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Abstract—Visual analysis of relational information is vital inmost real-life analytics applications. Automatic layout is a key requirement for

effective visual display of such information. This article introduces a new layout algorithm named fCoSE for compound graphs showing

varying levels of groupings or abstractionswith support for user-specified placement constraints. fCoSE builds on a previous compound

spring embedder layout algorithm andmakes use of the spectral graph drawing technique for producing a quick draft layout, followed by

phaseswhere constraints are enforced and compound structures are properly shownwhile polishing the layout with respect to commonly

accepted graph layout criteria. Experimental evaluation verifies that fCoSE produces quality layouts and is fast enough for interactive

applicationswith small tomedium-sized graphs by combining the speed of spectral graph drawing techniquewith the quality of force-

directed layout algorithmswhile satisfying specified constraints and properly displaying compound structures. An implementation of fCoSE

along with documentation and a demo page is freely available onGitHub at https://github.com/iVis-at-Bilkent/cytoscape.js-fcose.

Index Terms—Information visualization, graph layout, visual analytics, compound graphs, constrained layout, spectral graph drawing

Ç

1 INTRODUCTION

NOWADAYS, data is being accumulated at an extraordi-
nary speed. Analyzing such data, including relational

ones, is an important prerequisite to making informed deci-
sions in all kinds of businesses. Making use of visualization
makes analysis easier for human beings as it brings out
broad relationships, patterns, and emerging trends, provid-
ing deeper insight.

A commonly used visual representation of relational
data is graphs or networks. When visualizing relational infor-
mation via graphs, a good layout of objects and links is cru-
cial since a poor one will confuse the user and a typical user
will spend up to 25 percent of their time on manual layout
adjustments [1]. Hence, a good automatic layout operation
is an indispensable part of graph visualization-based analy-
sis software.

Normally, a layout algorithm is completely free in plac-
ing nodes and routing edges to optimize metrics such as
number of edge-edge crossings, total area, and maximal dis-
play of symmetries. However, oftentimes, an application
will have some domain-specific constraints on the place-
ment of individual nodes or require alignment or relative
placement of a group of nodes (Fig. 1). Such constraints are
input to the particular layout algorithm along with the
topology of the graph.

The notion of compound graphs [4] has been in wide use to
represent complex relationships or varying levels of abstrac-
tions in data. Even though the automatic layout of simple

graphs without constraints is a well-studied problem [5],
work on compound graphs or graphs with specified con-
straints has been very limited [4], [6], [7].

This paper introduces fCoSE (a fast Compound Spring
Embedder), a new automatic layout algorithm for com-
pound graphs with support for a fairly rich set of con-
straint types. fCoSE combines the best of two worlds:
speed of spectral drawing techniques [8] and quality of force-
directed layout [9] algorithms, while properly addressing input
constraints, exhibiting compound structures, and accounting
for non-uniformnode dimensions.

Experimental results comply with the theoretical analysis
of the run time efficiency of fCoSE, achieving an average of
2x speedup over CoSE [4] and even more over CoLa [6], fast
enough for small to medium-sized graphs for use in interac-
tive graph visualization components. fCoSE meets the
expectations in terms of quality metrics as well, comparing
fairly well with those of previous algorithms.

2 BASICS

A graph (aka network) is a commonly used representation for a
discrete set of objects, called nodes, related to each other
through links, called edges. Basics of graphs can be found in
the supplementary material, which can be found on the
Computer Society Digital Library at http://doi.ieeecomputer
society.org/TVCG.2021.3095303.

A compound graph G ¼ ðV;E; F Þ consists of a set of nodes
V , a set of (adjacency) edges E, and a set of inclusion edges
F [10]. The inclusion graph T ¼ ðV; F Þ is a rooted tree,
defined on nodes V and inclusion edges F , where no adja-
cency edge is allowed to connect a node to one of its
descendants or ancestors (Fig. 2). For ðu; vÞ 2 F , we say u is
a parent node of v, and v is in the child graph or subgraph
nested within compound node u. A dedicated subgraph that
contains all nodes u such that ðu; vÞ 2 F and u is not in any
child graph is called the root graph. We call adjacency edges
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fu; vg 2 E intra-graph when both u and v are in the root
graph or the same child graph, inter-graph when end nodes
belong to different subgraphs. Compound nodes are used
in representing varying levels of groupings or abstractions
in data with a particular use in complexity management
through expand-collapse operations [11]. Notice that a com-
pound graph differs from its variants like hierarchically
clustered graphs in that it admits edges to its compound
nodes.

A drawing of a graph is simply a function that maps each
node to a distinct point in 2D space and each edge to a Jor-
dan arc in the same space, with endpoints corresponding to
the locations of the respective end nodes of the edge [5].
Within the scope of this work, we assume nodes to have a
rectangular geometry. It is widely accepted that a good lay-
out algorithm takes possibly non-uniform dimensions of
the nodes into account in producing a layout, where node-
node overlaps are avoided, edge-edge crossings and the
total area is minimized, and edge lengths are as uniform as
possible. It is eminent that a child node is drawn within its
parent compound node’s bounds. When a user is relatively
happy with a previously established layout of the graph but
wants to “tidy it up” for any incremental changes, an incre-
mental layout is applied with the purpose to maintain the
user’s “mental map”.

Perhaps themost popular approach to automatic graph lay-
out is the so-called force-directed approach [12], where the
main idea is to simulate a system under the laws of physics.
The CoSE algorithm [4] extends the force-directed model of
Fruchterman & Reingold [13] to support compound nodes.
Spectral layout algorithms are linear algebraic approaches to
graph layout that are based on spectral decomposition of the
graph-related matrices [8]. These algorithms generally use
Laplacian or graph-theoretical distance matrices [14]. Of par-
ticular interest is the Classical Multidimensional Scaling
(CMDS) method [15]. Work by Civril et al. [16] suggest a sam-
pling-based approximation approach to reduce the time com-
plexity to linear time in the number of nodes and edges.
Another approach to fast graph layout is the so-called multi-
level force-directed technique, where the graph is recursively
clustered until a trivial one is obtained. Then, starting with the
coarsest graph an incremental layout is calculated and
extended to other graphs until the original graph is obtained

[17]. Althoughmultilevel algorithms are not as fast as the spec-
tral layout algorithms, they produce better quality layouts.
Further details of these graph layout approachesmay be found
in the supplementarymaterial, available online.

3 RELATED WORK

There has been limitedwork done on compound graph layout
with varying weakness accompanying poor run time com-
plexity. Most such work [18], [19], [20] focus on directed hier-
archical graphs with compound structures, where edge
directions enforce a hierarchy, generally failing to produce
good quality layouts on undirected graphs. Work specifically
done on undirected graphs [21], [22] use a top-down or bot-
tom-up approach on the inclusion tree to lay out compound
graphs yielding long inter-graph edges, while some others
either support only one level of nesting [23], [24] or do not
allow edges to directly connect to compound nodes [25].

The CoSE algorithm [4], however, provides full-support
for compound structures, but with a mediocre run time per-
formance. Even though its inherent cubic run time complex-
ity Oðk � ðjV j2 þ jEjÞÞ can be reduced to Oðk � ðjV j þ jEjÞÞ by
using the grid variant method in [13], where k is the number
of iterations estimated to be OðjV jÞ, this is still not satisfac-
tory for interactive use except for small graphs.

Spectral layout algorithms, on the other hand, are well
known for their speed but do not support compound
structures and often fail to produce refined drawings [8],
[16]. For instance, two nodes with the same graph-theoret-
ical distance to all remaining nodes will be positioned at
the same location. Furthermore, these techniques do not
support non-uniform node dimensions, which is widely
used in real-life drawings, often yielding node-node
overlaps.

Most layout algorithms including CoSE aim for good qual-
ity in one or more of the general graph drawing criteria (i.e.,
soft constraints) through different types of heuristics employed
with varying success. Some recent studies such as [7], [26], [27]
explicity target and strive to optimize some of such criteria.
The integration of user-specified hard constraints (or simply
constraints) to automatic graph layout, where the consraints
are expected to be fully satisfied unless conflicting, was first
introduced in [28], where B€ohringer & Paulisch modified the
layered drawing algorithm of Sugiyama et al. [29] to support
some constraints on the positioning of the nodes. He & Mar-
riot [30] extend Kamada-Kawai stress model [31] to support
separation constraints by using quadratic programming tech-
niques; however, due to inefficient solvers, their algorithm
does not scale well to larger graphs. Ryall et al. [32], Wang &
Miyamoto [23] and Didimo et al. [33] modify the force-

Fig. 1. (top) Part of a dependency graph of a javascript project where
each dependency file is positioned to the right of the dependent to form
a hierarchy, while dependencies at the same level are aligned verti-
cally [2] (bottom) part of a wireless sensor network where anchor nodes
have fixed positions while the other nodes are positioned freely using
measured inter-sensor distances [3].

Fig. 2. An example compound graph G ¼ ðV ¼ fa; b; d; e; c1; c2g, E ¼
ffa; bg; fb; dg; fd; egg, F ¼ fðc1; aÞ; ðc1; bÞ; ðc1; dÞ; ðc2; eÞ; ðc1; c2ÞgÞ, con-
taining two compound nodes c1 and c2 and a single inter-graph edge
fd; eg and its inclusion tree.
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directed model to move nodes towards locations satisfying
the constraints.

Algorithm 1. The fCoSE Algorithm

function RunLayout(G;Cf ; Ca; Cr)
ApplySpectral(G)
if jCf j > 1 then ⊳ use fixed nodes
xformMatrix CalcXformFixed(G;Cf )
ApplyXform(G; xformMatrix)

else if jCf j � 1 and jCaj > 0 then ⊳ use alignment
xformMatrix CalcXformAlignment(G;Ca)
ApplyXform(G; xformMatrix)
if jCrj > 0 then
ApplyMajorityReflection(G;Cr)

else if jCf j � 1 and jCaj ¼ 0 and jCrj > 0 then
⊳ use relative placement

construct dagsDh andDv from Cr

D Dh [Dv

Ci ¼ ðVi; EiÞ  largest component inD
if jVij < jV ðDÞ=2j then
ApplyMajorityReflection(G;Cr)

else
xformMatrix CalcXformRelative(G;Ci)
ApplyXform(G; xformMatrix)

if jCf j > 0 then
EnforceConstraintsFixed(G;Cf )

if jCaj > 0 then
EnforceConstraintsAlignment(G;Cf ; Ca)

if jCrj > 0 then
EnforceConstraintsRelative(G;Cf ; Ca; Cr)

totIter 0
while totIter < maxIter or !Converged() do
totIter totIterþ 1
UpdateBounds() ⊳ resize compounds
CalcForces()
CalcDisplacements()
if jCf [ Ca [ Crj > 0 then
AdjustDisplacements()

MoveNodes()

Maybe the most popular constrained layout algorithm in
the literature is CoLa, a result of a series of studies [6], [34],
[35]. The main idea is to use a gradient-projection algorithm,
where nodes are first moved based on a descent vector, and
then constrained nodes are projected to satisfy constraints in
each iteration of either stress majorization or force-directed
model. Even though CoLa supports a wide range of con-
straints, it deeply suffers from a high computational cost.
Besides, its support for compound structures along with an
option to avoid node-node overlaps via constraints requires a
quadratic number of constraints to be defined on the nodes,
further increasing its computational cost, making it impracti-
cal for graphs with more than a few hundred nodes. A recent
study byWang et al. [7] reformulates the mathematical model
of stress majorization to support a wider range of constraints

than CoLa supports, obtaining a faster implementation by
using theGPU.However, their algorithmhas comparable effi-
ciency with CoLa with a CPU implementation. In summary,
there is a need for a layout algorithm that supports compound
graphs, non-uniform node dimensions, and user-specified
constraints (on top of the soft ones addressed by fCoSE’s base
method) simultaneously, running fast enough for small to
medium-sized graphs.

4 ALGORITHM

Motivated by the lack of a fast constrained layout algorithm
for compound graphs as set forth earlier, we now introduce
fCoSE that supports three generic constraint types com-
monly used for the layout of real-life graphs:

- Fixed node constraint: The user may provide exact
desired (aka anchor) positions for a set of nodes called fixed
nodes. We denote a node a with a fixed node constraint at a
location ðx; yÞ as “ay½x; y�”. The algorithm is to produce a
layout with the fixed node a located exactly at ðx; yÞ.

- Alignment constraint: This constraint aims to align the
centers of two or more nodes vertically or horizontally. We
denote nodes a; b; c aligned horizontally as “a� b� c”. Simi-
larly, when the same nodes are vertically aligned, we use
“a j b j c”. There can be an arbitrary number of alignment
constraints in each direction, and a node can be a part of
both a vertical and a horizontal alignment constraint. We
assume, however, that when a node is involved in an align-
ment constraint in a certain direction, all its aligned nodes
are gathered into and expressed as a single constraint (e.g.,
“a� b� c” as opposed to “a� b” and “b� c” as two sepa-
rate constraints). Note that both of these relations are transi-
tive and reflexive.

- Relative placement constraint: The user may constrain the
position of a node relative to another node in either vertical or
horizontal direction in the form of “node awill be to the left of
(above) node b by at least x > 0 units” denoted as “a < ½x� b”
(“a ^½x� b”). When x is not specified, we assume a default
minimum separation amount between involved nodes. Note
that both of these relations are transitive and irreflexive.
Clearly, the use of ”right of” and ”below” are redundant.

We assume the user does not specify any conflicting con-
straints (e.g., a < b and b < a). We also note that con-
straints can only include simple nodes and a node can get
involved in more than one constraint of possibly different
types.

The fCoSE algorithm running on a compound graph G ¼
ðV;E;F Þ with constraints C ¼ Cf [ Ca [ Cr (a union of fixed
node, alignment, and relative placement constraints, respec-
tively) consists of threemain phases (Figs. 3 and 4). In the first
phase, we convert the possibly disconnected input compound
graph into a connected simple one and apply a spectral layout
algorithm [16] on it to obtain a draft layout. The second phase
is aimed at enforcing user-specified placement constraints.
Before that, however, we apply a transformation to make the

Fig. 3. Algorithm overview. Given a compound graph, a draft layout is obtained in phase I with a spectral layout algorithm. Phase II then satisfies con-
straints on this draft layout. Finally, phase III polishes the constrained draft layout with a modified CoSE algorithm to produce a final layout.
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drawing more compatible with the specified constraints, so the
enforcement step will minimally disrupt the draft layout
obtained. The last phase can be considered as a “polishing
phase”, where we apply a modified version of the CoSE
method [4] to respect nonuniform node dimensions and com-
pound structures and eliminate node-node overlaps while
preserving enforced constraints. The overall structure of the
algorithm can be summarized as inAlgorithm 1.

4.1 Phase I: Obtaining Draft Layout

As spectral layout algorithms are based on graph-theoreti-
cal distances of nodes, they cannot be directly applied to
disconnected or compound graphs. Hence, we apply a pre-
processing step to convert the input compound graph into a
simple and connected graph. Then, a spectral layout algo-
rithm is applied, followed by a postprocessing step that
restores the topology of the original compound graph
resulting in a draft layout.

4.1.1 Preprocessing Step

To handle disconnected graphs, we use “dummy nodes” to
tie together components. In finding components of a com-
pound graph, we use a specialized breadth-first search
(BFS) which assumes that upon reaching a parent com-
pound node, all nodes in its nested child graph are also
reached via the traversal and vice versa. For example, in
Fig. 5a, although c1 is not directly adjacent with n2 or c0, we
consider them as “neighbors” and continue a traversal
reaching c1, towards both n2 and c0 as well as some other
nodes. Notice here that n2 is adjacent with a child node (n3)
of c1, and c0 is a parent of a node (n1) that is adjacent with
c1. To tie components of a disconnected graph, we select a
node with a minimum degree from each component and con-
nect it to a dedicated dummy node so as to keep the node

degrees as homogeneous as possible (Fig. 5b). This is done
not only for the root graph but also for each child graph as
the graph might become disconnected once we remove
compound structures as described below (Fig. 5c).

To be able to convert a compound graph into a simple
one, for each compound node, we assign the mission of a
compound node to a selected simple node inside that com-
pound node and remove the compound node temporarily.
This selected simple node represents the compound node
and the intra-graph edges connected to the compound node
are now connected to this representative node. Again, we
choose a node with a minimum degree to keep the degrees
of the nodes homogeneous after conversion (Fig. 5d). As a
result, we have a connected, simple graph on which a spec-
tral layout may be performed.

4.1.2 Applying Spectral Layout Algorithm

To obtain a draft layout from the simple and connected
graph constructed earlier, we apply a linear time CMDS
method [16] mentioned earlier.

4.1.3 Postprocessing Step

Construction of a decent draft layout in Phase I ends with a
post-processing step. We remove any dummy nodes intro-
duced earlier and position compound nodes based on their
children so as to tightly contain them.

4.2 Phase II: Satisfying Constraints

In this phase, we start with a draft layout that is constraint-
free and first apply a transformation on the draft layout by
performing rotation and/or reflection. Here the goal is to
better align the current layout with constraints, as enforcing
constraints on a layout that is incompatible with our con-
straints could completely ruin the draft layout with respect

Fig. 4. A sample compound graph with constraints n2y½�50; 100�, n5y½50;�50� and n4� n6 after (a) draft layout (b) transformed draft layout based on
fixed node constraints (c) constrained draft layout (d) final layout (the constrained nodes are shown in red; anchors signify fixed node constraints).

Fig. 5. (a) A disconnected compound graph (b) Components (inside red rounded rectangles) in the root graph are tied via dummy node d0. (c) Com-
ponents in the child graph of compound node c2 are tied via dummy node d1 as well, whereas child graphs of c0 and c1 are already connected. (d)
The modified compound graph is converted into a simple one. Here, nodes with red borders (n0, n3 and n5) are selected simple nodes to represent
their parent compound nodes c0, c1 and c2, respectively, and the red edges are the ones previously incident upon these parent nodes.
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to commonly accepted criteria such as minimal overlaps
and edge-edge crossings. We then process the constraints
and obtain a layout satisfying these constraints (i.e., a con-
strained draft layout).

4.2.1 Transformation of Draft Layout

The transformation step aims to adjust the orientation of the
graph to be more compatible with the user-specified place-
ment constraints. Directly enforcing the constraints on the
draft layout may cause drastic changes in node positions,
resulting in longer edges and more edge-edge crossing, and
eventually reducing the overall quality of the final layout.
With a transformation based on constraints, however, the
movement of the constrained nodes in succeeding steps is
minimized and the overall structure of the draft layout is
protected as much as possible. Fig. 6 exemplifies the use of
the transformation step. Notice how the transformation step
helps in producing a more stable force-directed system,
closer to convergence.

To calculate a suitable transformation, we make use of a
solution to the famous orthogonal Procrustes problem
(Chapter 20 of [15]), where the goal is to map a source con-
figuration of a set of points to a target configuration. The
solution used is a linear algebraic one, calculating an
orthogonal matrix that most closely maps a source configu-
ration to a target one by restricting the transformation to
rotations and reflections. This type of transformation is
exactly what we need since we only want to change the ori-
entation of the layout while preserving its overall structure.

This is achieved as follows. Let A and B be n� 2matrices
keeping the centralized coordinates (in x and y axes) in the
target and source configuration of the n points, respectively.
Also, let PSQT be the singular value decomposition (SVD)
of ATB. Then, the orthogonal transformation matrix can be
calculated with T ¼ QPT . For our purposes, we first need to
decide on the nodes to use in the calculation of the transfor-
mation matrix before we can apply the resulting matrix to
the whole graph. Remember that we would like to adjust
the orientation of the graph according to the user-specified
constraints. Here we assume that the constraints are not in
utmost conflict with each other, and hence we may use a
subset of the constraints as we see fit. Obviously, the source
configuration of the selected nodes comes from the draft
layout calculated by the spectral layout algorithm. How-
ever, the construction of the target configuration is rather
involved and depends on the selected nodes of the chosen
constraint type(s) as detailed in the rest of the section.

As fixed node constraints are the most strict of all, if
jCf j > 1, then we base the transformation on these nodes
only. In this case, the target configuration is formed directly
from the positions specified by the user for these fixed
nodes. Fig. 7 illustrates a sample scenario with three fixed
nodes. Note that the orientation of the drawing is now more
compatible with the fixed node constraints.

If jCf j � 1, insufficient to define a target configuration,
and jCaj > 0, then we use all nodes involved in alignment
constraints. In this case, for each alignment constraint, the
target configuration of all involved nodes is formed by tak-
ing their average position in the respective direction
(remember that a node may be involved in at most one
alignment constraint in each direction). Fig. 8 explains the
use of two alignment constraints (one in each direction) for
constructing a target configuration to be used for the trans-
formation. Here, one can see that the transformation
reduces the total amount of node movement required to
enforce the alignment constraints in the next step, compared
to the case where no transformation takes place (simply
compare the total lengths of dark line segments with arrows
in Figs. 8b and 8c).

Now that the drawing was aligned with respect to the
available alignment constraints, we might be able to make
the drawing more compatible using the relative placement
constraints as well. Hence, if jCrj > 0, we further apply a
majority-based reflection on the graph based on the relative
placement constraints. To do so, we evaluate the relative
placement constraints defined along the x–axis (y–axis) and
if current positions of the involved nodes violate the major-
ity of these constraints, we reflect the graph on the y–axis
(x–axis).

As an example, assume that the graph in Fig. 8a also has
the following relative placement constraints: fn1 < n3; n2
< n4; n0 ^ n1; n2 ^ n4g. When the node positions on the

Fig. 6. (a) Draft layout with two fixed node constraints n0y½�150; 50� and n6y½150;�50�; (b) Constrained draft layout calculated without a transforma-
tion step; and (c) with a transformation step that rotates draft layout by 163:5� clockwise.

Fig. 7. (a) Draft layout together with target configuration formed by user-
specified positions on the fixed nodes n0, n1 and n2 (b) Transformed
(reflects draft layout on the y–axis and then rotates by 6� counterclock-
wise) draft layout.
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current transformed layout (Fig. 8c) are inspected for the rela-
tive placement constraints given above, both constraints
defined along the x–axis are violated. For constraints along
the y–axis, one is satisfied while the other is not. Hence, we
reflect the graph only on the y–axis (Fig. 8d), resulting in a
draft layout that now violates only one of the relative place-
ment constraints as opposed to the three we had before.
Notice that this reflection step improves the orientation of the
graph using the relative placement constraints while preserv-
ing the effect of the earlier transformation solely based on the
alignment constraints.

If jCf j � 1 and jCaj ¼ 0, we base the transformation only
on the relative placement constraints. For this purpose, we
form dependency dags Dh ¼ ðV h; EhÞ and Dv ¼ ðV v; EvÞ,
one for each direction. Here,

V h ¼ fv j ðu < vÞ 2 Cr _ ðv < uÞ 2 Crg and
Eh ¼ fe ¼ ðu; vÞ ^ e:w ¼ x j ðu < ½x�vÞ 2 Crg,

where e:w represents the weight of the edge e. Dv can be
constructed similarly. The directed dependency graph,
composed of both dags, not necessarily a dag itself, is
defined asD ¼ Dh [Dv. Notice here that V h \ V v is not nec-
essarily empty but Eh \ Ev ¼ ;.

Assume Ci ¼ ðVi; EiÞ is the largest (weakly connected)
component of D. If jVij < jV ðDÞj=2, we simply apply a
majority-based reflection on the draft layout as explained
before to generate the transformed draft layout. Otherwise,
when the largest component Ci is big enough, we base the
transformation on vertices of Vi as follows. Suppose Vi ¼
V h
i [ V v

i , where V h
i 	 Dh and V v

i 	 Dv respectively corre-
spond to those vertices involved in horizontal and vertical
relative placement constraints in the component. Let Dh

i ¼

Dh½V h
i � and Dv

i ¼ Dv½V v
i �, both of which are dags as they are

subgraphs of dags. For each of these dags, nodes with in-
degree zero could be identified and taken as source nodes
followed by a topological order based computation of lon-
gest distances from these sources [36]. We then place the
nodes in V h

i (V v
i ) to appropriate x (y) coordinates taking the

average x (y) coordinate of source nodes as a base and using
the longest distance of each node from the source nodes in
the x–axis (y–axis). As a result, we have a configuration
based on the largest component of the dependency graph to
be used as the target configuration for the transformation as
exemplified in Fig. 9. Notice that the constrained node pairs
are on the correct side of each other as dictated by the con-
straints after the transformation (Fig. 9d), making jobs of
later phases easier.

4.2.2 Enforcing Constraints

Phase II is for enforcing the constraints on the draft layout
constructed by Phase I. We process the constraints in the
order of: fixed node, alignment and relative placement con-
straints with a goal to obtain a layout that satisfies all con-
straints. Then, the final phase (Phase III) will apply a force-
directed incremental layout algorithm to improve/refine
the layout while keeping these constraints (with every sin-
gle iteration) intact.

4.2.3 Fixed Node Constraints

We first move the nodes involved in fixed node constraints
to user-specified locations. However, as this displacement
may affect the overall structure of the graph drastically, we
make sure to move the rest of the graph towards the fixed
nodes’ new positions as follows.

Fig. 8. (a) A draft layout with constraints n0 j n1 j n2 and n3 � n4 (b) Amount of movement needed for the nodes in specified constraints to attain
alignment and for determining the aligned target positions used in calculating the transformation matrix (c) Transformed (rotates draft layout by 44:5�
clockwise) draft layout based on the alignment constraints (d) Transformed draft layout based on both alignment and relative placement constraints
(n1 < n3, n2 < n4, n0 ^ n1, and n2 ^ n4).

Fig. 9. (a) A draft layout for a graph with constraints fn2^½80�n1; n7^½70�n6; n4< ½100�n0; n7< ½70�n4; n8< ½80�n4g (b) Dependency graphD formed by
the nodes involved in relative placement constraints with the right one of the two components being larger. Solid edges show constraints in horizontal
direction whereas dashed ones are for those in the vertical direction. The value on the edge shows the edge weight, while the value near a node
shows its longest distance from a source node. (c) The target configuration formed by placing nodes by using the longest distance from their source
node (d) Corresponding transformed (rotates draft layout by 180�) draft layout.
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Let V f ¼ fvjvyðx; yÞ 2 Cfg ¼ fv0; v1; . . . ; vkg. Also let ðxi,
yiÞ be the coordinates of the fixed node vi in the transformed
draft layout and ðx0i; y0iÞ be the coordinates of the fixed node
vi as specified by the user (Fig. 10a). Each fixed node vi is
moved by ðx0i � xiÞ along the x–axis and by ðy0i � yiÞ along
the y–axis to enforce the user-specified positions (Fig. 10b).
Displacement amounts, dx and dy, for the rest of the graph
are calculated by taking the average of the displacements of
the fixed nodes in each direction:

dx ¼
Pk

i¼0ðx0i � xiÞ
k

and dy ¼
Pk

i¼0ðy0i � yiÞ
k

:

Hence, we move the rest of the graph by ðdx; dyÞ along x and
y axes, respectively (Fig. 10c).

4.2.4 Alignment Constraints

An alignment constraint is simply satisfied by aligning the
nodes in the constraint to the same x (y) coordinate for verti-
cal (horizontal) alignment. The alignment coordinate is cal-
culated by taking the average of the x (y) coordinates of the
involved nodes. Fig. 11 shows an example.

The only exception to using the average coordinate for
alignment occurs when an involved node also has a fixed
node constraint. In this case, other nodes are forced to com-
ply with the fixed node constraint to form an alignment.

4.2.5 Relative Placement Constraints

For enforcing relative placement constraints, we form a
directed dependency graph D ¼ Dh [Dv from the node
pairs involved in relative placement constraints, similar to
the one formed during the transformation step (Fig. 9b).
However, processing of the dependency dags Dh and Dv

are done in order and the process is more sophisticated due
to the fact that this step needs to keep fixed node and align-
ment constraints intact.

First, for each component ofDh, similar to the part on rela-
tive placement constraints of Section 4.2.1, we use a topologi-
cal ordering of the nodes involved and calculate longest
distances along the x–axis to all nodes from a source node
(onewith no incoming edges). In case there ismore than a sin-
gle source node in the component, we normalize their starting
position by first relocating all source nodes to their average x
coordinate. Unlike the transformation step though, we also
need to take nodes involved in fixed node and alignment con-
straints into account and make sure not to disrupt these con-
straints along the way. A fixed node visited during the
longest distance calculation will not only affect its successors
due to its forced location but itmight also require its predeces-
sors to be relocated to satisfy minimum specified separation.
Furthermore, in case a node involved in a relative placement
constraint is also part of an alignment constraint, we treat the
nodes in the alignment constraint as a “block” (i.e., a single
merged node) and place them together.

After we finish processing a component, we continue with
other remaining components in the x–axis. Lastly, we process
Dv similarly and complete enforcement of all constraints.
Fig. 12 exemplifies enforcing relative placement constraints
while Algorithm 2 presents details of the process.

4.3 Phase III: Polishing Phase

During the last phase, we apply an incremental and modi-
fied version of the CoSE algorithm on the constrained draft
layout to refine the layout by minimizing the stress of the
physical model. The main goals include the removal of any
node-node overlaps and proper representation of the nest-
ing relations whilemaintaining enforced constraints.

The original CoSE algorithm does not take constraints
into account. In each iteration, the displacement of each
node is calculated using various types of forces, and then
each node is moved based on these amounts. However, as
such movements might violate already established con-
straints, fCoSE adjusts (i.e., limits) the calculated displace-
ment amounts of the constrained nodes so that no
constraint is violated by the movements as detailed below:

– First, for each node with a fixed node constraint, its
displacement amount in both directions is reset (i.e.,
the node will not move).

– Then, for each group of nodes with a vertical (hori-
zontal) alignment constraint, the displacement
amount in x (y) direction is adjusted to be the aver-
age value of displacement amounts in that direction.
In case, at least one of these nodes has a fixed node
constraint in the same direction, all displacement
values in that direction are reset. This is similar to

Fig. 10. (a) Transformed draft layout (same as the one in Fig. 7b) with user-specified positions of fixed nodes. (b) After fixed nodes are moved to user-
specified positions. (c) After the rest of the graph is adjusted accordingly.

Fig. 11. (a) Transformed draft layout (same as the one in Fig. 8c) before
processing the alignment constraints. (b) Draft layout in which the align-
ment constraints are satisfied.
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the work in [23], where they treat nodes of an align-
ment or relative placement constraints as if they are
tied together through a “rigid stick” forcing them to
move together.

– Finally, if a node is involved in a relative placement
constraint, then its displacement amount in that
direction is adjusted, and the node is only allowed to
move up to a location, where it does not violate the
constraint. Notice that if the node is also involved in
a fixed node constraint in the same direction, its dis-
placement will already be reset. If the node is also
involved in an alignment constraint, its displacement
amount will have been previously updated to keep it
aligned with others. Here, we further adjust the dis-
placement amount up to the point where it will not
violate the relative placement constraints either.

Notice that this newly introduced intermediate step does
not change the displacement amount of unconstrained nodes.

4.4 Time Complexity

Phase I is expected to run inOðnþmÞ time,where jV j ¼ n and
jEj ¼ m. The preprocessing step of handling disconnected
graphs and compound structures requires a number of BFS
operations, where each node/edge is visited as many times as
their depth in the inclusion graph. Assuming the inclusion
graph has a height independent of the graph size, as expected
with real-life graphs, this operation should work in OðnþmÞ
time. Civril et al.’s [16] spectral layout algorithm also works in
linear time in n and m. Finally, the postprocessing requires a
one-time traversal of all simple nodes to calculate compound
node positions and dimensions, working inOðnÞ time aswell.

Phase II is also expected to run inOðnþmÞ time. Themost
costly operations in this phase are for the transformation of the
draft layout and for enforcing relative placement constraints.
Thesemay require finding disconnected components and solv-
ing the longest path problem in a dag,which can all be handled
with a few, constant number of BFS traversals. Computation of
the transformation matrix (multiplying matrices with dimen-
sions 2� n and n� 2) including the application of an SVD (on
a 2� 2matrix) alsoworks inOðnÞ time.

Applying a modified CoSE algorithm incrementally, start-
ing with a low cooling factor, in Phase III reduces the number
of iterations significantly at the cost of additional overhead
per iteration for maintaining already established constraints.
Remember that each iteration of the original CoSE algorithm
takes OðnþmÞ time. The overhead due to fixed node and
alignment constraints will obviously not affect the asymptotic

run time. Dealing with relativity constraints however is more
involved but can also be handled within the asymptotic time
allocated, assuming the number of relativity constraints
involving each node is independent of the graph size. This is
a reasonable assumption for user-defined constraints. Notice
however that CoLa may need to introduce additional relative
placement constraints quadratic in the number of nodes (on
top of those defined by the user) to avoid node-node overlaps
and handle compound structures.

Hence, the run time of fCoSE is asymptotically upper
bounded by its Phase III, which is expected to run in Oðnþ
mÞ time per iteration like CoSE but needs much fewer itera-
tions as it starts out from a relatively stable initial layout.

5 EVALUATION

We evaluated fCoSE in terms of both layout quality and run
time performance by comparing it with CoLa. CoLa is the
closest algorithm to ours due to its support for varying con-
straint types, non-uniform node dimensions and compound
structures with an arbitrary level of nesting. The evaluation of
quality focuses on widely accepted layout metrics such as
node-node overlaps, node-edge overlaps, edge-edge cross-
ings, average edge length and total area, while the execution
duration is measured to evaluate run time performance. In
addition, we compared fCoSE’s run time performance against
that of its predecessor CoSE.

5.1 Experiment Setup

We implemented fCoSE1 in JavaScript as an extension to
Cytoscape.js [37], a graph visualization and analysis library.
CoLa2 and CoSE3 are also available as Cytoscape.js exten-
sions. Hence, we used these three extension libraries and
ran our experiments on an ordinary computer with Intel i7-
4790 3.60GHz x 4 CPU and 16GB RAM.

5.2 Dataset

An evaluation was performed both on real-life graphs and on
two randomly generated compound graph datasets with 10 to
5000 nodes with average degree up to 7. The random datasets
were generated by converting the Rome graph dataset [38],
one of the benchmark datasets used frequently in graph visual-
ization with biconnected, undirected, and 4-planar graphs,
and from an assorted selection of denser graphs in the

Fig. 12. (a) Dh and (b) Dv for the graph in Fig. 9 (c) After repositioning the nodes involved in the relative placement constraints defined along the
x–axis. First, n7 and n8 are aligned in average x coordinate since they are source nodes of Dh. Then, n4 and n0 are placed to the right of the source
nodes by 80 and 180 units (longest distances from the source nodes), respectively, as calculated on Dh. (d) After repositioning all nodes involved in
all relative placement constraints. n1 and n6 are placed below their source nodes n2 and n7 by 80 and 70 units, respectively.

1. https://github.com/iVis-at-Bilkent/cytoscape.js-fcose
2. https://github.com/cytoscape/cytoscape.js-cola
3. https://github.com/cytoscape/cytoscape.js-cose-bilkent
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Network Repository [39] containing benchmark datasets into
compound graphs as described in the supplementarymaterial,
available online. The generated graphs arewith increasingpro-
portions of constraints: 25, 50, 75 and 100 percent.

Algorithm 2. Enforcing Relative Placement Constraints

function EnforceConstraints(G;Cf ; Ca; Cr)
for each dir 2 fh; vg do
fixedNodes nodes in Cf

metaToOrgMap fg ⊳ bidirectional map btw
⊳meta and original nodes in alignment constraints

M fmi j ci 2 Ca ^ ci:dir 6¼ dirg ⊳ a meta node for
⊳ each alignment set defined in opposite direction

Mf fmi2M ^ 9ðx2ci:nodes ^ x2fixedNodesÞg
fixedNodes fixedNodes [Mf

for eachmi 2Mf do ⊳ set meta node positions based
⊳ on average position of nodes represented

mi:currPosðdirÞ  AveragePosðci:nodes; dirÞ
for eachmi 2M do
metaToOrgMap.add(mi; ci:nodes)

Ddir CalcDAG(Cr; dir;M;metaToOrgMap)
⊳ use meta nodes here

EnforceAux(Ddir; fixedNodes;M; dir)

function EnforceAuxDdir; fixedNodes;M; dir
for each component C inDdir do
AlignIndegreeZeroVertices(C; dir) ⊳ align zero

⊳ indegree vertices of C in current direction
for each node v in C do
v:predList fvg
if v:indegreeðdirÞ ¼ 0 then
queue.enqueue(v)
v:newPosðdirÞ  v:currPosðdirÞ

else
v:newPosðdirÞ  �1

while !queue.empty() do
u queue.dequeue()
for each neigbor v of uwhere e ¼ ðu; vÞ do
pos u:newPosðdirÞ þ e:weight
if v:newPosðdirÞ < pos then ⊳ constraint violated
if v 2 fixedNodes then
v:newPosðdirÞ  v:currPosðdirÞ
if v:newPosðdirÞ < pos then ⊳ still violated
discr pos� v:newPosðdirÞ
for each node w 2 u:predList do
v:newPosðdirÞ  w:newPosðdirÞ � discr

else
v:newPosðdirÞ  pos
v:indegreeðdirÞ  v:indegreeðdirÞ � 1
if v:indegreeðdirÞ ¼ 0 then
queue.enqueue(v)
v:predList v:predList [ fug

for each node u in C do
if u ¼ mi 2M then
for each node v 2 ci:nodes do
v:currPosðdirÞ  mi:newPosðdirÞ

else
u:currPosðdirÞ  u:newPosðdirÞ

5.3 Results and Discussion

We compared fCoSE with CoLa on some real-life graphs such
as the dependency graph and the underwater sensor network

in Fig. 13 (refer to the supplementarymaterial, available online
for larger versions andmore examples), for all of which fCoSE
provides a better run time and visual quality performance.

We have also conducted experiments on randomly gener-
ated and constrained graphs using the previously defined
setup (see Fig. 14 for an example; refer to the supplementary
material, available online for a larger version and other
examples). We repeated each test 5 times with a new set of
constraints in each run and averaged the results. Here we
present the comparison of fCoSE with CoLa only on the
small-sized random graphs because CoLa does not scale
well to graphs with more than a few hundred nodes, its run
time increasing excessively. For the Rome graph dataset, not
surprisingly, fCoSE outperforms CoLa in terms of run time
performance in all constraint types (Fig. 15). In terms of lay-
out quality, fCoSE yields shorter average edge lengths up to 27
percent on the graphswith fixed node and hybrid constraints
and comparable results are observed in other constraint
types. In addition, fCoSE produces 37 to 74 percent fewer
edge crossings and 50 to 81 percent fewer node-edge overlaps in
all constraint types. Both have comparable performance on
the graphs with fixed node and hybrid constraints in terms
of the number of node-node overlaps and total area, while the
resulting values in these metrics for CoLa are slightly less for
node-node overlaps (up to 10 overlaps) and significantly better
for total area on the graphswith alignment and relative place-
ment constraints. We observe that Cola generates more com-
pact layouts at the cost of poor readability in terms of other
metrics. Fig. 16 presents the results on various metrics in
small-sized graphswith hybrid constraints.

We also compared fCoSE with CoSE for their run time
performance on medium-sized graphs. fCoSE provides

Fig. 13. (top) A dependency graph of a Javascript project in npm [2]
(jV j ¼ 20, jEj ¼ 11, dðGÞ ¼ 1:1) is laid out with fCoSE (left) and CoLa
(right) using alignment and relative placement constraints (each source
node will be on the left of the target node and nodes in the same level
will be aligned vertically). Respective metrics (fCoSE - CoLa): run time:
11.79 ms - 167.14 ms, average edge length: 122.19 - 113.23, number of
edge crossings: 0 - 2, number of node-node overlaps: 0 - 0, number of
node-edge overlaps: 0 - 1, and total area: 267314 - 303002 square units.
(bottom) An underwater wireless sensor network (jV j ¼ 36, jEj ¼ 27,
dðGÞ ¼ 1:5) is laid out with fCoSE (left) and CoLa (right). Surface buoys
are fixed on the surface of the water while underwater sinks are vertically
aligned with the buoys maintaining a certain depth. Sensor nodes are
positioned freely in a clustered way to collect data where only the cluster
heads s1, s5, s9, s13, s17 and s21 are restricted to be below the sink
nodes. Respective metrics (fCoSE - CoLa): run time: 12.51 ms - 369.02
ms, average edge length: 127.25 - 104, number of edge crossings: 0 - 0,
number of node-node overlaps: 0 - 0, number of node-edge overlaps: 0 -
4, and total area: 1250680 - 1447749 square units.
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about 2x speedup over CoSE with constraint-free graphs. It
is still faster with constrained graphs as well, even though it
needs to do additional work to satisfy constraints ignored
by CoSE. Here we remark that alignment and relative place-
ment constraints bring only a slight overhead in the run
time of fCoSE, whereas fixed node and hybrid constraints
decrease the run time, probably due to mandatory stable-
ness of the fixed nodes yielding faster convergence. One
other observation is that the ratio of the fixed node con-
straints does not affect the layout quality metrics, while an
increase in the ratio of the alignment and relative placement

constraints affects these metrics negatively as satisfying
these constraints becomes more challenging.

The results for the denser Network Repository graphs
are generally in line with the results for the Rome graphs.
However, as the density of the graphs increases, graphs
turn into “hairballs” and a drastic decrease in quality met-
rics are observed, making visual analysis unproductive.

A more detailed comparison between fCoSE and CoLa in
small-sized graphs and the performance of fCoSE inmedium-
sized graphs, including fCoSE - CoSE runtime comparison, as
well as a table detailing the results for denser Network Repos-
itory graphs can be found in the supplementary material,
available online.

5.4 Extensibility and Limitations

In addition to user-specified constraints supported, fCoSE
implicitly tries to satisfy constraints such as avoiding node-
node overlaps and placing child nodes within the bounds of a
parent compound node. It would also be straightforward to
extend the supported constraint types to for instance include
orthogonal ordering of nodes by using the current set. In fact,
fCoSEmay be extended with other constraint types as long as
the new constraints can be enforced during Phase II. Once
established, maintaining constraints during the last phase
should be straightforward. For instance, the user might spec-
ify a region of arbitrary shape to use for the drawing. Notice
however that since the user might not be able to guess the
region for a “snug fit”, it might be a better idea to take a scal-
able shape, which can be contracted or expanded as needed
by the algorithm. A potential improvement for the relative
placement constraint would be allowing users to separate
nodes with an exact amount as opposed to a minimal one,
which should not be very difficult by treating the pair together
as a block during the last phase.

fCoSE inherits limitations of force-directed algorithms
such as not explicitly addressing edge-edge crossings or

Fig. 14. The layout of a sample medium graph from our dataset
(jV j ¼ 1022, jEj ¼ 1228, dðGÞ ¼ 2:4) where 25 percent of the nodes (red
ones) are included in relative placement constraints. Performance met-
rics are as follows: run time: 1031.6 ms, average edge length: 130.2,
number of edge crossings: 880, number of node-node overlaps: 29,
number of node-edge overlaps: 513, and total area: 26225364 square
units.

Fig. 15. Comparison of run time between fCoSE and CoLa in small-sized graphs (10-200 nodes) with fixed node (top-left), alignment (top-right), rela-
tive placement (bottom-left) and hybrid (bottom-right) constraints. Percentages show the ratio of the constrained nodes in the graphs.
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efficient usage of space (especially when the display area is
assumed to be rectangular). Obviously, the user-specified
constraints make the already difficult (NP-hard) problem of
producing a good layout [5] even more difficult. A specific
limitation of fCoSE is not supporting constraints on com-
pound nodes. Lifting this restriction would be quite a chal-
lenge as changes in the geometry of a compound node will
affect those of its children and vice versa.

6 CONCLUSION

We have presented a new algorithm fCoSE for the automatic
layout of compound graphs with support for a fairly rich set
of user-defined placement constraints. fCoSE performs well
in small to medium-sized graphs in terms of both run time
and widely accepted layout metrics when compared to its
competitors, making it suitable for interactive graph analysis.
An open-source implementation of fCoSE along with a demo
page4 can be found on GitHub (refer to the supplementary
material, available online for details).

Possible future work includes support for additional con-
straint types, being able to constrain compound nodes, con-
sidering a deliberative approach while selecting nodes in

preprocessing step and an improved polishing phase where
aligned nodes are allowed to change order by swapping to
further relax the underlying system.
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