of the targeted problems, the periodT will
be discretized withNt steps and each step is assigned a temporal material design variablek

(α)
n ∈ [0, 1] with n ∈

{1, 2, . . . , Nt}. Indicating the set of discrete material design variables with s andk(α), their filtered counterparts are
denoted asρ andτ(α), respectively. In this work, the exponential erode filter (Svanberg and Svärd, 2013) will be
invoked for the spatial variables withη = 3 in Eq. (13). A linear filter (Svanberg and Svärd, 2013) is suitable for the
temporal variables but these were found to require no filtering for the chosen temporal discretization. It is noted that,
in addition to enforcing the periodicity ofλkl(y, t) toward the solution of Eq. (3), filtering is carried out by enforcing
the periodicity of the operation with respect to the unit cell geometry.
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3.3 Optimization Problem

In this work, the optimization problem of interest focuses on the macroscopic constitutive response of the tunable
composite under periodic loading. Specifically, strain-driven cyclic loading will be imposed on the unit cell with a
steady-state periodic loop of the form

ǫij(t) = mǫ

ij − aǫij sin

(

2πt
T ǫ

ij

)

(15)

wheremǫ

ij andaǫij are the mean and amplitude forǫij with periodT ǫ

ij. As a response to this loading, a stress response
is targeted in a similar form with cyclic functioncyc and a phaseθij :

σ∗
ij(t) = mσ

ij + aσij cyc

(

2πt
Tσ

ij

+ θij

)

(16)

Because the means, amplitudes, and periods do not necessarily allow the stress and strain to satisfy Eq. (1c) ifE is
constant, adaptation is necessary even without a phase. At any stage of loading with a given set of design variables,
the actual stress outputσ̄ = E[s,k(1),k(2);A] ǭ will not be able to perfectly track the target value and an error φij

is induced over a cycle for a single stress component. These errors define the total tracking errorΦ over a period, as
follows:

φij(t) =

[

1
T ǫ

ij

∫ t

t−Tǫ

ij

(

σij(t)− σ∗
ij(t)

σ∗
ij(t)

)2

dt

]1/2

, Φ(t) =
∑

i,j

φij(t) (17)

The space–time topology optimization framework seeks to minimize this error. InÖzcan et al. (2020), this was
realized within a control theory framework based on temporal variations alone, whereas topology optimization will
be invoked presently. When only temporal material design variables are employed, the two approaches are similar but
not identical. In the control theory setting, the controller regardsτ(α)(t) within Eq. (12) as a signal and attempts to
update it such that the tracking error is minimized. It is necessary to start with initial conditions and move toward the
steady-state loading conditions that are represented throughǫij(t). As a consequence, a transient regime is observed.
Moreover, even after the macroscopic strain starts following the steady-state loop, the controller requires multiple
periods beforeτ(α)(t) variations converge to their steady-state variations thatrepresent optimality with respect to
the controller setup. This optimality condition is based onthe minimization of notΦ(t) but rather the contribution
σij−σ∗

ij to its integrand for eachi andj.
In the present topology optimization framework, on the other hand, it is sufficient to employ the tracking error

as the objective and attempt to minimize it. Because each optimization iteration is independent of time, the tracking
error is evaluated directly over a steady-state loading period such thatΦ is rendered independent of time, i.e.,t = T ǫ

ij

within Eq. (17). Since the conditions of optimality differ,the convergedτ(α)(t) signals will, in general, differ as well.
However, if there exist signals that renderσij(t) exactly equal toσ∗

ij(t), then both approaches are able to capture
them such that their respective objectives vanish, to within the limitations of the controller setup or the temporal
design variable resolution. Such a case will be referred to as realizable. Conversely, when such signals do not exist,
the targeted responseσ∗

ij(t) is unrealizable and the two approaches will deliver increasingly different converged
signals with an increasing degree of unrealizability. For any unrealizable target response, the spatial material design
variables, in combination with the geometry design variables, will act as additional optimization degrees of freedom
that will enhance the ability of the present framework to further reduce the tracking error. Hence, the overall topology
optimization problem may be stated as follows:

minimizeΦ[s,k(1),k(2);γ], subject toχ(s) = 0 and
{

sI ∈ [0, 1], k(1)n ∈ [0, 1], k(2)n ∈ [0, 1]
}

(18)

where, in addition to the last set of inequality constraints, an equality constraintχ is imposed indirectly ons through
ρ to enforce a target volume fractionρ∗ that is associated withE(2): χ = (〈ρ〉 − ρ∗)2/(ρ∗)2. Enforcing additional
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constraints on the remaining design variables was not foundnecessary. Optimization was carried out based on the
method of moving asymptotes (Svanberg, 1987). For this purpose, recalling Eqs. (7) and (11), the sensitivity ofΦ
with respect toξ ∈ {s,k(1),k(2);γ} may be stated as follows:

∂φij(t)

∂ξ
=

1
φijT ǫ

ij

∫ t

t−Tǫ

ij

(

σij(t) − σ∗
ij(t)

σ∗
ij(t)

)

∂Eijkl

∂ξ

(

ǫkl(t)

σ∗
ij(t)

)

dt,
∂Φ(t)

∂ξ
=
∑

i,j

∂φij(t)

∂ξ
(19)

4. NUMERICAL INVESTIGATIONS

4.1 Unit Cell Geometry Optimization

In a first step, pure unit cell geometry optimization is carried out to highlight its importance and determine appro-
priate limits on the optimization space regardingA. For this purpose, two microstructures with square unit cells are
constructed (Fig. 1), both with{E(1), E(2), ρ∗} = {3.6 MPa, 108 MPa, 0.45} but one having the phases oriented
along 0 deg (unrotated); whereas this angle is 20 deg and the unit cell is oriented accordingly (rotated) for the second
microstructure. The macroscopic elasticity tensor for each case is calculated and prescribed as a targetE

∗
within the

objective function
∥

∥E−E
∗∥
∥

2
/
∥

∥E
∗∥
∥

2
. In order to assess the optimization quality, the remainingerror in the objective

function will be referenced through the percentage value. In all examples,Nm = 40 is chosen for space optimization
(Section 3.2). For the unrotated case, optimization without geometry adaptation is sufficient and delivers the expected
microstructure. However, the corresponding result for therotated case is a typical output for a suboptimal microstruc-
ture that cannot develop freely due to fixed geometry constraints. It is emphasized that the chosen exponential erode
filter for the spatial variables can induce sharper topologies with distinct phases in comparison to alternative choices,
such as the linear filter. However, the results may also appear comparatively jagged and are more prone to devel-
oping isolated features. Presently, in all examples, the optimization results on a unit cell are presented without any
postprocessing. It is noted that, in all microstructure figures, three unit cells per direction are employed for clarity.

In order to investigate the relaxation of the domain constraints (Fig. 2), first, the off-diagonal components ofA are
fixed to zero and only the diagonal values are allowed to vary in the range[λ−1, λ]. Because off-diagonal components
will eventually also be allowed, which will enable rotationof the domain,λ = 1.7 was found to provide sufficient
flexibility. Presently, even this limited pure-stretch geometry adaptation enables optimal microstructure development

(a) (b) (c) (d)

FIG. 1: A microstructure and its 20 deg rotated version are shown in (a) and (c). These are employed to generate target values
E

∗

. In all figures, the gray and green phases are assignedE(1) andE(2), respectively. The optimization results on a fixed square
domain are shown in (b) for the unrotated case and (d) for the 20 deg rotated case. Refer to the online version for color.

(a) (b) (c)

FIG. 2: Unit cell domain geometry optimization [(a) pure stretch, (b) pure rotation, and (c) full] is invoked for the targetE
∗

that
is associated with the rotated microstructure in Fig. 1(c)
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along a diagonal that closely matches 20 deg. Alternatively, pure-rotation geometry adaptation may be allowed by
restraining the diagonal components to the range[0.7, 1.0] and the off-diagonal ones to[−0.8, 0.8], which offers
sufficient flexibility for rotation through at least 45 deg. Higher rotations are implicitly captured through symmetry
based on appropriate microstructure development. Once again, the expected microstructure develops freely. Finally,
full freedom can be allowed inA where the diagonal component range is[1/1.7, 1.7] and the off-diagonal range is
[−0.8, 0.8], also resulting in the optimal topology. The differences inthe three optimal microstructures additionally
highlight the nonunique choice of the unit cell.

For the preceding example, rotation naturally provides sufficient flexibility toward capturing the optimal design.
As an alternative scenario, Fig. 3 shows two microstructures, based on the same Young’s moduli as before andρ∗ =
0.55, one with a square geometry and a second that is obtainedfrom the first through an isochoric linear map via
50% vertical stretch. When their elasticity tensors are prescribed as targets within the optimization scheme, the fixed
square optimization domain successfully captures the firstone but not the second, leaving isolated features that do not
disappear with iterations and thereby increasing the optimization error. When pure-stretch adaptation of the domain
is enabled, the error significantly diminishes and pure-rotation adaptation also delivers a comparable result (Fig. 4).
To maintain sufficient generality toward cases where it may not bea priori clear as to which type of adaptation is
sufficient, full flexibility in A will be maintained in the remaining investigations. Presently, this option also delivers
a successful output, once again demonstrating the nonuniqueness in the choice of the unit cell.

It is highlighted that the objective error already decreases to the range of 10–20% even for the suboptimal mi-
crostructures of these examples, i.e., optimization delivers acceptable topologies. However, this value is an order of
magnitude smaller at 1–3% when geometry optimization is enabled and can vanish at higher discretizations, thereby
delivering better topologies not only qualitatively but also quantitatively. The advantage of geometry optimization
lies in its ability to operate on a primitive unit cell. Relaxation of the topology development, which is reflected largely
as a boundary effect, may alternatively be realized by employing increasingly larger supercells such that sufficient
relaxation is attained internally (Çakal et al., 2019). However, this is a comparatively inefficient approach becauseit
leads to considerably higher computational cost due to the increasing number of degrees of freedom for both the finite
element calculations and the optimization step. In all subsequent examples, space optimization will include unit cell
geometry optimization in addition to topology optimization within the adapted unit cell domain.

Finally, three-dimensional examples are provided in Fig. 5, based on the same Young’s moduli as before and
ρ∗ = 0.51. In these examples,Nm = 30 is employed as the spatial resolution in view of the comparatively high

(a) (b) (c) (d)

FIG. 3: A microstructure and its 50% stretched version are shown in (a) and (c). These are employed to generate target values
E

∗

. The optimization results on a fixed square domain are shown in (b) for the unstreched case and (d) for the 50% streched case,
respectively. The percentage values refer to the vertical stretch associated with the isochoric linear map.

(a) (b) (c)

FIG. 4: Unit cell domain geometry optimization [(a) pure stretch, (b) pure rotation, and (c) full] is invoked for the targetE
∗

that
is associated with the stretched microstructure in Fig. 3(c)

International Journal for Multiscale Computational Engineering



Homogenization-Based Space-Time Topology Optimization of Tunable Microstructures 23

(a) (b) (c) (d) (e)

FIG. 5: A target microstructure (A = I) and its rotated version (A = Ao) are shown in (a) and (c). The corresponding optimiza-
tion results on a fixed cubic domain are shown in (b) and (d), respectively. The result in (e) additionally invokes unrestricted unit
cell geometry optimization for the target in (c). The edges of the fixed cubic domains define the coordinate system with respect to
which remaining orientations may be assessed.

computational cost. When an untransformed (A = I) microstructure is targeted, optimization on a fixed cubic do-
main satisfactorily reconstructs the same topology with< 3% error in the objective. Subsequently, a transformed
target microstructure is described throughAo = A3A2A1, whereAi represents rotation about theyi-axis through
20 deg. When optimization is carried out on a fixed cubic domain, an oriented microstructure attempts to develop
unsatisfactorily with a resulting objective error of> 13%. On the other hand, by allowing for unrestricted unit cell
geometry optimization with the earlier noted limits on the entries ofA, a satisfactory topology development is once
again observed with a corresponding objective error of< 2%.

4.2 Space–Time Topology Optimization

In order to demonstrate the advantages of combined space–time topology optimization for tunable microstructures,
only time optimization is first carried out on a prescribed microstructure. Because the stress–strain ratio governs
modulus tuning over time, the macroscopic strain variationin Eq. (15) will be fixed to the parameter setPǫ, as
follows:

Pǫ : {mǫ

ij , a
ǫ

ij, T
ǫ

ij} = {0.035, 0.01, To} (20)

This set will be employed only for the active components ofǭ and always withTo = 1.8 s (undenoted components
are inactive and zero). The macroscopic stress variation, on the other hand, will be varied among the examples to
explore the capabilities and limits of optimization. Only the indicated stress components will be incorporated into the
tracking error, Eq. (17). Presently,ǫ11 will be active andσ∗

11 in Eq. (16) is targeted with the parameter setPσ

cos, as
follows:

Pσ

cos : {cyc,m
σ

11, a
σ

11, T
σ

11, θ11} = {cos, 0.8 MPa, 0.16 MPa, To, 0} (21)

Only the second phase of the microstructure is tunable basedon Eq. (14) parameters and the volume fraction
{E(1), E

(2)
o , ρ∗} = {3.6 MPa, 108 MPa, 0.45}. The stress in tunable materials can easily be varied by fiftypercent

(Jackson et al., 2018; Li et al., 2014; Shan et al., 2015; Zhang et al., 2018). Therefore, the amplitude of the variable
modulus will always be set to∆E(α) = E

(2)
o /2 for simplicity without loss of generality in view of the given flexibility

in choosingσ̄∗(t). The number of time steps in time optimization will be chosenasNt = 18 (Section 3.2), delivering
a time step size of 0.1 s.

Figure 6 displays the prescribed target elliptic pathσ∗
11 in the macroscopic stress–strain space along with the

actual responseσ11 that the chosen microstructure delivers through the adaption of the microscopic modulusE(2)(t)
via τ(2). In all temporal adaption figures, three periods are plottedfor clarity. Clearly, the target macroscopic response
is realizable with the given microscopic input. On the otherhand, an alternative target path is prescribed in Fig. 7 via
the parameter setPσ

saw, wheretri stands for a distorted triangular pattern:

Pσ

tri : {cyc,m
σ

ij , a
σ

ij , T
σ

ij , θij} = {tri, 1.0 MPa, 0.5 MPa, 1.8 s,−π/2} (22)

The peak of this variation is set atTo/5, with To/2 corresponding to a perfect triangular pattern. This target path is
observed to be unrealizable becauseE(2)(t) saturates to its maximum valueE(2)

max at portions of a period, inducing
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FIG. 6: Time optimization is carried out for a realizable target macroscopic stress–strain path [(a) macroscopic path, (b) unit cell,
and (c) microscopic modulus], with a prescribed microstructure. In all temporal adaptation figures, three periods are plotted for
clarity. In all macroscopic paths, the relevant strain component variation will follow Eq. (20). Presently, the targetstress variation
follows Eq. (21).
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FIG. 7: Time optimization is carried out for an unrealizable targetmacroscopic stress–strain path [(a) macroscopic path, (b)unit
cell, and (c) microscopic adaptation], with the prescribedmicrostructure of Fig. 6. Here, the target macroscopic stress variation
follows Eq. (22).

similar maximum saturation inE, yet this is not sufficient for successful tracking of the prescribed path (̈Ozcan et al.,
2020).

Although further flexibility can be assigned to the microstructure by settingE(2)
max to a larger value, arbitrary

flexibility in microscopic tunability may not be physicallypossible. Moreover, the appropriate choice of the limits
depends on the target path and can always be insufficient, either through the maximum or minimum limit. Instead,
Fig. 8 demonstrates that combined space–time optimizationcan realize the target path almost perfectly by adapting
the microstructure topology and the unit cell domain withinwhich this topology resides, without altering the phys-
ical properties. This highlights the additional flexibility of space–time topology optimization. Note that the spatial
topology is time independent—it is optimized only to provide the optimal freedom for the development of the tem-
poral topology.

The number of time steps chosen in time optimization does notinfluence the objective function significantly,
because the objective can be driven toward zero whenever thetarget is realizable, which only requires a nearly
vanishing error at each sampling point in time. However, thenumber of time steps does affect the visual quality of
optimization. To demonstrate its influence, the analysis ofFig. 8 is repeated by decreasing the number of time steps
from its default value ofNt = 18 toNt = 9. Despite the fact that this choice also delivers a satisfactory outcome,
the visual quality is slightly inferior to the default choice (Fig. 9). On the other hand, the results with a higher time
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FIG. 8: Space–time optimization is carried out for the target macroscopic stress–strain path of Fig. 7: (a) macroscopic path, (b)
unit cell, and (c) microscopic adaptation
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FIG. 9: The analysis in Fig. 8 is repeated by decreasing the number oftime steps from its default value ofNt = 18 toNt = 9:
(a) macroscopic path, (b) unit cell, and (c) microscopic adaptation

resolution atNt = 27 (not shown) are virtually identical to the results in Fig.8. For all three cases, the objective
error was< 1%. Considering that the optimization time scales linearlywith Nt, these observations justify the default
choice as a time resolution, which delivers a satisfactory visual optimization quality at an acceptable computational
cost.

4.3 Multiple Stress Targets

If only one microscopic phase is tunable and a single macroscopic path is targeted, this is highly achievable to
within the limits of realizability. When perfect tracking is obtained, e.g., viaE(2)(t) in theǫ11−σ11 space as in the
preceding examples, the variation of the remaining macroscopic stress components are automatically induced through
the relationσ̄(t) = E(t)ǭ(t). Therefore, to have a thus far unmonitored macroscopic stress component to follow a
target path that differs from this induced response can in general only be achieved by sacrificing from the quality
with which the original objective has been optimized. In such cases, an increasing number of microscopic tuning
degrees of freedom enhances the number of macroscopic stress–strain paths that can be successfully tracked. In order
to demonstrate this feature, biaxial deformation is applied on a unit cell viaǫ11 andǫ22 components, both varying
according to Eq. (20) as noted earlier, with all other straincomponents set to zero. The target forσ22 is based on the
sinusoidal variation [Eq. (21)] with updated values. Note that this variation effectively differs from the strain variation
[Eq. (20)] through a phase, thereby causing a closed loop (Özcan et al., 2020). Forσ11, a doubly oscillatory sinusoidal
target signal is chosen, which also differs through its period, thereby causing the macroscopic stress–strain loop to
cross itself, as follows:
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Pσ

dos : {cyc,m
σ

11, a
σ

11, T
σ

11, θ11} = {sin, 1.4 MPa, 0.14 MPa, To/2, 0} (23)

Both phases are active based on the parameters{E
(1)
o , E

(2)
o , ρ∗} = {18 MPa, 108 MPa, 0.5}, with ∆E(α) =

E
(α)
o /2 as the default choice. The result of the space–time optimization is summarized in Fig. 10. Because only one

of the target stresses have a period that is half of the strainperiod, it would not be possible to achieve successful
tracking of both paths unless both phases are tunable. It is highlighted that the macroscopic stress variations are
always described with respect to time—the paths with respect to the corresponding strain components are displayed
as a graphical assessment of the optimization quality.

The target paths are not limited to normal stresses. As an example,σ∗
22 is set according to Eq. (23) whileσ∗

12
follows Eq. (22). Figure 11 summarizes the successful space–time optimization result. It is noted that the presence of
two tunable phases does not guarantee that two arbitrary macroscopic stress–strain paths can be tracked successfully.

Multiple stress targets are additionally employed within athree-dimensional setting in Figs. 12 and 13, where
Nm = 30 is employed again. For the microstructure in Fig. 13(a), pure time optimization is first carried out based
on realizable target paths that are described through two shear stress components. The results in Fig. 12(a) indicate
successful optimization, but the oscillations in one of thesignals also point to a possible need to employ filtering of
the temporal design variables as an exception to the choice adopted in this work, cf. Section 3.2. Subsequently, the
target paths are modified in Fig. 12(b) such that pure time optimization on the same fixed microstructure is no longer
sufficient for successful tracking. However, when combinedspace–time optimization is involved, the same targets can
be successfully attained in Fig. 12(c) with the corresponding microstructure in Fig. 13(b), which has formed within a
domain geometry that is significantly rotated and stretchedwith respect to the original cubic one.
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FIG. 10: Space–time optimization is carried out toward the simultaneous realization of the depicted target normal stress paths: (a)
macroscopic path – normal 1, (b) macroscopic path – normal 2,(c) unit cell, and (d) microscopic adaptation. Similar to the phases
in the microstructure, the lines are associated withE(1)(t) andE(2)(t), respectively. Here,σ∗

11 is described via Eq. (23) whereas
σ∗

22 follows Eq. (21) with updated values{mσ

22, a
σ

22} = {2.0 MPa, 0.2 MPa}. Refer to the online version for color.
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FIG. 11: Space–time optimization is carried out under a combinationof normal and shear target stresses: (a) macroscopic path –
normal, (b) macroscopic path – shear, (c) unit cell, and (d) microscopic adaptation. Here,σ∗

22 is described via Eq. (23), with updated
values{mσ

22, a
σ

22} = {1.6 MPa, 0.16 MPa} while σ∗

12 follows Eq. (22) with the values{mσ

12, a
σ

12} = {0.3 MPa, 0.03 MPa}.

4.4 Unrealizable Cases

The purpose of this section is to discuss possible deterioration in optimization quality when the number of target
stresses exceeds the number of tunable phases, as alluded toin Section 4.3. As a particular example, the setting of
Fig. 10 is revisited with one difference,ǫ12 now also varies according to the default parameter set [Eq. (20)], which
induces a new unit cell loading. As a consequence, even whenσ12 is not monitored as a target within Eq. (17),
the optimization result must differ from Fig. 10 whereǫ12 = 0, which is observed in Figs. 14(a) and 15(a). Within
Fig. 14(a), the unmonitored induced shear stressσo

12(t) is also displayed. If optimization was carried out while taking
into account this variation as a target, the problem remainstrivially realizable and the same result is obtained.

If σ∗
12 is modified to away from the induced responseσo

12(t), for instance through a shift∆mσ

12 of the mean, then
the mismatch betweenσ∗

12 = ∆mσ

12 + σo
12(t) andσo

12(t) will force optimization to seek an alternative optimum. This
is summarized in Figs. 14(b) and 15(b). Clearly, although the signals have not saturated and hence the performance
is not restricted by the elastic moduli limits, the optimization problem is not realizable, i.e., it is not possible to
track all three target macroscopic stress variations perfectly with two tunable microscopic phases. In this particular
case, the degree of unrealizability can be controlled through the amount of shift of∆mσ

12 and will serve as a testbed
to compare the space–time optimization approach with the control approach in Section 4.5. Introducing more than
two tunable phases may increase the flexibility of the approach to decrease the optimization error or even render the
problem realizable. However, this requires a multi-material topology optimization framework that is beyond the scope
of the present study. In any case, the significant advantage of space–time optimization is additionally demonstrated
in Fig. 14(c), where it is observed that time optimization alone, based on the initial microstructure from Fig. 15(a),
delivers a response that remains comparatively inferior toa significant extent.
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FIG. 12: Three-dimensional optimization results are summarized, with the corresponding microstructures in Fig. 13. Cases (a)
and (b) correspond to pure time optimization, the latter appearing unrealizable due to a fixed microstructure. Combinedspace–
time topology optimization in case (c) demonstrates that the target paths are in fact realizable. For case (a), both target paths are
described through Eq. (21) except that the amplitude is set to 0.08. For cases (b) and (c), the first path is again similar with the
mean reduced to 0.6 and the amplitude to 0.06. The second pathfollows Eq. (22) with the mean and amplitude chosen as for (a).

4.5 Control Approach to Optimization in Time

The space–time topology optimization framework delivers an optimal microstructure for a target macroscopic stress–
strain path. The practical implementation of a material with this tunable microstructure requires a control framework
(Ogata and Yang, 2002), where an actuator applies deformation to the material to induce a desired strain and the
microstructure is continuously tuned such that the stress state that is measured by the sensor follows the desired
variation, essentially corresponding to time optimization via the tuning signalsτ(α)(t). In an ideal setting, an open-
loop control implementation may be pursued where the microstructure follows the tuning path viaτ(α)(t), which is

International Journal for Multiscale Computational Engineering



Homogenization-Based Space-Time Topology Optimization of Tunable Microstructures 29

(a) (b)

FIG. 13: The microstructure in (a) fixed unit cell, is employed in cases (a) and (b) of Fig. 12 as a prescribed input. The
microstructure in (b) optimized unit cell, where the gray phase is nearly uniform along the vertical direction, is obtained
through combined space–time optimization that is associated with case (c) of Fig. 12. Both microstructures are based on
{E

(1)
o , E

(2)
o , ρ∗} = {18 MPa, 108 MPa, 0.7}.

determined through the present framework in order to trace the macroscopic path successfully. In practice, however,
deviations from this ideal path are expected due to real-life aspects of implementation, such as delay in sensing and
actuation. As a consequence,τ(α)(t) must be updated on the fly accordingly in order to ensure minimal tracking error.
The practical realization of this update crucially relies on a closed-loop feedback control framework. Pure time opti-
mization, as in the example of Fig. 6, cannot be employed because a deviation (such as delay) is not knowna priori.
In this section, the implementation of time optimization through such a control structure and its performance in the
presence of common practical application issues will be very briefly discussed. Although a control approach is moti-
vated by practical considerations, the focus will be on the closed-loop feedback structure without important practical
ingredients, such as actuator models or controller communication delays [seëOzcan et al. (2020), for examples].

The feedback controller employed in the present implementation is a multiple-input–multiple output repetitive
controller operated to regulate the behavior of the tunablematerial model (Fig. 16). The repetitive controller structure
is an algorithm developed based on the internal model principle (Francis and Wonham, 1975). It aims to achieve
a zero steady-state error by repeating the input characteristics through a specific structure with a time delay inside
the control algorithm. It produces superior steady-state error performance for systems with fixed periodic reference
inputs and is easy to implement in realistic applications (Wang et al., 2009). The structure employed in this work is
based on Hara et al. (1988) and adapted toward the smart composite material system. This structure was chosen as
the control method forτ(α) in Özcan et al. (2020). Presently, it will be employed to further assess the optimality of
the present framework with respect to the temporal dimension. Additionally, the efficiency of this approach will be
further improved through a database approach to homogenization.

In Fig. 16,C(S) represents the unified control algorithm. It consists of a proportional gain controller with a
multiplicative constant,P , and a repetitive block structure. The repetitive block structure utilizes the one-period delay
error value (calculated using the transport delay element,e−τs) with the current value of the error signal to eliminate
the steady-state error for repeating input signals. At every cycle, the controller takes the value of theτ(α) signals from
the cycle before and updates the controller output calculated using the current error signal. The repetitive control
structure gives the control system a simple but effective adjusting ability since it utilizes the repeating information it
has acquired from the earlier cycles.

A critical ingredient of the controller is an inverse material model algorithm that generates a rapid and computa-
tionally efficient signal compensation for the controller input so that the transient properties of the feedback controller
are improved. Specifically, in order to simulate the response of the smart material for controller development and vali-
dation purposes, the cell problem [Eq. (3)] needs to be solved at every time step, similar to the pure time optimization
setting of Fig. 6. This computationally expensive process may slow down the controller development and validation
for rapid deployment and maintenance. In order to overcome this computational load, a material model has been
developed through a temporal database—essentially a lookup table that contains the solutions of the cell problem and
the resulting components ofE in theτ(1)−τ(2) space with a resolution of 0.025 along each axis. When the tuning
signalsτ(α) fall within data points of the lookup table, bilinear interpolation is employed. Although the details will
not be provided, this approach also facilitates the development of the inverse material model that is needed for the
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30 Keleş, Temizer, & Cakmakci

macroscopic path – normal 1 macroscopic path – normal 2 macroscopic path – shear

0.02 0.025 0.03 0.035 0.04 0.045 0.05

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Macroscopic Strain, ǫ11 [–]

M
a
c
ro

sc
o
p
ic

S
tr
e
ss

[M
P
a
]

σ11σ∗

11

0.02 0.025 0.03 0.035 0.04 0.045 0.05

1.5

1.7

1.9

2.1

2.3

2.5

Macroscopic Strain, ǫ22 [–]

σ22σ∗

22

0.02 0.025 0.03 0.035 0.04 0.045 0.05

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Macroscopic Strain, ǫ12 [–]

σ12σ∗

12=σo

12

(a)

0.02 0.025 0.03 0.035 0.04 0.045 0.05

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Macroscopic Strain, ǫ11 [–]

M
a
c
ro

sc
o
p
ic

S
tr
e
ss

[M
P
a
]

σ11σ∗

11

0.02 0.025 0.03 0.035 0.04 0.045 0.05

1.5

1.7

1.9

2.1

2.3

2.5

Macroscopic Strain, ǫ22 [–]

σ22σ∗

22

0.02 0.025 0.03 0.035 0.04 0.045 0.05

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Macroscopic Strain, ǫ12 [–]

σ12σ∗

12

(b)

0.02 0.025 0.03 0.035 0.04 0.045 0.05

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Macroscopic Strain, ǫ11 [–]

M
a
c
ro

sc
o
p
ic

S
tr
e
ss

[M
P
a
]

σ11σ∗

11

0.02 0.025 0.03 0.035 0.04 0.045 0.05

1.5

1.7

1.9

2.1

2.3

2.5

Macroscopic Strain, ǫ22 [–]

σ22σ∗

22

0.02 0.025 0.03 0.035 0.04 0.045 0.05

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Macroscopic Strain, ǫ12 [–]

σ12σ∗

12

(c)

FIG. 14: In case (a), the space–time optimization is carried out for the setting of Fig. 10 by additionally settingǫ12 to vary
according to Eq. (20) and setting the target forσ12 as the induced responseσo

12(t). In case (b), this target is modified through a
change of mean asσ∗

12 = ∆mσ

12 + σo

12(t), which renders the problem unrealizable. The corresponding space–time topologies are
summarized in Fig. 15. In case (c), only time optimization iscarried out for the target of case (b) based on the initial microstructure
from case (a).

controller, essentially to predict the amount of update to the tuning signals that are needed in order to derive the
tracking error to a minimum.

In order to demonstrate the control algorithm, the example of Fig. 6 is now revisited in Fig. 17 with the same
microstructure. Unlike the earlier topology optimizationframework, the control approach delivers a variation that is
updated through each period toward the target macroscopic stress–strain path. After less than ten periods, the tracking
error already decreases significantly and continues to monotonically decrease toward a perfect match of the actual
and target paths. Whenever the target is realizable, the control algorithm systematically diminishes the error. In order
to analyze its performance in an unrealizable setting, the example of Section 4.4 is revisited where the macroscopic
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FIG. 15: Space–time topologies corresponding to cases (a) and (b) ofFig. 14 are summarized

FIG. 16: Proposed system for controlling the tuning signalsτ(α)

shear stress target is altered through a mean shift, presently chosen as∆mσ

12 = 0.05α, whereα will control the degree
of unrealizability. The tracking error for varying degreesis summarized in Fig. 18.

Whenα = 0, the realizable setting of Fig. 14 is recovered and zero tracking error can be achieved for all
approaches. As the degree of unrealizability is increased,pure time optimization on the fixed microstructure that was
obtained atα = 0 delivers a monotonically increasing error. Minimizationof the tracking error has not been embedded
into the design of the control algorithm as an objective directly. Therefore, it delivers a time adaptation that remains
slightly inferior with respect to time optimization. Nevertheless, because the controller attempts to minimize the
pointwise error in the macroscopic stress over the period, the results from the two approaches remain close. From a
practical perspective, this indicates that the performance obtained through the controller in the implementation of the
tunable microstructure will remain close to optimal. Finally, the remarkably lower error associated with combined
space–time topology optimization is additionally displayed. Such an error curve could conceivably be followed by
a microstructure where not only the constitutive parameters but also the spatial topology can be adapted over time.
Such spatial topology adaptation appears to have been rendered feasible very recently for surfaces (Visschers et al.,
2021) but continues to remain challenging for materials.

5. CONCLUSION

Smart materials respond to external stimuli such as thermaland magnetic fields in a continuous and controllable
manner, resulting in an observable change in their mechanical response. The microstructure of such materials plays a

Volume 22, Issue 1, 2024
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FIG. 17: The controller performance is demonstrated for the time optimization example of Fig. 6. Here, the initial value of the
tunable modulus is prescribed as the mean valueE(2)(0) = E

(2)
o . The notation()• highlights the response through the 15th cycle

for comparison with the earlier time optimization result: (a) macroscopic path, (b) macroscopic stress, (c) microscopic adaptation,
and (d) tracking error.
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FIG. 18: The adaptation performance of the three different approaches whenσ∗

12 = ∆mσ

12 + σo

12(t) is employed with∆mσ

12 =
0.05α in the setting of Fig. 14

fundamental role in delivering the desired level and natureof macroscopic tunability. Earlier studies have investigated
the link between the microstructural geometry and the macroscopic tunability in experimental and numerical settings.
In the present work, a topology optimization framework is developed in order to design the microstructure so as to
offer maximum flexibility in tuning in order to attain the desired macroscopic time-dependent response. This frame-
work treats temporal design variables that are associated with the external stimuli and spatial design variables that
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associated with the microscopic material distribution on an equal footing. The incorporation of the geometry within
which the material distribution is sought into the design framework endows further flexibility toward minimizing the
optimization error.

A range of numerical investigations have demonstrated the viability of the approach to capture an optimal design
for both realizable as well as unrealizable target cyclic paths in the stress–strain space. The overall methodology
constitutes a viable design framework for extension along anumber of directions. It is conceivable that the degree
of unrealizability depends on the number of tunable microscopic constituents, which can be investigated within a
multimaterial optimization framework. Additionally, a model for the constitutive link between the external stimuli
and the tuning response can help assess the limits and dynamics of tunability in realistic scenarios.

Finally, a degree of programmability in the microscopic geometry can be incorporated into the design framework
in addition to stimulus-sensitive phases for improved adaptation to time-dependent demands. Such extensions will
contribute to the efforts toward the design and analysis of smart materials, which can successfully attain objectives
where traditional materials fail to perform optimally.
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Özcan, M., Cakmakci, M., and Temizer, I., Smart Composites with Tunable Stress-Strain Curves,Comput. Mech., vol. 65, pp.
375–394, 2020.

Palacios, J., Calderin, L., Chon, A., Frankel, I., Alqasimi, J., Allein, F., Gorelik, R., Lata, T., Curradi, R., Lambert-Milak, G., Oke,
A., Smith, N., Abi Ghanem, M., Lucas, P., Boechler, N., and Deymier, P., Temperature-Controlled Spatiotemporally Modulated
Phononic Crystal for Achieving Nonreciprocal Acoustic Wave Propagation,J. Acoust. Soc. America, vol. 151, pp. 3669–3675,
2022.

Rafsanjani, A., Akbarzadeh, A., and Pasini, D., Snapping Mechanical Metamaterials under Tension,Adv. Mater., vol. 27, pp.
5931–5935, 2015.

Restrepo, D., Mankame, N.D., and Zavattieri, P.D., Programmable Materials Based on Periodic Cellular Solids. Part I: Experi-
ments,Int. J. Solids Struct., vols.100–101, pp. 485–504, 2016a.

Restrepo, D., Mankame, N.D., and Zavattieri, P.D., Programmable Materials Based on Periodic Cellular Solids. Part II:Numerical
Analysis,Int. J. Solids Struct., vols.100–101, pp. 505–522, 2016b.

Sanchez-Palencia, E.,Non-Homogeneous Media and Vibration Theory, Berlin: Springer-Verlag, 1980.

Shan, W., Diller, S., Tutcuoglu, A., and Majidi, C., Rigidity-Tuning Conductive Elastomer,Smart Mater. Struct., vol.24, p. 065001,
2015.

Svanberg, K., The Method of Moving Asymptotes: A New Method for Structural Optimization,Int. J. Numer. Methods Eng., vol.
24, pp. 359–373, 1987.
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