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A topology optimization framework is developed for smart materials with tunable microstructures. The framework
addresses spatial and temporal design variables in a unified setting so as to deliver the optimal periodic microstructure
with stimulus-sensitive constituents. The optimal topology allows the macroscopic response of the microstructure to
track a time-dependent cyclic path in the stress—strain space with minimal error. The relevant homogenization-based
variational analysis for the sensitivity-based optimization framework incorporates not only material variables but also
the geometry information regarding the unit cell. Extensive numerical investigations demonstrate the ability of the
developed approach to deliver optimal topologies for realizable target macroscopic paths. The error in optimization
increases monotonically with the degree of unrealizability, yet the critical role of the microstructure in minimizing the
error in comparison to a pure time optimization approach is demonstrated in all cases.
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1. INTRODUCTION

Topology optimization is a well-established methodologydesigning microstructured materials. Starting with the
pioneering homogenization-based approach in Bensge dadtiii(1988), advances in computational frameworks
(Wu et al., 2021) in combination with novel manufacturingheiques (Liu et al., 2018) have enabled the practical
application of this methodology in a broad range of settiBgEause conventional optimal microstructure designs are
typically targeted for a specific objective, their statitura does not allow them to adapt to time-varying demands.
The ability of the macroscopic response to follow such detea® as to deliver improved response at all times can
be important and is exemplified in the application of morgtimaterials (Kuder et al., 2013; Wenz et al., 2021) and
novel actuators (Kallio et al., 2007; Li et al., 2014) amonliyeos. In general, this might be achieved by extending
microstructural analysis and design toward macrosco piatiility.

Tunability might be achieved by allowing the microstruetdo respond to an external stimuli, such as thermal
(Caietal., 2021; Restrepo et al., 2016a) and magnetic ¢dacdt al., 2018; Li et al., 2010) fields, as well as electrical
(Kuder et al., 2013; Shan et al., 2015), fluidic (Zhang et2411,8), electrochemical (Xia et al., 2019), and light (Gump
et al., 2004) excitation. Essentially relying on the exiseof multiple phases with varying degrees of sensitivaty t
the stimuli, the programmable behavior that such smart miadgedisplay cannot be achieved without the critical role
of the microstructure (Cai et al., 2021). In many of theseesasotably for magnetorheological materials (Kallio
et al., 2007), the macroscopic response is continuousighlarin a controllable manner based on the stimulus signal.
In the case of predefined programming, for instance throwjbrohation (Clausen et al., 2015) and multiple stages
of buckling (Haghpanah et al., 2016b; Rafsanjani et al. 5201 through mechanistic on—off approaches (Haghpanah
et al., 2016a), continuity and controllability are limitgdt the approach still offers a degree of flexibility thatican
be achieved by conventional materials or by metamateridbsstatic properties (Lee et al., 2012).
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The analysis of the type of the previously tunable micradtrtes summarized can be carried out via approximate
approaches, in particular, for trusslike morphologiesri¥\et al., 2021; Zhang et al., 2018), or through a more detaile
numerical approach in the presence of significant nonliiear(Rafsanjani et al., 2015; Restrepo et al., 2016b).
However, an inverse study that addresses material desthmwai general topology optimization framework so as to
achieve a target smart response in an optimal fashion witimurestriction on the microstructural features is lagkin
in the literature.

The goal of the present study is to present such a framewothkeircontext of homogenization. Within this
framework, the focus is on both spatial optimization withpect to the microstructural geometry as well as on tem-
poral optimization with respect to the tunability of the stituents. The resulting optimization framework treaes th
topology in space and time in a unified setting and aims totifyethe microstructure that has stimulus-responsive
constituents distributed to attain a target time-varyirgcroscopic response with minimal error. On the basis of the
study inOzcan et al. (2020), which forms a foundation for the presestk, the motivation for this approach is
twofold. Firstly, the ability to realize the target macropic smart response critically relies on the microstrustur
As a consequence, significant error may be observed if theikis-sensitive microscopic phases are distributed in
ana priori prescribed morphology and one seeks to determine the extgmals that should be delivered to them
toward optimal tracking of the target response, which is i@ pine optimization problem. Secondly, even when the
target smart response is realizable for the prescribedostitrcture, the practical identification of how the extérna
signals should vary over time to minimize the tracking eradies on control theory. An implementation based on
control theory is essential in the application of smart malke in the presence of uncertainties but is computation-
ally inefficient for assessing the optimality of candidatienmstructures for minimal error. The space—time topology
optimization framework to be developed will circumventlbof these difficulties.

In realizing this goal, the emphasis will be on the optimatframework without an explicit formulation of
the constitutive link between the external stimulus andntiieroscopic response. At most, two stimulus-responsive
phases will be admitted and their response will be limiteel&sticity at all times. It is anticipated that the develdpe
framework is a first step toward the incorporation of dethieodels for the constitutive response. On the other
hand, in view of the central role of the spatial topology, tigimization of the periodic material distribution will be
realized within a unit cell geometry, which will simultanesty evolve toward the optimal configuration. This offers
an additional degree of freedom in optimization, the imgoce of which is often overlooked.

In order to address the stated goals, the variational aisafhe design framework will first be provided, starting
with a brief statement of the homogenization problem thitliswed by a sensitivity analysis with respect to material
and geometry variables. Next, the tunable features of tloeastructure will be introduced and the unified space—
time optimization framework is discussed. Extensive nuca¢investigations will first highlight the importance of
geometry optimization as well as the critical role of the mgtructure in ensuring the optimal reflection of tunayilit
toward the macroscopic response. Target responses ramgesfalizable cyclic paths in the macroscopic stress+strai
space to unrealizable ones where the combined space—tipneaah will nevertheless perform significantly better
than a pure time optimization approach on predefined miarctres. The practical application of the resulting
designs within a control implementation will additionalhe addressed, and the study will be concluded with a
discussion of the capabilities and future extensions tteabtiered.

2. VARIATIONAL DESIGN ANALYSIS
2.1 Homogenization Problem

A periodic composite is considered with a unit gglthat is assigned a position vectgrAssuming a linearly elastic
microscopic response = IEe that remains so at all times, the microstructure topologyiis associated with a
time-dependent elasticity tensor distributibiy, ¢t). Indicating averaging for a generic variatdeover) through
the notation(Q) = |V|* fy Qdwv, the macroscopic response is characterized by the tébgdr which relates
average stress and strain at a given time, as follows:

o= (o) (1a)
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€= (e) (1b)
o =Ee (1c)

where the stress field is such that it induces anti-perigditions o), whereas the strain field is associated with
periodic displacements. Noting thtdisplays appropriate minor and major symmetries with resfeeits indices,
the components df are then determined through the following classical exgoes(Sanchez-Palencia, 1980):

g = Skpdiq + Apg (2a)

Eiji = (Eijpg Dhb) (2b)

wheres,; is the Kronecker delta. The tensaf! = VAF is associated with the periodic vector filtf (y, ¢), which
satisfies the cell problem

0
(9_yj (Eijm 1—\1;(11) =0 3

that ensures the symmetry df’ with respect td: and! so thatfEE clearly displays minor symmetries.

2.2 Material Variable Sensitivity

Within a design problemE(y, t) depends on a set of material variables that parametrizésttghdition. Indicating a
prescribed functional relation to a generic material \t@&d through the notatiofic[], Eqs. (2a) and (2b) implicitly
implies a macroscopic parametrizatiéii¢]. The sensitivity expressio@iE; ;x;/d¢ that will be required within a
numerical optimization scheme is typically derived thrbdige adjoint method (Bendsge and Sigmund, 2004). Here,
a compact variational formulation is briefly noted. To thiglenote that the direct evaluation of the sensitivity via
Eq. (2b) requires calculating the tefm’;g/ac by employing the sensitivity of Eq. (3), which is unfavoralm view

of the large number of variables. To avoid its appearaneewdak form of the cell problem (3) is constructed by
introducing a periodic vector fielq, as follows:

oy kl>
—E,prsIrs ) =0 4
<8yq - *)

Upon choosing) asA” anddA™ /9¢, respectively, the weak form implies the relations

ij kl 8Azi)jq Kl
<qu Epgrs Frs> =0, Pl Epgrs s ) =0 (5)

When the first vanishing average is added to Eq. (2b), onenshitae following alternative expression:
Eiﬂcl = <F§7J;1 qurs Ffi (6)

that also clarifies the major symmetry Bfwith respect to its indices. Upon invoking the second vaniglaverage
together with this symmetry and recalling Eq. (2a), the ity of Eq. (6) now takes the following practical form:

6Eijkl i+ OE rs
—(T1U Pq Fkl
6C < pq 6C s > (7)

In view of the variational structure of the finite element hwat, this form delivers an exact sensitivity at arbitrary
mesh resolutions.
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2.3 Geometry Variable Sensitivity

A fixed unit cell geometry, such as a cube, can restrict thegdespace and therefore lead to an arrest of the mi-
crostructure development during topology optimizatigrakél et al., 2019). Periodicity allows one to define the
nonunique but smallest possible [i.e., primitive (Ashtesfd Mermin, 1976)] unit cell as a parallelepiped. Therefor
full flexibility can be assigned to the unit cell geometry mnstructing it through the linear transformatign= Ay,

of a reference cubg, with position vectory,. Here, all components of the tensdror only selected quantities that
are associated with it can be incorporated into the optitizascheme in order to relax the objective further toward
the extremum. Indicating such a generic geometric quantitly v, the sensitivity of[E[;y] with respect to this
new design variable must be determined because the maprosztasnuty tensor is now parametrically dependent
on A as well. For this purpose, introducing the notati@) = A fy Qdv, and noting thatQ) = (Q),, the
sensitivity of Eq. (6) with respect tp may be stated as follows:

OEijer _ 0 /1 OAj, Kl i OAY
8;/ = 8Y< EPqTS >O - < 8’}1/7(1 EPQTS Frs ; + ijq EPZI’I‘S W ; (8)

kl _ vo)\kl’ Akl — -rle (9)

Additionally definingV, = /0y, andB = A1, one may write

such that the first of the two similar terms within Eq. (8) tsikiee following form:

0N OB g o [OAY
Pq kl _ mq ij kl P kl
< 8’}/ EPQTS Frs >O 8’}/ <Tpm EPQTS FTS =+ <5yq < a,y ) EPQTS Frs> (10)

The latter integral vanishes in view of Eq. (4) upon choosings OA” /dy. Analyzing the remaining term within
Eq. (8) in a similar manner and notitB /0y = —B(0A/dy)B, one obtains the sensitivity expression
TR O (53 (Al By TS + (T By AL B 1)

Similar to Eq. (7), this expression ensures an efficientiteits evaluation based oA*! alone. In this work, the
entirety ofA is subject to optimization, i.ey, coincides with its components. Because the homogeniziiiarework
does not account for the absolute size of the unit cell, itbélfound convenient to enford®| = |),| through the
isochoric deformation constraidtt.A = 1, the sensitivity of which can easily be evaluated throwgoi’'s formula
for optimization purposes.

The importance of the unit cell geometry is often overlogkad this had already been recognized in the pio-
neering study of Bensge and Kikuchi (1988). Despite thetfattthe present approach was developed independently,
a very recent review on topology optimization (Wu et al., 208ummarizes a limited number of works involving
some type of unit cell geometry relaxation and recognizessthdy by Barbarosie and Toader (2014) as the only
approach that allows full relaxation. The formulation inrBarosie and Toader (2014) overlaps with the approach
presented herein; although the sensitivity analysis, itlespaching the same expression, follows a different route
Because Barbarosie and Toader (2014) has been acknowlediyad a handful of studies and never invoked in any
of these to the best of the authors’ knowledge, it is antieigpdhat the alternative and significantly more compact
sensitivity analysis pursued above will be of interest. 8mer, such unrestricted unit cell geometry optimizatias h
not been applied in a three-dimensional setting, whichlvéltarried in the numerical investigations.

3. TUNABLE MICROSTRUCTURE DESIGN
3.1 Space-Time Topology

The tunable composite will be subject to topology optinmiaatt both temporal and spatial levels. Within a bimaterial
setting, the microstructure is described through two ei@gttensorsE(Y) andE(@. Following recent approaches
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(Ansari et al., 2018; Bou Matar et al., 2012; Palacios et2@122; Trainiti et al., 2019), tunability is introduced into
the design framework by endowing each material with thetghib respond to a time-dependent external stimulus
() (t). As in Ansari et al. (2018), Trainiti et al. (2019), afcan et al. (2020), instead of modeling the constitutive
relation to the stimulus, the time-dependence of d&¢H is explicitly invoked through a material-specific temporal
variablet(® (¢) € [0, 1] such that

B[] = B3 + (Bl — Bih) 70 (0) (12)
The variablet(® (¢) is associated with the temporal topology of the microstiect The spatial topology is now
introduced in a standard density-based setting througllditi@nal material variable(y) € [0, 1] such that

Elp,7,1?] = E® + (E® — EV) p"(y) (13)

wheren is a fixed parameter. In order to embed a scale into the spaevariations ofs and also to avoid possi-
ble discretization dependence that would hinder convemgefthe topology with discretization refinement ()
andp(y) are generally defined through the filtering of actual desipiablesk(*) (t) ands(y), respectively. There-
fore, the space—-time topology of the elasticity tensor il denoted through[s, ™V, k@], leading to a similar
parametrization of its macroscopic counterg@arWithin the numerical investigations, eaEh™ will be associated
with an isotropic response that is characterized by a YaungdulusE(®) and a Poisson’s ratie(®). The latter
will be fixed at a value of 0.3 for simplicity throughout thisovk. Instead of invoking the space—time formulation
of Egs. (12) and (13) throudk(®, they are now directly applied to the variable elastic prtps with the modulus
amplitudeA E(® and the limits

B _ E(® — AE®), E(®)

min ax

= E{™ + AE©®) (14)

It is highlighted that the temporal variatidiX®)(¢) at each point of the designed microstructure is completely
identified once the optimal(®) (t) is determined. At this point, the constitutive relationvoe¢nE(*) and the external
stimulus(®) may be inverted for each point in time to determine the playsiariation$(*(¢) that delivers the
desiredE(™ (). Thereforex(*) solely serves as an intermediate variable, which enabéegdghoupling of the exact
details of the constitutive relation from the optimizatioithe temporal variatiofs(*) (¢).

3.2 Discrete Optimization

The time optimization framework will aim to determine thenggoral topologyk(®)(t) so as to adapE to a time-
varying target response. The space optimization framewmwrkhe other hand, will introduce flexibility toward this
goal by seeking the spatial topologyy) in a suitable unit cell geometry that is defined throughwhich will
help accomplish this adaptation with minimal error. For given {s, kY, k(?; A}, I is determined via Eq. (6). Its
sensitivity with respect to any of the material design valgas andx(® is delivered through Eq. (7) while Eq. (11)
delivers its sensitivity with respect to the componentgiof

With respect to material design within a finite element framk, the microstructure is discretized witty,, x
N,, linear elements, elemert € {1,2,..., N2} being assigned a spatial material design variablec [0, 1].
Similarly, restricting the temporal variations to periodines in view of the targeted problems, the perioavill
be discretized withV; steps and each step is assigned a temporal material desigbleé:fl“) € [0,1] with n €
{1,2,...,N,}. Indicating the set of discrete material design variablis wandk(®), their filtered counterparts are
denoted ap and (™), respectively. In this work, the exponential erode filtevgSberg and Svard, 2013) will be
invoked for the spatial variables with= 3 in Eq. (13). A linear filter (Svanberg and Svard, 2013) isadle for the
temporal variables but these were found to require no filgefor the chosen temporal discretization. It is noted that,
in addition to enforcing the periodicity (Nkl(y, t) toward the solution of Eq. (3), filtering is carried out by erting
the periodicity of the operation with respect to the unit gebmetry.
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3.3 Optimization Problem

In this work, the optimization problem of interest focusestbe macroscopic constitutive response of the tunable
composite under periodic loading. Specifically, straiiva@ cyclic loading will be imposed on the unit cell with a
steady-state periodic loop of the form

2ri
€;(t) = m§ — af; sin ( e ) (15)
ij

wherem;; andas; are the mean and amplitude fox; with periodT’5. As a response to this loading, a stress response

is targeted in a similar form with cyclic functiatyc and a phasé;;:

2t
() = mf; + afj cyc (T—Z + el-j> (16)
ij

Because the means, amplitudes, and periods do not netesdlari the stress and strain to satisfy Eq. (1cEiis
constant, adaptation is necessary even without a phasey/ttage of loading with a given set of design variables,
the actual stress outpat = I[s, k1), k(?; A] € will not be able to perfectly track the target value and aomedy;;

is induced over a cycle for a single stress component. Thesesalefine the total tracking errdr over a period, as

follows:
1/2

t Tii(t) — 55 (1) \?
Ti/t (%) dt] e =Y 6y (17)

=15 i

$ij(t) =

The space—time topology optimization framework seeks tinmize this error. IrDzcan et al. (2020), this was
realized within a control theory framework based on tempaséations alone, whereas topology optimization will
be invoked presently. When only temporal material desigialtes are employed, the two approaches are similar but
not identical. In the control theory setting, the controtiegardst(® (¢) within Eq. (12) as a signal and attempts to
update it such that the tracking error is minimized. It isess@ry to start with initial conditions and move toward the
steady-state loading conditions that are representedghi@ ; (¢). As a consequence, a transient regime is observed.
Moreover, even after the macroscopic strain starts folgwthe steady-state loop, the controller requires multiple
periods beforer(®)(¢) variations converge to their steady-state variations fjatesent optimality with respect to
the controller setup. This optimality condition is basedtlo@ minimization of not®(¢) but rather the contribution
0;; —0;; to its integrand for eachandj.

In the present topology optimization framework, on the othend, it is sufficient to employ the tracking error
as the objective and attempt to minimize it. Because eadmigattion iteration is independent of time, the tracking
error is evaluated directly over a steady-state loadingpdesuch that is rendered independent of time, ie= 1,5

within Eq. (17). Since the conditions of optimality difféie converged(®)(t) signals will, in general, differ as well.
However, if there exist signals that rendgy; () exactly equal tas;;(t), then both approaches are able to capture
them such that their respective objectives vanish, to withe limitations of the controller setup or the temporal
design variable resolution. Such a case will be referredgtieealizable. Conversely, when such signals do not exist,
the targeted responsg); () is unrealizable and the two approaches will deliver indregig different converged
signals with an increasing degree of unrealizability. For anrealizable target response, the spatial materiagjdesi
variables, in combination with the geometry design vagapWill act as additional optimization degrees of freedom
that will enhance the ability of the present framework tdter reduce the tracking error. Hence, the overall topology
optimization problem may be stated as follows:

minimize ®[s, kX, k®:y], subjecttoy(s) =0 and {s; € [0,1],kY € [0,1], kP € [0,1]} (18)

where, in addition to the last set of inequality constraiatsequality constraint is imposed indirectly o through
p to enforce a target volume fractiqrf that is associated witli®: y = ({p) — p*)?/(p*)2. Enforcing additional
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constraints on the remaining design variables was not fagoéssary. Optimization was carried out based on the
method of moving asymptotes (Svanberg, 1987). For thisga@precalling Egs. (7) and (11), the sensitivitydof
with respect t&, € {s, kM, k(®: vy} may be stated as follows:

oby(t) 1 k Gij(t) —05;(t)\ OE;ju [ €nlt) od(t) 0dij;(t)
98 Gl /T< GHOR ) () e BT e

ij

]

4. NUMERICAL INVESTIGATIONS
4.1 Unit Cell Geometry Optimization

In a first step, pure unit cell geometry optimization is aagtrout to highlight its importance and determine appro-
priate limits on the optimization space regardiAgFor this purpose, two microstructures with square uniscake
constructed (Fig. 1), both withE®  E? p*} = {3.6 MPa 108 MPa0.45} but one having the phases oriented
along 0 deg (unrotated); whereas this angle is 20 deg anchibedll is oriented accordingly (rotated) for the second
microstructure. The macroscopic elasticity tensor fohezase is calculated and prescribed as a thEée/t/ithin the

objective function|E — E HZ/HE* H2 In order to assess the optimization quality, the remairimgr in the objective
function will be referenced through the percentage valualllexamples)V,,, = 40 is chosen for space optimization
(Section 3.2). For the unrotated case, optimization witlyg@@metry adaptation is sufficient and delivers the exjgecte
microstructure. However, the corresponding result forttated case is a typical output for a suboptimal microstruc
ture that cannot develop freely due to fixed geometry comgsidt is emphasized that the chosen exponential erode
filter for the spatial variables can induce sharper top@sgiith distinct phases in comparison to alternative ctspice
such as the linear filter. However, the results may also app@waparatively jagged and are more prone to devel-
oping isolated features. Presently, in all examples, thenigation results on a unit cell are presented without any
postprocessing. It is noted that, in all microstructureréguthree unit cells per direction are employed for clarity

In order to investigate the relaxation of the domain comstisgFig. 2), first, the off-diagonal componentsafare
fixed to zero and only the diagonal values are allowed to vatlyé rangéA—1, A]. Because off-diagonal components
will eventually also be allowed, which will enable rotatiohthe domainA = 1.7 was found to provide sufficient
flexibility. Presently, even this limited pure-stretch gestry adaptation enables optimal microstructure devetogm

@) (b)

FIG. 1: A microstructure and its 20 deg rotated version are showa)iriid (c). These are employed to generate target values
E". In all figures, the gray and green phases are assighdand E®, respectively. The optimization results on a fixed square
domain are shown in (b) for the unrotated case and (d) for Ghde® rotated case. Refer to the online version for color.

(b) (¢

@)

FIG. 2: Unit cell domain geometry optimization [(a) pure stretdh), jure rotation, and (c) full] is invoked for the targgt that
is associated with the rotated microstructure in Fig. 1(c)

\

°)
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along a diagonal that closely matches 20 deg. Alternatiymlye-rotation geometry adaptation may be allowed by
restraining the diagonal components to the rajty@é 1.0] and the off-diagonal ones fo-0.8,0.8], which offers
sufficient flexibility for rotation through at least 45 degigHer rotations are implicitly captured through symmetry
based on appropriate microstructure development. Onda,aba expected microstructure develops freely. Finally,
full freedom can be allowed ird where the diagonal component rangg¢ligl.7, 1.7] and the off-diagonal range is
[-0.8,0.8], also resulting in the optimal topology. The differenceshia three optimal microstructures additionally
highlight the nonunique choice of the unit cell.

For the preceding example, rotation naturally provideficgaht flexibility toward capturing the optimal design.
As an alternative scenario, Fig. 3 shows two microstrustusased on the same Young’s moduli as beforeggng
0.55, one with a square geometry and a second that is obtaimmadthe first through an isochoric linear map via
50% vertical stretch. When their elasticity tensors areqibed as targets within the optimization scheme, the fixed
square optimization domain successfully captures thedfimstout not the second, leaving isolated features that do not
disappear with iterations and thereby increasing the apaition error. When pure-stretch adaptation of the domain
is enabled, the error significantly diminishes and puratioh adaptation also delivers a comparable result (Fig. 4)
To maintain sufficient generality toward cases where it matybea priori clear as to which type of adaptation is
sufficient, full flexibility in A will be maintained in the remaining investigations. Preisethis option also delivers
a successful output, once again demonstrating the nonemégs in the choice of the unit cell.

It is highlighted that the objective error already decreasethe range of 10-20% even for the suboptimal mi-
crostructures of these examples, i.e., optimization dediacceptable topologies. However, this value is an order o
magnitude smaller at 1-3% when geometry optimization ibkeaband can vanish at higher discretizations, thereby
delivering better topologies not only qualitatively bus@lquantitatively. The advantage of geometry optimization
lies in its ability to operate on a primitive unit cell. Rekion of the topology development, which is reflected laygel
as a boundary effect, may alternatively be realized by epipdpincreasingly larger supercells such that sufficient
relaxation is attained internally (Cakal et al., 2019)wdwer, this is a comparatively inefficient approach becidtuse
leads to considerably higher computational cost due tattreasing number of degrees of freedom for both the finite
element calculations and the optimization step. In all sghent examples, space optimization will include unit cell
geometry optimization in addition to topology optimizatiwithin the adapted unit cell domain.

Finally, three-dimensional examples are provided in Figo&sed on the same Young’s moduli as before and
p* = 0.51. In these exampled/,, = 30 is employed as the spatial resolution in view of the comfpaely high

@) (b) © (d)

FIG. 3: A microstructure and its 50% stretched version are showa)iraid (c). These are employed to generate target values
E". The optimization results on a fixed square domain are shoyin)ifor the unstreched case and (d) for the 50% streched case
respectively. The percentage values refer to the verticetich associated with the isochoric linear map.

(@) (b) ©

FIG. 4: Unit cell domain geometry optimization [(a) pure stretdh), jure rotation, and (c) full] is invoked for the targgt that
is associated with the stretched microstructure in Fig. 3(c
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@) (b) © (d) (e)

FIG.5: Atarget microstructureA = I') and its rotated versior4 = A,) are shown in (a) and (c). The corresponding optimiza-
tion results on a fixed cubic domain are shown in (b) and (dpeetively. The result in (e) additionally invokes unrieséd unit
cell geometry optimization for the target in (c). The edgkthe fixed cubic domains define the coordinate system withegtsto
which remaining orientations may be assessed.

computational cost. When an untransformedd £ I) microstructure is targeted, optimization on a fixed culie d
main satisfactorily reconstructs the same topology witl8% error in the objective. Subsequently, a transformed
target microstructure is described throudh = A3z A, A1, whereA, represents rotation about tygaxis through

20 deg. When optimization is carried out on a fixed cubic doman oriented microstructure attempts to develop
unsatisfactorily with a resulting objective error 5f13%. On the other hand, by allowing for unrestricted unit cel
geometry optimization with the earlier noted limits on thndries of A, a satisfactory topology development is once
again observed with a corresponding objective errcr @%.

4.2 Space—Time Topology Optimization

In order to demonstrate the advantages of combined spatetdpology optimization for tunable microstructures,
only time optimization is first carried out on a prescribectrstructure. Because the stress—strain ratio governs
modulus tuning over time, the macroscopic strain variatiofeq. (15) will be fixed to the parameter set, as
follows:
Pe:{m;, a;, T} = {0.0350.01, 7, } (20)

This set will be employed only for the active components @ind always withl,, = 1.8 s (undenoted components
are inactive and zero). The macroscopic stress variatioth® other hand, will be varied among the examples to
explore the capabilities and limits of optimization. Oriyetindicated stress components will be incorporated irgo th
tracking error, Eq. (17). Presentl§;; will be active andoy; in Eq. (16) is targeted with the parameter 8¢}, as
follows:

Pens: {cyc, miy, aty, T11, 011} = {cos,0.8 MPg 0.16 MPa T, 0} (21)

Only the second phase of the microstructure is tunable baisdey. (14) parameters and the volume fraction
{ED, E(()Z), p*} = {3.6 MPa 108 MPa0.45}. The stress in tunable materials can easily be varied bygdétgent
(Jackson et al., 2018; Li et al., 2014; Shan et al., 2015; gleral., 2018). Therefore, the amplitude of the variable
modulus will always be set tA B(%) = E§2>/2 for simplicity without loss of generality in view of the gin flexibility
in choosinga™ (). The number of time steps in time optimization will be choasV; = 18 (Section 3.2), delivering
atime step size of 0.1 s.

Figure 6 displays the prescribed target elliptic path in the macroscopic stress—strain space along with the
actual response; ; that the chosen microstructure delivers through the aokapfi the microscopic modulug(® (t)
viat®. In all temporal adaption figures, three periods are pldtiedlarity. Clearly, the target macroscopic response
is realizable with the given microscopic input. On the ott@nd, an alternative target path is prescribed in Fig. 7 via
the parameter sy, wheretri stands for a distorted triangular pattern:

Py : {cye,mi;,a;, Ti5, 045} = {tri,1.0MPa 0.5 MPa 1.8 —7/2} (22)
The peak of this variation is set &t /5, with T,, /2 corresponding to a perfect triangular pattern. This tgpgéh is
observed to be unrealizable becag@ () saturates to its maximum val (2 at portions of a period, inducing
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FIG. 6: Time optimization is carried out for a realizable target neacopic stress—strain path [(a) macroscopic path, (lh)cefij
and (c) microscopic modulus], with a prescribed microgtrtes In all temporal adaptation figures, three periods &ottqul for

clarity. In all macroscopic paths, the relevant strain cormgnt variation will follow Eq. (20). Presently, the targétess variation
follows Eq. (21).
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FIG. 7: Time optimization is carried out for an unrealizable tangeicroscopic stress—strain path [(a) macroscopic pathinib)
cell, and (c) microscopic adaptation], with the prescribgdrostructure of Fig. 6. Here, the target macroscopicsstrariation
follows Eq. (22).

similar maximum saturation i, yet this is not sufficient for successful tracking of thegurébed path@zcan et al.,
2020).

Although further flexibility can be assigned to the micrasture by settingEr(f%x to a larger value, arbitrary
flexibility in microscopic tunability may not be physicalpossible. Moreover, the appropriate choice of the limits
depends on the target path and can always be insufficiehératirough the maximum or minimum limit. Instead,
Fig. 8 demonstrates that combined space—time optimizatorrealize the target path almost perfectly by adapting
the microstructure topology and the unit cell domain withvinich this topology resides, without altering the phys-
ical properties. This highlights the additional flexihjlibf space—time topology optimization. Note that the spatia
topology is time independent—it is optimized only to pravithe optimal freedom for the development of the tem-
poral topology.

The number of time steps chosen in time optimization doednilience the objective function significantly,
because the objective can be driven toward zero wheneveatbet is realizable, which only requires a nearly
vanishing error at each sampling point in time. However,rthmber of time steps does affect the visual quality of
optimization. To demonstrate its influence, the analysigigf 8 is repeated by decreasing the number of time steps
from its default value ofV; = 18 to N; = 9. Despite the fact that this choice also delivers a satsfpoutcome,
the visual quality is slightly inferior to the default chei¢Fig. 9). On the other hand, the results with a higher time
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FIG. 8: Space—time optimization is carried out for the target ms@wopic stress—strain path of Fig. 7: (a) macroscopic phjh, (
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FIG. 9: The analysis in Fig. 8 is repeated by decreasing the numbenefsteps from its default value &f; = 18 to Ny = 9:
(a) macroscopic path, (b) unit cell, and (c) microscopigpalion

resolution atNV, = 27 (not shown) are virtually identical to the results in Fgg.For all three cases, the objective
error was< 1%. Considering that the optimization time scales lineaity NV;, these observations justify the default
choice as a time resolution, which delivers a satisfactisyal optimization quality at an acceptable computational
cost.

4.3 Multiple Stress Targets

If only one microscopic phase is tunable and a single maopis@ath is targeted, this is highly achievable to
within the limits of realizability. When perfect tracking bbtained, e.g., vi&(? (¢) in the€;,— 611 space as in the
preceding examples, the variation of the remaining maoisstress components are automatically induced through
the relationa (t) = E(t)€(t). Therefore, to have a thus far unmonitored macroscopisstemponent to follow a
target path that differs from this induced response can iregg only be achieved by sacrificing from the quality
with which the original objective has been optimized. Intsgases, an increasing number of microscopic tuning
degrees of freedom enhances the number of macroscopis-sttesn paths that can be successfully tracked. In order
to demonstrate this feature, biaxial deformation is apptie a unit cell viae;; ande,, components, both varying
according to Eq. (20) as noted earlier, with all other stcmimponents set to zero. The target®gp is based on the
sinusoidal variation [Eq. (21)] with updated values. Ndi&t this variation effectively differs from the strain \ation

[Eg. (20)] through a phase, thereby causing a closed I6ap4n et al., 2020). Faf,;, a doubly oscillatory sinusoidal
target signal is chosen, which also differs through itsqukrthereby causing the macroscopic stress—strain loop to
cross itself, as follows:
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Péos : {eye,mPy, ady, Tiy, 011} = {sin, 1.4 MPa 0.14 MPaT,/2,0} (23)

Both phases are active based on the param@léf&?, E((;Z), p*} = {18 MPa108 MPa0.5}, with AE(®) =

Eé“)/z as the default choice. The result of the space—time opioiz is summarized in Fig. 10. Because only one

of the target stresses have a period that is half of the spheiiod, it would not be possible to achieve successful

tracking of both paths unless both phases are tunable. igidighted that the macroscopic stress variations are
always described with respect to time—the paths with regpetbe corresponding strain components are displayed
as a graphical assessment of the optimization quality.

The target paths are not limited to normal stresses. As amgbeac>, is set according to Eq. (23) whilg},
follows Eg. (22). Figure 11 summarizes the successful sgame optimization result. It is noted that the presence of
two tunable phases does not guarantee that two arbitramos@apic stress—strain paths can be tracked successfully.

Multiple stress targets are additionally employed withitheee-dimensional setting in Figs. 12 and 13, where
N,, = 30 is employed again. For the microstructure in Fig. 13(ajedime optimization is first carried out based
on realizable target paths that are described through tearsdiress components. The results in Fig. 12(a) indicate
successful optimization, but the oscillations in one ofslgmals also point to a possible need to employ filtering of
the temporal design variables as an exception to the chdimeted in this work, cf. Section 3.2. Subsequently, the
target paths are modified in Fig. 12(b) such that pure timeropation on the same fixed microstructure is no longer
sufficient for successful tracking. However, when combisigace—time optimization is involved, the same targets can
be successfully attained in Fig. 12(c) with the correspoegdiicrostructure in Fig. 13(b), which has formed within a
domain geometry that is significantly rotated and stretaki#il respect to the original cubic one.
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FIG. 10: Space—time optimization is carried out toward the sim@tars realization of the depicted target normal stress p@hs
macroscopic path — normal 1, (b) macroscopic path — norn{a) 2init cell, and (d) microscopic adaptation. Similar te fhases

in the microstructure, the lines are associated t® (¢) and £ (t), respectively. Hereg;; is described via Eq. (23) whereas
75, follows Eq. (21) with updated valugsns,, a5,} = {2.0 MPa 0.2 MPa}. Refer to the online version for color.
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FIG. 11: Space-time optimization is carried out under a combinaifarormal and shear target stresses: (a) macroscopic path —
normal, (b) macroscopic path —shear, (c) unit cell, and (d)ascopic adaptation. Here3, is described via Eq. (23), with updated
values{msy,, a3,} = {1.6 MPa 0.16 MPg while 57, follows Eq. (22) with the value$m?,, af,} = {0.3 MPg 0.03 MPg.

4.4 Unrealizable Cases

The purpose of this section is to discuss possible detdidoran optimization quality when the number of target
stresses exceeds the number of tunable phases, as alluideSdotion 4.3. As a particular example, the setting of
Fig. 10 is revisited with one difference;, now also varies according to the default parameter set Eq],(which
induces a new unit cell loading. As a consequence, even Whgis not monitored as a target within Eq. (17),
the optimization result must differ from Fig. 10 whegg, = 0, which is observed in Figs. 14(a) and 15(a). Within
Fig. 14(a), the unmonitored induced shear strefs&t) is also displayed. If optimization was carried out whileitak
into account this variation as a target, the problem rentsivially realizable and the same result is obtained.

If 57, is modified to away from the induced respomge(t), for instance through a shiftmy, of the mean, then
the mismatch betweesy, = Am{, + 69,(t) andcy,(¢) will force optimization to seek an alternative optimum. §hi
is summarized in Figs. 14(b) and 15(b). Clearly, althoughdignals have not saturated and hence the performance
is not restricted by the elastic moduli limits, the optintiaa problem is not realizable, i.e., it is not possible to
track all three target macroscopic stress variations pyfevith two tunable microscopic phases. In this particula
case, the degree of unrealizability can be controlled tindbe amount of shift ofAm7, and will serve as a testbed
to compare the space—time optimization approach with tidrabapproach in Section 4.5. Introducing more than
two tunable phases may increase the flexibility of the apgiréa decrease the optimization error or even render the
problem realizable. However, this requires a multi-maledpology optimization framework that is beyond the scope
of the present study. In any case, the significant advantbggace—time optimization is additionally demonstrated
in Fig. 14(c), where it is observed that time optimizatioors, based on the initial microstructure from Fig. 15(a),
delivers a response that remains comparatively inferiargignificant extent.
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FIG. 12: Three-dimensional optimization results are summarizéth the corresponding microstructures in Fig. 13. Cases (a)
and (b) correspond to pure time optimization, the lattereaping unrealizable due to a fixed microstructure. Combapete—
time topology optimization in case (c) demonstrates thatiéinget paths are in fact realizable. For case (a), botett@aths are
described through Eqg. (21) except that the amplitude isos@tG8. For cases (b) and (c), the first path is again similén thie
mean reduced to 0.6 and the amplitude to 0.06. The secondqtiatis Eq. (22) with the mean and amplitude chosen as for (a)

4.5 Control Approach to Optimization in Time

The space—time topology optimization framework delivergptimal microstructure for a target macroscopic stress—
strain path. The practical implementation of a materiahwhis tunable microstructure requires a control framework
(Ogata and Yang, 2002), where an actuator applies defaymédi the material to induce a desired strain and the
microstructure is continuously tuned such that the streste shat is measured by the sensor follows the desired
variation, essentially corresponding to time optimizatida the tuning signals(® (¢). In an ideal setting, an open-
loop control implementation may be pursued where the mirosire follows the tuning path vie® (¢), which is
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(b)

FIG. 13: The microstructure in (a) fixed unit cell, is employed in caga) and (b) of Fig. 12 as a prescribed input. The
microstructure in (b) optimized unit cell, where the grayapé is nearly uniform along the vertical direction, is oftai
through combined space—time optimization that is assetiatith case (¢) of Fig. 12. Both microstructures are based on

(EY EP p*} = {18 MPa 108 MP30.7}.

determined through the present framework in order to traeartacroscopic path successfully. In practice, however,
deviations from this ideal path are expected due to reald#fpects of implementation, such as delay in sensing and
actuation. As a consequena€’ (t) must be updated on the fly accordingly in order to ensure nahiracking error.

The practical realization of this update crucially reliesaoclosed-loop feedback control framework. Pure time opti-
mization, as in the example of Fig. 6, cannot be employedussxa deviation (such as delay) is not knaaypriori.

In this section, the implementation of time optimizationailngh such a control structure and its performance in the
presence of common practical application issues will bg feefly discussed. Although a control approach is moti-
vated by practical considerations, the focus will be on theed-loop feedback structure without important prattica
ingredients, such as actuator models or controller comeation delays [se®zcan et al. (2020), for examples].

The feedback controller employed in the present implentiamtas a multiple-input—multiple output repetitive
controller operated to regulate the behavior of the tunataiterial model (Fig. 16). The repetitive controller stuuret
is an algorithm developed based on the internal model miec¢Francis and Wonham, 1975). It aims to achieve
a zero steady-state error by repeating the input charatitsrthrough a specific structure with a time delay inside
the control algorithm. It produces superior steady-stater @erformance for systems with fixed periodic reference
inputs and is easy to implement in realistic applicationaif@g/et al., 2009). The structure employed in this work is
based on Hara et al. (1988) and adapted toward the smart sitmpmaterial system. This structure was chosen as
the control method for(® in Ozcan et al. (2020). Presently, it will be employed to furthgsess the optimality of
the present framework with respect to the temporal dimeng\dditionally, the efficiency of this approach will be
further improved through a database approach to homoganiza

In Fig. 16,C(S) represents the unified control algorithm. It consists of @pprtional gain controller with a
multiplicative constantP, and a repetitive block structure. The repetitive blockature utilizes the one-period delay
error value (calculated using the transport delay elemerit) with the current value of the error signal to eliminate
the steady-state error for repeating input signals. Ateegcle, the controller takes the value of tH&) signals from
the cycle before and updates the controller output caledlasing the current error signal. The repetitive control
structure gives the control system a simple but effectiyesiithg ability since it utilizes the repeating informatit
has acquired from the earlier cycles.

A critical ingredient of the controller is an inverse maé¢rnodel algorithm that generates a rapid and computa-
tionally efficient signal compensation for the controllgput so that the transient properties of the feedback clbertro
are improved. Specifically, in order to simulate the resparishe smart material for controller development and vali-
dation purposes, the cell problem [Eq. (3)] needs to be daltevery time step, similar to the pure time optimization
setting of Fig. 6. This computationally expensive procesy slow down the controller development and validation
for rapid deployment and maintenance. In order to overcdrizedomputational load, a material model has been
developed through a temporal database—essentially apaakile that contains the solutions of the cell problem and
the resulting components & in the TV —t(? space with a resolution of 0.025 along each axis. When thiedgun
signalst(® fall within data points of the lookup table, bilinear intetation is employed. Although the details will
not be provided, this approach also facilitates the dewvatog of the inverse material model that is needed for the
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FIG. 14: In case (a), the space—time optimization is carried outHerdetting of Fig. 10 by additionally settirg, to vary
according to Eq. (20) and setting the target@as as the induced respongg,(t). In case (b), this target is modified through a
change of mean &8, = Am7, + G%,(t), which renders the problem unrealizable. The correspansfiace—time topologies are
summarized in Fig. 15. In case (c), only time optimizatiocdsried out for the target of case (b) based on the initiatositucture
from case (a).

controller, essentially to predict the amount of updateh® tining signals that are needed in order to derive the
tracking error to a minimum.
In order to demonstrate the control algorithm, the examplei@. 6 is now revisited in Fig. 17 with the same
microstructure. Unlike the earlier topology optimizatiwamework, the control approach delivers a variation that i
updated through each period toward the target macroscwpgssstrain path. After less than ten periods, the trackin
error already decreases significantly and continues to toaitally decrease toward a perfect match of the actual
and target paths. Whenever the target is realizable, theat@tgorithm systematically diminishes the error. Inerd
to analyze its performance in an unrealizable setting, aen@le of Section 4.4 is revisited where the macroscopic

International Journal for Multiscale Computational Engineering



Homogenization-Based Space-Time Topology Optimizatiofumable Microstructures 31

microscopic adaptation unit cell unit cell microscopic jaiddion

1 1
.08 b - 0.8
Fl 5
2 06 — £ o6l
< =
Y/ / /
5’; 04f :Ef o4lf
2 02 ] S oaf
g g
& 0 1 & or

— @ () —® (1)
0 ().‘5 \‘ ]‘5 é Z‘,S 3 0 (i‘j ; I.‘S 5 25 3
Time, t/T, [-] Time, t/T, [-]

@ (b)

FIG. 15: Space-time topologies corresponding to cases (a) and fyof4 are summarized

L

1

Inverse '
. 1
Material i
1

1

Model > 'm
—v—>‘ n

Q|

Material
Model

b
g

2)

.................

€

FIG. 16: Proposed system for controlling the tuning signaf¥

shear stress target is altered through a mean shift, plgsboten ag\m7, = 0.05«, whereox will control the degree
of unrealizability. The tracking error for varying degréesummarized in Fig. 18.

When = 0, the realizable setting of Fig. 14 is recovered and zercking error can be achieved for all
approaches. As the degree of unrealizability is incregaae time optimization on the fixed microstructure that was
obtained atx = 0 delivers a monotonically increasing error. Minimizatafrihe tracking error has not been embedded
into the design of the control algorithm as an objectivedtiye Therefore, it delivers a time adaptation that remains
slightly inferior with respect to time optimization. Netkeeless, because the controller attempts to minimize the
pointwise error in the macroscopic stress over the perfarésults from the two approaches remain close. From a
practical perspective, this indicates that the perforreaitained through the controller in the implementatiorhef t
tunable microstructure will remain close to optimal. Fipathe remarkably lower error associated with combined
space—time topology optimization is additionally disgdy Such an error curve could conceivably be followed by
a microstructure where not only the constitutive paransdbeit also the spatial topology can be adapted over time.
Such spatial topology adaptation appears to have beenreghfimsible very recently for surfaces (Visschers et al.,
2021) but continues to remain challenging for materials.

5. CONCLUSION

Smart materials respond to external stimuli such as theamdlmagnetic fields in a continuous and controllable
manner, resulting in an observable change in their mechhr@sponse. The microstructure of such materials plays a
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FIG. 17: The controller performance is demonstrated for the timéndpation example of Fig. 6. Here, the initial value of the

tunable modulus is prescribed as the mean val{fé(0) = E? . The notatior()® highlights the response through the 15th cycle
for comparison with the earlier time optimization resudt) (nacroscopic path, (b) macroscopic stress, (c) microseajaptation,
and (d) tracking error.
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FIG. 18: The adaptation performance of the three different appmeauthercy, = Am?, + 57,(¢) is employed withAm?, =
0.05x in the setting of Fig. 14

fundamental role in delivering the desired level and natdiraacroscopic tunability. Earlier studies have investga
the link between the microstructural geometry and the nsmepic tunability in experimental and numerical settings.
In the present work, a topology optimization framework iseleped in order to design the microstructure so as to
offer maximum flexibility in tuning in order to attain the desd macroscopic time-dependent response. This frame-
work treats temporal design variables that are associaiifdtine external stimuli and spatial design variables that
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associated with the microscopic material distribution nrequal footing. The incorporation of the geometry within
which the material distribution is sought into the desiganfework endows further flexibility toward minimizing the
optimization error.

A range of numerical investigations have demonstrated ititality of the approach to capture an optimal design
for both realizable as well as unrealizable target cyclithpan the stress—strain space. The overall methodology
constitutes a viable design framework for extension alomgirmber of directions. It is conceivable that the degree
of unrealizability depends on the number of tunable miappge constituents, which can be investigated within a
multimaterial optimization framework. Additionally, a mel for the constitutive link between the external stimuli
and the tuning response can help assess the limits and dymaftunability in realistic scenarios.

Finally, a degree of programmability in the microscopicmetry can be incorporated into the design framework
in addition to stimulus-sensitive phases for improved &atign to time-dependent demands. Such extensions will
contribute to the efforts toward the design and analysisradrs materials, which can successfully attain objectives
where traditional materials fail to perform optimally.
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