
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

Partial Convolution for Padding, Inpainting, and
Image Synthesis

Guilin Liu∗, Aysegul Dundar∗, Kevin J. Shih, Ting-Chun Wang, Fitsum A. Reda, Karan Sapra, Zhiding Yu,
Xiaodong Yang, Andrew Tao, Bryan Catanzaro

Abstract—Partial convolution weights convolutions with binary masks and renormalizes on valid pixels. It was originally proposed for
image inpainting task because a corrupted image processed by a standard convolutional often leads to artifacts. Therefore, binary
masks are constructed that define the valid and corrupted pixels, so that partial convolution results are only calculated based on valid
pixels. It has been also used for conditional image synthesis task, so that when a scene is generated, convolution results of an instance
depend only on the feature values that belong to the same instance. One of the unexplored applications for partial convolution is
padding which is a critical component of modern convolutional networks. Common padding schemes make strong assumptions about
how the padded data should be extrapolated. We show that these padding schemes impair model accuracy, whereas partial
convolution based padding provides consistent improvements across a range of tasks. In this paper, we review partial convolution
applications under one framework. We conduct a comprehensive study of the partial convolution based padding on a variety of
computer vision tasks, including image classification, 3D-convolution-based action recognition, and semantic segmentation. Our
results suggest that partial convolution-based padding shows promising improvements over strong baselines.

Index Terms—Partial Convolution, Padding, Image Inpainting, Image Synthesis, Object Classification, Semantic Segmentation.

F

1 INTRODUCTION

CONVOLUTIONAL Neural Networks (CNNs) have
achieved excellent results on various computer vision

tasks such as object recognition [22], [56], detection [38],
[51], segmentation [6], [82], [94], video action recognition
[19], [79], video interpolation [29], [49], prediction [35], [54],
image and video inpainting [47], [77], and synthesis [3],
[13], [31], [41], [69], to name a few. These networks rely on
convolutions to extract useful features from images that can
be used for downstream tasks. However, there are many
scenarios when parts of the input data are missing, invalid,
or even corrupted. The following work demonstrates vari-
ous scenarios in which this is the case, and how an adaptive
re-weighting of the filter can drastically improve results.

An obvious case in which filters convolve over missing
pixel values is the image inpainting task, the task of filling
holes in an image with plausible imagery. It has various
applications such as inferring occluded image content in
novel-view synthesis, and image editing tasks such as
context-aware content removal. CNNs have been used for
recent image inpainting efforts, employing convolutional
filters on images where the removed content has been
replaced with a fixed value (typically the mean value).
The placeholder hole values are then treated no differently
from truly valid image content, likely confusing the neural
networks and leading to artifacts such as color discrepancy

*Joint first authors, contributed equally.

• G. Liu, KJ. Shih, TC. Wang, K. Sapra, Z. Yu, X. Yang, A. Tao, B.
Catanzaro are with NVIDIA, CA, USA. E-mail: {gliu, kshih, tingchunw,
freda, ksapra, zhidingy, xiaodongy, atao, bcatanzaro}@nvidia.com

• A. Dundar is with Department of Computer Science, Bilkent University,
Ankara, Turkey. (e-mail: adundar@cs.bilkent.edu.tr)

• FA. Reda is with Google, CA, USA.

or blurriness. Post-processing is often required to ameliorate
these issues [24], [84].

Invalid pixels also naturally occur in cases of data
padding. Parts of convolutional filters often need to extend
beyond the spatial dimensions of their inputs, such as when
we want the output of a 3 × 3 or larger filter to maintain
the original input dimensions. In order for the output of a
convolution to be defined when parts of the filters extend
beyond the original input dimensions, we pad the borders
of our input data with some assumed reasonable values. For
small input dimensions, padding has a surprisingly large
effect. For instance, given a 6 × 6 input feature map with
1 pixel padding on each side, (8 × 8 − 6 × 6)/(8 × 8) =
43.75% of the data will be from padding. Several commonly
used padding approaches introduce assumptions about the
padded regions, leading to unwanted biases in trained mod-
els. For example, the most common padding scheme is zero-
padding, in which the input data is extended with zeros
along the edges. While zero padding is easy to implement
and computationally efficient, it can introduce sharp spikes
or drop in filter response values at the edges of resulting
feature maps, thereby affecting the model’s final prediction.
Other padding approaches such as reflection padding and
repetition padding differ from zero-padding in that they
attempt to extrapolate the missing data beyond the input
dimensions via simple heuristics. Reflection padding re-
flects pixel values along the border axis whereas replication
padding simply extends the border-most pixel. While these
heuristics result in a smoother transition from input data to
padded data than zero padding would, reflecting or repeat-
ing the border regions for many layers also tend to introduce
unrealistic data patterns. In the following work, we argue
that explicitly differentiating the valid input pixels from the
corrupted/invalid input pixels in convolution operation can

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3209702

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on October 01,2022 at 05:03:36 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

help improve the feature extraction quality and robustness
of the models.

Lastly, traditional convolution operation may have diffi-
culty generating realistic images in conditional image syn-
thesis applications. Image synthesis refers to the task of
generating photo-realistic images, where a prevalent sub-
category known as conditional image synthesis outputs im-
ages that are conditioned on various input data. The input to
the image synthesis network may be a semantic segmenta-
tion or instance segmentation map, and synthesized images
are expected to have high fidelity to the underlying input
information. Convolutional operations independent of class
and instance boundaries will result in an undesirable blend-
ing of conditional information across instance boundaries,
generating synthesized results with blurred boundaries.

Partial convolutions, where the convolution is masked
and renormalized to be conditioned on only valid pixels
can improve the results in different applications of convolu-
tional neural networks. In all aforementioned applications,
we see instances where input pixels may be corrupted,
invalid, and uncorrelated. The following work argues that a
convolutional operation that is capable of explicitly differen-
tiating between valid and invalid input pixels will perform
more robustly on the incomplete input data.

In this work, we provide a comprehensive study of
partial convolution applications in padding, image inpaint-
ing, and image synthesis under one framework. Partial
convolutions for image inpainting and synthesis have been
studied before in [37] and [14], respectively. The following
work provides more discussions and results of how the
application of partial convolution differ for these two tasks.
Furthermore, little attention has been given to padding in
the literature. We conduct a thorough empirical compari-
son of partial convolution-based padding, comparing with
other padding techniques. We show that partial convolution
padding performs favorably compared to existing padding
techniques with no additional parameters on a variety of
diverse single label and dense prediction tasks, including
image classification, video action recognition, and semantic
segmentation.

2 RELATED WORK

Reweighted Convolution. Reweighted convolution has
been explored to capture more powerful representations by
weighting up the properties of an image that are prominent
for a given task, while diminishing the affect of the other
parts in the image. There have been many works that learn
to weight the convolution activations based on attention
mechanisms [20], [70], [80], [90]. These mechanisms operate
on feature maps to capture the spatial locations that are
related to each other while making a decision. Harley et
al. [20] use soft attention masks to reweight the convolution
results for semantic segmentation. Uhrig et al. [64] propose
sparsity invariant CNNs with reweighted convolution and
max pooling based mask updating mechanism for depth
completion. Inpainting methods like [50], [64] take the hole
mask into consideration for reweighting the convolution
results. PixelCNN [66] designs the reweighted convolution
such that the next pixel generation only depends on pre-
vious generated pixels. Partial convolution is a type of

reweighted convolution where binary masks defined for
each task are used to weight the convolutions and renor-
malize on only valid pixels.

Padding. Researchers have improved the accuracy of
CNN models through careful research of almost all as-
pects of the model and optimization process, including
different variants of SGD [34], [63], non-linearities [21],
[44], normalization layers [26], etc. However, little atten-
tion has been paid to improving padding beyond the
standard zero padding, reflection padding, and repetition
padding schemes. One proposed improvement came from
Innamorati et al. [25], which augment networks by intro-
ducing four separate filters dedicated to corners and another
four to extract features in the borders. The resulting models
from this scheme are not directly comparable to traditionally
padded models, because they require dedicated filters and
increase the number of parameters by eight times. Cheng
et al. [9] propose a special image projection to handle
undefined boundaries resulting from projecting a 360◦ view
image onto a 2D image. Images are first projected onto a
cube and a final image is formed by concatenating cube
faces. As such, large undefined borders can be eliminated.
Our proposed partial convolution based padding scheme
is orthogonal to all of these ideas. Furthermore, it does
not increase the parameter count; instead, it uses a single
filter with a simple yet effective re-weighting mechanism at
boundary pixels where padded regions are interpreted as
missing data.

Image Inpainting. Recent deep learning based methods
for image inpainting and outpainting [24], [36], [47], [62],
[78] initialize the holes (regions with missing data) with
constant placeholder values, and treat the newly initialized
hole region and original non-hole region equally. Then a
CNN is used to re-generate a new image, conditioned
on this initialized image. The results usually suffer from
dependence on the initial hole values, with lack of texture
in hole regions, obvious color contrasts or artificial edge
responses. Many of them require post-processing, like a
refinement network [57], [84], Poisson blending [24] or other
post-optimization techniques [78]. Some other methods [64],
[65], [81] ignore the hole placeholder values in the image
inpainting or data completion tasks; none of them explicitly
handle the missing data. Partial convolution is previously
proposed by [37] and become very popular in this domain.
Later, Yu et al. [85] extended partial convolution to gated
convolution by changing the binary mask to fractional mask
with values in [0, 1] and gradually updating the mask val-
ues. Xie et al. [75] extended the forward mask updating in
partial convolution to bi-directional mask updating. In this
paper, we review partial convolution in image inpainting to
show partial convolution can achieve padding, inpainting,
and synthesis under one framework.

Conditional Image Synthesis can vary based on differ-
ent type of inputs to be conditioned upon. For example,
natural and synthetic images, keypoints, skeletons, and pose
[2], [15], [23], [40], [93]. Recently, CNNs powered with GAN
trainings [17] have achieved synthesizing realistic images
based on semantic maps [27], [69]. In addition to semantic
maps, boundary maps are also input to CNNs to synthesize
instances with clear boundaries [46], [69]. In conditional
image synthesis tasks, the results are improved by research

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3209702

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on October 01,2022 at 05:03:36 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

0 0 0 0 0 0 0

0 x1 x2 … 0

0 … … 0

0 0

0 0

0 0

0 0 0 0 0 0 0

(a) Xp0

0 0 0 0 0 0 0

0 1 1 1 1 1 0

0 1 1 1 1 1 0

0 1 1 1 1 1 0

0 1 1 1 1 1 0

0 1 1 1 1 1 0

0 0 0 0 0 0 0

(b) mask (M)

Fig. 1: Visualization of M (mask) generation for partial-
convolution based padding. Xp0 is zero-padded input, X.
M(i,j) can be constructed by first starting with a single
channel binary 1(i,j) which denotes a 2D matrix having
same height and width as X(i,j) (grey region), and then
zero-padding 1(i,j).

on normalization layers [43], [46], multi-scale discrimina-
tors [69], and architectural changes in the generator [22].
Attention mechanisms [86], [90] and adaptive convolutional
kernels that are aware of the distinct semantic labels [39]
have been proposed to weight the convolutions in image
synthesis task. In this paper, we will review how partial
convolution can improve image synthesis task conditioned
on panoptic maps which combine semantic and instance
information.

Partial Convolution was proposed to handle holes in
image inpainting task [37]. Since then it has been used in
other image inpainting works [68], [88], video inpainting
[12], face inpainting [42], depth inpainting [18] and speech
inpainting [33]. Furthermore, it has been used for new
view synthesis [45], [55], depth denoising [58], medical data
processing for disease diagnosis [5], [48], [67], [72], [76], pre-
cipitation prediction [28], remote sensing data cleaning [7],
[60], recovering historical artworks [8], [87] etc. In this paper,
we review the image inpainting and synthesis applications
of partial convolution and provide a comprehensive study
of partial convolution based padding. We expect partial
convolution to be used in various tasks when input data
has missing points.

3 PARTIAL CONVOLUTION AND ITS APPLICATIONS

In this section, we review partial convolution and how it
applies to different applications such as partial padding, im-
age inpainting and image synthesis conditioned on panoptic
maps. All applications share the same fundamental that
output of convolution operation should not be affected by
invalid data. The invalid data may come from padding
pixels, missing data (holes) for image inpainting, or in
the case of image synthesis, pixels that belong to separate
instances. The invalid pixels are defined by masks which are
used in partial convolution setting. First, we define partial
convolution, then show how we reconstruct the masks for
each application.

Partial Convolution. Partial convolution is proposed to
handle invalid input data, such as images with holes. Let
X(i,j) be the feature values (pixel values) for the current
convolution (sliding) window at the position (i, j) and

M(i,j) be the corresponding binary mask. We will define
how the definition of M(i,j) differs for each application, but
for simplicity, lets take image inpainting example. M(i,j)

is constructed with the hole region being 0 and non-hole
region being 1. The partial convolution at every location is
defined as:

x′(i,j) =

{
WT (X(i,j) �M(i,j))r(i,j) + b, ||M(i,j)||1 > 0

0, otherwise
(1)

where

r(i,j) =
||1(i,j)||1
||M(i,j)||1

, (2)

� denotes element-wise multiplication, 1(i,j) is the all-one
vector with the same shape as M(i,j) and W is the filter
weight matrix. We compute x′(i,j) = x′(i,j) + b to account
for an additional bias term (when ||M(i,j)||1 > 0). As
can be seen, output values depend only on the unmasked
inputs. The scaling factor ||1(i,j)||1/||(M(i,j)||1 applies ap-
propriate scaling to adjust for the varying amount of valid
(unmasked) inputs.

Partial Convolution-based Padding. Partial convolution
can be extended to the to-be-padded regions by treating
them as yet another zero-filled hole in the input image.
M(i,j) can be constructed by first starting with a single
channel binary 1(i,j) which denotes a 2D matrix having
same height and width as X(i,j), and then zero-padding
1(i,j). The visualization of the mask construction can be
found in Figure 1. With the zero-padded mask, M(i,j), and
zero-padded X(i,j), convolution is applied as given in Eq. 1

Based on Eq. 1, we can see that partial convolution-based
padding is corresponding to the widely used zero padding
with the scaling factor given in Eq. 2. This is an adaptive
scaling based on the number of invalid pixels to adjust the
varying amount of valid inputs. Note that it is not a constant
scaling factor which would have no effect since network
weights are learnable and can learn to compensate for the
constant scaling. The change may seem subtle, but in the
experiment section, we will show how partial-convolution
based padding scheme improves network results on mul-
tiple applications such as object recognition, segmentation,
and action recognition.

Furthermore, in some cases, we may require padding
larger than the kernel size. This occurs when padding is
used to resize images such that images of differing sizes
can fit in the same batch tensor. Re-sizing by padding is
typically preferred because image scaling may introduce vi-
sual distortions. Convolutions at such borders may not have
valid data because the kernel size could be smaller than
the padding width. For such cases, we include the mask
updating step. Specifically, for the very first convolutional
layer, the input mask M1st−layer will be the padded result
of 1 (M1st−layer = 1p0). In the next layers, if the convolution
was able to condition its output on at least one valid input
value in the padding region, then we mark that location to
be valid. This is expressed as:

m′(i,j) =

{
1, if ||M(i,j)||1 > 0

0, otherwise
(3)

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3209702

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on October 01,2022 at 05:03:36 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

(a) input image (b) mask (M)

Fig. 2: Visualization of M (mask) generation for partial-
convolution inpainting. Breaking with tradition, the black
pixels correspond to a binary mask value of 1 (valid), while
the to-be-ignored hole values 0 are visualized in white.

This will produce an output mask M′1st−layer using
the rule in Eq. 3. The mask input for the next layer will
be the padded result of M′1st−layer, namely M2nd−layer =
M′ p01st−layer, and so on.

Partial Convolution-based Image Inpainting. Image
painting is the task of filling the missing data in images. The
missing data appears as holes, and conditioning the output
on the hole values ultimately results in various types of
visual artifacts. In this task, M(i,j) is constructed by setting
holes as 0, and the other pixels as 1 as demonstrated in
Figure 2.

The mask update given in Eq. 3 is especially crucial
for this task, as holes are usually significantly greater than
convolution kernels. Therefore, after each partial convolu-
tion operation, the mask is updated and with sufficient
successive applications of the partial convolution layer, any
mask will eventually be all ones, if the input contained any
valid pixels.

Partial Convolution-based Image Synthesis. Condi-
tional image synthesis algorithms can be guided by seman-
tic and panoptic maps. A panoptic map combines instance
and segmentation information, an example can be seen in
Figure 3. We use partial convolutions to re-weight convolu-
tions based on these panoptic maps. This way, convolution
results of an instance or a semantic class depend only on
the feature values that belong to the same instance or class.
We follow the same convolution equation as given in Eq. 1,
but we reconstruct the mask, M, in a different way than
in other applications. Let P be the panoptic map values
for the current convolution (sliding) window, and M is the
corresponding binary mask. M defines which pixels will
contribute to the output of the convolution operation based
on the panoptic maps. The pixel coordinates which share
the same identity with the center pixel in the panoptic map
are assigned 1 in the mask, while the others are assigned 0.
This is expressed as:

m(i,j) =

{
1, if P(i,j) = P(center,center)

0, otherwise
(4)

This can be implemented by first subtracting the center
pixel from the patch and clipping the absolute value to [0,
1], then subtracting the clipped output from 1 to invert the

1 0 0

1 1 0

1 1 1

0 1 1

0 1 1

0 1 1

panoptic map zoomed patch mask (Μ)

Fig. 3: Visualization of M (mask) generation for partial-
convolution based image synthesis. The mask is constructed
based on panoptic maps (colorized for visualization). It
operates in a sliding-window fashion to generate a binary
mask value at the center of each window. The pixels that
share the same identity with that of the center of the window
are assigned 1, otherwise 0.

zeros and ones. Figure 3 depicts the construction of the mask
M.

4 EXPERIMENTS

In this section, we present our experiments of partial convo-
lution in three main subsections, partial convolution-based
padding, partial convolution-based image inpainting, and
partial convolution-based image synthesis. Convolution-
based image inpainting and image synthesis are previously
explored in [37] and [14], respectively. We provide addi-
tional qualitative results for these two applications. On the
other hand, little attention has been given to padding in the
literature. In this paper, we provide an extensive study on
the effects of different padding schemes on various tasks
starting with simple task of learning a Gaussian filtering, to
image classification, segmentation, and video classification.
Note that, we do not aim at achieving state-of-the-art results
for each task but instead we show improvements of partial
convolution in controlled studies with strong baselines.

4.1 Partial Convolution-based Padding

Implementation Details. We implement the partial con-
volution based padding in PyTorch extension of existing
convolution modules. We implement the mask of ones (1)
as a single-channel feature with the same batch size, height
and width as the input tensor X. The 1-padded version of 1
(||1p1||1) is directly set to be kh×kw, where kh and kw are the
height and width of the kernel. ||1p0||1 is implemented by
calling the convolution operation once with all the weights
being 1, bias being 0 and original target padding size. The
result of ||1p1||1

||1p0||1 only needs to be computed at the first time
and the result can then be cached for future iterations as
long as the input size does not change. Thus, the execution
time starting from the second iteration will be lower than the
first iteration. In Table 1, we show the comparison of GPU
execution time between networks with various padding and
partial convolution-based padding powered networks for
both the first iteration and after iterations. It can be seen

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3209702

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on October 01,2022 at 05:03:36 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

runtime (ms) relative
VGG16BN zero 3.46 100%
VGG16BN ref 3.65 105%
VGG16BN rep 3.64 105%
VGG16BN explicit 31.23 903%
VGG16BN partial (1st) 4.42 128%
VGG16BN partial (2nd - nth) 4.18 121%

RN50 zero 3.43 100%
RN50 ref 3.55 103%
RN50 rep 3.53 103%
RN50 explicit 16.85 491%
RN50 partial (1st) 5.84 170%
RN50 partial (2nd - nth) 4.29 125%

TABLE 1: Inference time (ms) comparison between zero
and partial convolution-based padding networks using a
224 × 224 image as input, measured on a single NVIDIA
V100 GPU. *zero, *ref and *rep, and *partial indicate the cor-
responding models with zero, reflection, repetition, explicit
[25] and partial convolution-based paddings. This is based
on the raw PyTorch implementation with no custom CUDA
code. 1st, 2nd and nth represent the first, second, and nth
iterations respectively.

that starting from the second iteration partial convolution-
based padding powered VGG16 (batch normalization layer
version) and ResNet50 (RN50) cost about 25% more time
to do the inference on a 224 × 224 input image with a
single NVIDIA V100 GPU. Note that this implementation is
written in pure PyTorch and does not require custom CUDA
code. If implemented in CUDA, the extra cost would be neg-
ligible as we would only need to re-weight the convolution
results at the border. In Table 1, we also measure explicit
padding [25] method which augments networks by intro-
ducing four separate filters dedicated to corners and another
four dedicated to borders of images and feature maps. Due
to its additional parameters, the runtime increases up to 9
times of zero padding for VGG16 and 5 times for RN50.

4.1.1 Learning Gaussian Filtering

Following [25], we first run experiments to observe partial
convolution-based padding’s effect on a simplified task of
learning how to perform a Gaussian blur of a fixed size. The
neural network is asked to learn the effect of a Gaussian
Filter of size 13×13 from ImageNet dataset. Following [25],
we generate the ground truths by applying the Gaussian
Filter over (128 + 12) × (128 + 12) images which we later
crop to size of 128×128 as targets and the crops of 128×128
original images as inputs. We train variant of U-NET [52]
architecture on this task with various padding schemes. The
U-NET consists of 4 blocks of convolution and leaky relu
layers where each convolution has 5 × 5 kernels applied
with a stride of 2 and padding size of 2. Number of filters
starts with 32 and increases by 2× at each block. It has a
symmetric decoder block with decreasing number of filters.
There are skip connections between 1st, 2nd, and 3rd blocks.
We compare methods by means of the MSE metric, which
is also used as the loss function during training. This task
is a very simple one with the only challenge of network not
seeing the overall image of (128+12)× (128+12) but only
seeing the crop of it 128× 128.

Table 2 presents the quantitative comparison on this
task. Explicit padding [25] achieves the best result and

MSE metric relative percentage over best
U-NET zero 0.000485 %81.8
U-NET ref 0.000600 %66.1
U-NET rep 0.000616 %64.4
U-NET explicit 0.000397 %100
U-NET partial 0.000419 %94.7

TABLE 2: Quantitative results on Gaussian filtering task.
*zero, *ref and *rep, and *partial indicate the corresponding
models with zero, reflection, repetition, explicit [25] and
partial convolution-based paddings.

partial convolution-based padding obtains the second best
result, achieving the %94.7 relative improvement of explicit
padding. Explicit padding has more flexibility than par-
tial convolution-based padding as it learns four separate
filters for corners and another four for borders of images
and feature maps. Therefore, not only it has the flexibility
to learn the same behaviour of partial convolution-based
padding but also it has more expressive power to also learn
different weights for corners and borders. It also comes with
additional parameters and slower training and inference
speed. Therefore, we find that it is quite of a remarkable
achievement the partial convolution-based padding obtains
relative to the other padding schemes without introducing
any additional parameters and no slow down if the kernels
are implemented in CUDA. Furthermore, in the next section,
we compare these five methods in image classification task
and observe that explicit padding achieves the worst results
due to its increased number of parameters. These results
suggest that partial convolution-based padding is a good
candidate for various tasks.

4.1.2 Image Classification

We conduct experiments with the VGG{16,19} [56], and
ResNet{50,101,152} [22] models on the ImageNet classifi-
cation task. We use the official training and validation set
provided by the ImageNet dataset. We train VGG models
with Batch Normalization layers, as they are known to
be less sensitive to learning rates and initializations. We
use the training scripts and model definitions from the
corresponding official PyTorch examples.

For each model, we replace all the zero padding with
partial convolution-based padding while keeping all other
parameters the same. While the default PyTorch training
script trains for 90 epochs, we use 100 in our experiments as
in [73]. All models are trained with 8 NVIDIA V100 GPUs
on DGX-1 workstations. The initial learning rate is set to be
0.1 and decreased by a factor of 10 at every 30 epochs. We
train each network 5 times to account for model variance.
To have a full comparison with all the existing padding
schemes, we also run experiments for explicit padding [25],
reflection padding, and replication padding with the same
settings. For each training run, we select the checkpoint with
the highest validation set accuracy to represent that run.

We evaluate the models using the top-1 classification
accuracy based on the single center crop evaluation. Figure 4
shows the mean results of each run’s “best” scenario among
5 runs for each model and each padding scheme. Note that
the top-1 accuracy for all the baseline models from our
training runs, closely matched those reported in official Py-

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3209702

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on October 01,2022 at 05:03:36 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

73
.7

73
.5 73
.8

73
.5 74

.0 74
.4

74
.0 74
.3 74
.5 75

.1

76
.1

76
.2

76
.2

75
.0

76
.6

77
.8

77
.9

77
.9

77
.4
78
.2

78
.2

77
.8 78
.0

77
.0

78
.4

73

74

75

76

77

78

79
To

p-
1

Ac
cu

ra
cy

 (
%

)

VGG16BN VGG19BN Resnet50 Resnet101 Resnet152

Reflection Repetition Zero Explicit Partial

Fig. 4: Comparison of the ImageNet classification top-1
accuracy with center crop among zero padding (zero),
reflection padding (reflection), repetition padding (repeti-
tion), the padding proposed in [25] (explicit) and our par-
tial convolution-based padding (partial) on VGG [56] and
ResNet [22] networks. VGG16BN and VGG19BN represent
the VGG16 network and VGG19 network with batch nor-
malization layers.

Torch documentation1. partial convolution-based padding
(* partial) provides better validation accuracy than other
padding schemes in all architectures. VGG19 with partial
convolution-based padding has the largest improvement
with a 0.68% accuracy boost. In the ResNet family, ResNet50
model has the largest improvement (0.478%) compared with
ResNet101 (0.36%) and ResNet152 (0.248%). We observe that
the improvements are consistent across strong baselines.
Furthermore, we find that reflection padding and replication
padding lead to similar or worse accuracies compared with
zero padding as shown in Figure 4. Overall, the padding
in [25], which uses additional eight filters for borders and
corners, has the worst accuracies. Weight-sharing property
of CNNs is known to be an important regularizer and
an important ingredient in the success of discriminative
networks. Explicit padding partially removes this behaviour
and that may be the reason of its degraded performance in
image classification task. On the other hand, in image syn-
thesis task of learning Gaussian Filtering, explicit padding
achieves the best results. This is in-line with other works
where adaptive filters are used for successful image gen-
eration [39]. Due to explicit padding’s unsuccessful results
on image classification task and its requirement for longer
training (5× longer training time), and memory (8× more
parameters), we omit this method in our other experiments
which are already more computationally demanding. In seg-
mentation and video classification tasks, we only compare
zero, reflective, repetitive, and partial convolution-based
paddings.

4.1.3 Semantic Segmentation
We further test partial convolution-based padding scheme
in semantic segmentation task. The semantic segmentation
task is to classify each pixel of an image with a semantic
category. Most recent semantic segmentation networks use
an encoder-decoder architecture [1], [52] to ensure the out-
put dimensions match those of the input. It is common to
employ an ImageNet pretrained network such as ResNet50
as the backbone for the encoder part, followed by a series

1https://pytorch.org/docs/stable/torchvision/models.html

of deconvolutions or upsampling layers for the decoder.
Padding is essential in guaranteeing same input-output
dimensions as the center of each filter would not be able
to reach the edge pixels otherwise. Some networks also
use dilated convolutions to achieve larger receptive fields
without downsampling or increasing the number of filter
parameters. Dilated convolutions require large number of
padding pixels which increases the influence of padded
values in the encoded features. We use a strong baseline
as our segmentation model [94] and use DeepLabV3+ [6],
one of the state-of-the-art semantic segmentation networks,
which utilizes dilated convolutionsl. It uses a pretrained
ImageNet classifier like ResNet as the encoder backbone.
The encoder further includes a dilated-convolution-based
atrous spatial pyramid pooling module (ASPP) to encode fea-
ture from multiple scales. Next, a decoder with skip links
to the encoder features and a final upsampling is used to
output the final predictions.

We run our segmentation experiments on the Cityscapes
dataset [10] which contains 5000 images with pixel-level
annotations. The default splits include 2975 images for the
training set, 500 images for the validation set and 1525
images for the test set. It also contains 20, 000 coarsely
annotated images. To keep our experiments simple and
focused on the differences between regular and partial
convolution-based padding, we do not employ external
datasets for pre-training as is done to achieve state-of-the-
art performance in works such as [4]. The Cityscapes dataset
contains training data from 21 different cities. The default
train-val split creates an 18/3 train/val split by cities. We
create an additional second 18/3 split to experiment on
as well. Motivated by Mapillary [4], we evaluate partial
convolution-based padding using WideResNet38 [74] and
ResNet50 encoder networks. We also use a data sampling
strategy similar to [4] and use the 20k coarsely annotated
images along with the finely annotated images. We train
the segmentation network for 31K iterations with SGD with
an initial learning rate of 0.03 and 0.1 for ResNet50 and
WideResNet38, respectively and with a polynomial learning
rate decay of 1.0. Our momentum and weight decay are set
to 0.9 and 0.0001, respectively. Similar to other semantic
segmentation works [6], [89], [91], we use the following
augmentations during training: random scaling, horizontal
flipping, gaussian blur, and color jitter. Our crop size is set
to 896 for ResNet50 and 736 for WideResNet38. Lastly, to
due to the large crop size, we use a batch size of 2 with
synchronized batch normalization (for distributed training),
similar to PSPNet [91].

Results. We compare and evaluate the segmentation
models using mean intersection-over-union (mIoU) (%)
across 19 classes defined by the Cityscapes dataset. The
ASPP module includes a spatial pooling step that outputs a
single 1-D feature vector. During training, this pooling pro-
cedure operates on square crops (1:1 aspect ratio). However,
during full-image inference, we must account for the fact
that the full images are of size 1024×2048 with an aspect
ratio of 1:2. This means that the pooling module, trained to
pool over 1:1 aspect ratios, must now pool over 1:2 aspect
ratio input at test time. We resolve this by breaking down
the full image into overlapping square tiles to feed into our
model. We report two types of inference results:

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3209702

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on October 01,2022 at 05:03:36 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

road sidewalk building wall fence pole traffic lgt traffic sgn vegetation
terrain sky person rider car truck bus train motorcycle bike

Input G.T. Segmentation Zero padding Partial conv based padding

Fig. 5: Semantic segmentation results on Cityscapes dataset. From left to right: Input image, Ground truth segmentation,
Zero padding prediction, Partial conv based padding prediction. We demonstrate that partial convolution-based padding
method can remove border artifacts, thus resulting in a better prediction. Only zero and partial convolution-based padding
results are visualized since these are the best two performing methods.

default split additional split
mean diff stdev mean diff stdev

RN50 zero 78.08 - 0.06 76.58 - 0.42
RN50 ref 77.75 -0.33 0.38 76.63 0.04 0.31
RN50 rep 77.31 -0.78 0.13 76.20 -0.38 0.44
RN50 partial 78.20 0.12 0.19 76.91 0.33 0.15
WN38 zero 80.20 - 0.18 78.84 - 0.20
WN38 ref 79.37 -0.83 0.12 78.18 -0.66 0.06
WN38 rep 79.62 -0.59 0.20 78.15 -0.69 0.08
WN38 partial 80.31 0.11 0.19 79.00 0.16 0.11

TABLE 3: DeepLabV3+ mIoU(%) evaluation on Cityscapes
dataset. * zero, * ref and * rep, and * partial indicate the
corresponding model with zero, reflection, repetition, and
partial convolution-based paddings. Models are trained
from the scratch on the training set and evaluated on the
validation set.

1) regular: directly feeding the 1024×2048 image into the
network regardless of the aspect ratio issue.

2) tile: feeding patches after dividing the images into
square tiles of size 1024 × 1024. A straightforward
tile based evaluation divides the images into non-
overlapping regions. There is also the overlapping ver-
sion of tile based evaluation, but we do not discuss it
in this paper for brevity. Tile based evaluation has been
used by popular segmentation works [59], [91], [94] to
obtain better evaluation performance.

In Table 3, we show results with regular inference in
which our segmentation models using partial convolution-
based padding with ResNet50 and WideResNet38 encoder
backbones achieve better mIoU. ResNet50 encoder based
segmentation model trained using partial convolution-
based padding achieves 0.12% and 0.329% higher mIoU
on the default and additional splits, respectively. We also
observe similar performance gains with WideResNet38+,
partial convolution-based padding outperforming its coun-

terpart by 0.112% and 0.164% in the default and additional
splits.

In Table 4 - first column, we report results with tile-
based evaluation on the additional split. We show that the
tile based evaluation achieves higher mIoU than the regular
evaluation, and when partial convolution-based padding is
used, the improvements are even more significant. One ma-
jor concern for tile-based evaluation is that by subdividing
the image, we significantly increase the number of image
border pixels. This leads to an increase in the proportion
of padded values that the network sees, as well as more
cases of truncated image context. We observe that the impor-
tance of partial convolution-based padding even becomes
more significant in this scenario. The model with partial
convolution-based padding is around 0.37% better than
the model with zero padding, the second best performing
method. This is because our proposed model is more robust
to the boundary issue, and thus is much less affected by the
increase in border pixels. In Figure 5, we show qualitative
comparisons between partial convolution-based padding
and zero padding for WideResNet38 for the tile based
evaluation mode. We only compare visual results between
zero padding and partial convolution-based padding results
since they are the best two performing methods. It can be
seen that partial convolution-based padding leads to better
segmentation results on border regions.

Focused Evaluation on Border Regions. To better under-
stand the advantage of partial convolution-based padding
in handling the regions close to the boundaries, we perform
some additional experiments where we only evaluates the
mIoUs on the border regions. Specifically, we set the target
labels to “don’t care” for the center region of the image
at varying proportions, as illustrated in Figure 6. These
evaluations use non-overlapping tiling method. Table 4
shows the corresponding evaluation results by leaving out

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3209702

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on October 01,2022 at 05:03:36 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

Fig. 6: Samples with different proportions of leaving out
center regions. Specifically, we set the target labels to dont
care for the black region of the image at varying proportions.
This way we can demonstrate how the partial convolution-
based padding scheme improves prediction accuracy near
the image boundaries, where it is more effective.

Proportion of image center left out
Padding 0 1

3
× 1

3
2
3
× 2

3
3
4
× 3

4
7
8
× 7

8
WN38 zero 79.530 80.472 81.197 80.684 78.981
WN38 ref 78.509 79.583 80.084 79.370 77.218
WN38 rep 78.303 79.132 79.354 78.616 76.892
WN38 partial 79.907 81.051 82.031 81.600 80.230

TABLE 4: Evaluation of segmentation results with tile based
evaluation method and when leaving out different pro-
portions of the center region as shown in Figure 6 and
explained in main text in Section 4.1.3.

different proportions of the center regions. It can be seen
that as we leave out more proportions of the center region,
the evaluation difference between zero padding and partial
convolution-based padding becomes larger. For example, if
we leave out 1

3 ×
1
3 center regions, the partial convolution-

based padding outperforms the zero padding with 0.385%
mIoU. However, when we leave out 7

8 ×
7
8 center regions,

the difference becomes 1.249%. This empirically demon-
strates that the partial convolution-based padding scheme
significantly improves prediction accuracy near the image
boundaries.

4.1.4 Video Action Recognition
Video action recognition models analyze multiple frames
along the temporal axis, typically using 3D convolutions
to achieve this. Due to the additional temporal dimension,
padding must be performed in three dimensions instead of
two, resulting in an increased proportion of padded values
in the padded tensor. Thus, padding choices are potentially
more important for 3D convolutional models.

We compare partial convolution-based padding against
zero padding in the 3D convolution scenario using the 3D
ResNet50 models available on Github2 released by [19].
The models are trained and tested with the default settings
provided on the Kinetics-400 dataset [32], taking video clips
of 16 frames of 112× 112 pixels as input and predicting one
of 400 possible action categories.

As shown in Table 5, compared with zero padding,
partial convolution-based padding obtains 1.5% top-1 ac-
curacy improvement. Note that the dataset provides only
YouTube links, and some videos are no longer accessible.
We end up downloading 237,337 videos out of the original
246,535 videos for training and 19,535 videos out of the
original 19,907 videos for validation. The unavailability in
data may partially explain the discrepancies between our
zero padding results and those originally reported. An

2https://github.com/kenshohara/3D-ResNets-PyTorch

Padding Round1 Round2 mean [19]
3D RN50 zero 60.3 60.6 60.5 61.3#

3D RN50 ref 60.3 60.1 60.2 -
3D RN50 rep 60.6 59.1 59.8 -
3D RN50 partial 61.9 62.1 62.0 -

TABLE 5: Accuracies on Kinetics validation set. * zero, * ref
and * rep, and * partial indicate the corresponding model
with zero, reflection, repetition, and partial convolution-
based paddings. Note that for the baseline zero padding
result, there is some difference between our experiments
(round 1 & 2) and the experiment in [19]. Nonetheless,
the partial convolution result outperforms the zero padding
result in [19].

additional difference is that the original results were based
on Lua-Torch whereas, we are basing our experiment on
their PyTorch re-implementation. Nonetheless, the partial
convolution result outperforms our zero-padding internal
baseline and the padding result in [19] as well as reflection
and repetition padding baselines. We find the improvements
obtained from partial convolution-based padding to be
more significant in this task than the object classification
and segmentation tasks. We believe this result to be the
outcome of increased importance of the padding choice
when 3D convolutional models are used since now padding
must be performed in three dimensions. These results show
that partial convolution-based padding may be an essential
component when 3D data is processed such as in videos, or
medical datasets.

4.2 Partial Convolution-based Image Inpainting
We provide additional qualitative results with partial con-
volution in image inpainting task which was previously
explored in [37]. The experiment set-up uses a UNet-like
architecture [52] similar to the one used in [27] to fill the
hole in the image with plausible imagery. All convolutional
layers in the network are replaced with partial convolutional
layers. The network is trained with various reconstruction
losses: per-pixel loss, perceptual loss [30], style loss [16],
and total variation loss.

To validate the effectiveness of partial convolution for
image inpainting, we train the network with both traditional
convolution layer and partial convolution layer. We use the
images from Places2 dataset [92] and ImageNet [11]. We
generated 55,116 random masks using the occlusion/dis-
occlusion mask estimation method described in [61] for
training and 12,000 masks with different hole-to-image area
ratios from 0.01 to 0.6 for testing. We follow the previous im-
age inpainting works [78], [84] by reporting `1 error, PSNR,
SSIM [71], and the inception score [53]. `1 error, PSNR and
SSIM are reported on Places2, whereas the Inception score
(IS) is reported on ImageNet as it uses a pretrained image
object classification network.

Table 6 and Figure 7 show quantitative and qualitative
results of comparing outputs of networks using traditional
convolution layers (Conv) and of networks using partial
convolution layers (Partial Conv). As can be seen in Table
6 and Figure 7, partial convolution can robustly handle
holes of any shape, size location, or distance from the
image borders compared to traditional convolution opera-
tion. Furthermore, the performance of network empowered

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3209702

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on October 01,2022 at 05:03:36 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

Input Conv Partial Conv Input Conv Partial Conv

Fig. 7: Comparison between typical convolution layer based results and partial convolution layer based results. Convolution
layers do not handle the invalid pixels, resulting in lack of texture in hole regions and obvious color discrepancies. On the
other hand, partial convolution can robustly handle holes of any shape, size, and location.

Hole Ratio [0.01, 0.2] (0.2, 0.4] (0.4, 0.6]
`1(Conv)(%) 0.863 2.653 5.338
`1(PartialConv)(%) 0.808 2.495 5.098
IS(Conv) 0.122 0.741 2.486
IS(PartialConv) 0.088 0.559 1.978
SSIM(Conv) 0.903 0.724 0.526
SSIM(PartialConv) 0.907 0.731 0.533
PSNR(Conv) 30.548 23.380 19.627
PSNR(PartialConv) 31.030 23.673 19.743

TABLE 6: Comparisons between a typical convolution layer
and a partial convolution layer for image inpainting. Lower
is better for `1(%) and IS; higher is better for SSIM and
PSNR.

with partial convolutions does not deteriorate catastroph-
ically as holes increase in size as can be seen in Figure
7. Looking at the metrics in Table 6, partial convolution
based models consistently outperform the networks using
traditional convolutional layers for both small and large
hole ratios. We are also interested in analyzing if partial
convolution-based image inpainting improves more with
larger inpainting ratios. This is difficult to measure with `1
error, PSNR and SSIM metrics since they compare output
image with ground-truth and expects a match between
them. However, when the inpainting ratio increases, there
are more uncertainities even for the color of the pixels and
not matching the ground-truth may not necessarily be a
bad thing. IS is an important metric to look at for those
cases since it looks at the overall image quality. Looking at
IS, as the ratio gets larger, the partial convolution method
improves the results with a larger margin. For example,
baseline versus partial convolutions are 0.741 versus 0.559
for hole ratios between (0.2, 0.4] (a margin of 0.182) and
2.486 versus 1.978 for (0.4, 0.6] ratios (a margin of 0.508).

Note that in this task, we compare traditional convolu-
tion and partial convolution and not the padding schemes.
This task has the similarities with padding formulation as
both require handling missing pixels. Whereas in padding

schemes, reflection, and repetition paddings are proposed,
they are not used in inpainting since the holes are irregular.

4.3 Partial Convolution-based Image Synthesis
In this section, we provide more qualitative and quantita-
tive results for partial convolution-based image synthesis,
previously explored in [14]. We use the same network
architecture and training parameters given in [46] and run
image synthesis experiments on the Cityscapes dataset [10].
Synthesized images are of size 256 × 512. The baseline
network is conditioned on semantic maps concatenated
with boundary maps. Boundary maps are generated from
instance maps as such: a pixel in the boundary map is
set to 1 if its object identity is different from any of its
4 neighbors, and 0 otherwise. This conditioning is done
via spatially adaptive normalization layer, SPADE [46].
SPADE layers process concatenated semantic and boundary
maps via convolution layers and output scale and shift
parameters. Other than that, this baseline architecture uses
regular convolution layers before each normalization layer.
In our experiments, we replace those convolution layers
with partial-based convolution layers. The image generator
with partial convolution additionally uses panoptic maps.
Masks that are used in partial convolution are constructed
based on panoptic maps as described in Section 3. This
way, convolutional output conditioned on an instance or
a semantic class depends only on the feature values that
belong to the same instance or class.

We expect the partial convolution-based generator to
synthesize images with higher fidelity to the underlying
segmentation and instance information, especially when ob-
jects are small and instances are partially occluded. To mea-
sure that, we evaluate the generated images with state-of-
the-art segmentation and object detection networks. Specif-
ically, DRN-D-105 [83] is used to measure segmentation
accuracy, and Faster-RCNN [51] with a ResNet-50 backbone
is used for measuring detection accuracy. State-of-the-art

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3209702

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on October 01,2022 at 05:03:36 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

Panoptic Map Conv Partial Conv Conv Partial Conv

Fig. 8: Visual comparison of image synthesis results on Cityscapes dataset. Columns show in the order of panoptic maps,
images synthesized with convolution and partial convolution based generators, and bounding box detections from Faster-
RCNN on those syntehsized images. The partial convolution based generator outputs images with instances that can be
detected by Faster-RCNN with higher accuracy.

Method mIoU detAP
Image generator with convolution 60.00 10.97
Image generator with partial convolution 61.24 11.50

TABLE 7: Image synthesis evaluation results on Cityscapes
dataset. Results are averaged over 3 runs.

segmentation and object detection networks we use are
quite sensitive to small objects and instance boundaries
and can detect such improvements quantitatively. As can be
seen in Table 7, the scores improve with the incorporation
of partial convolutions. In the qualitative results shown in
Figure 8, we see that the partial convolution-based generator
outputs images with instances that can be detected by
Faster-RCNN with higher accuracy. Specifically, we find that
the partial convolution-based generator generates distinct
cars even when they are occluding each other, and can
generate detectable people even when they are far away
as shown in Figure 8. As can be seen in Figure 8, we
find that the convolution based architecture may blend the
pattern and texture of objects among neighboring instances,
whereas our method clearly separates them.

5 ANALYSIS AND DISCUSSION

In this section, we provide more in-depth discussion on the
performance gains with partial convolution based padding.
In our experiments, we see that partial convolution-based
padding achieves superior performance over other padding
schemes in image classification, segmentation, and espe-
cially in video action recognition tasks. Our experiments
cover various tasks and also various networks such as
2D convolutions in popular networks of VGG and ResNet
as well as dilated convolutions for segmentation tasks in
ResNet and WideResNet, and 3D convolutions for video
recognition tasks. We showcase that with different archi-
tectures and convolution operations, partial convolution-
based padding is always the winner. Furthermore, the im-
provements come with zero cost, if implemented in CUDA,

Inference
Trained zero/diff ref/diff rep/diff partial/diff
zero 76.13/0 72.79/-3.33 73.52/-2.60 59.77/-16.35
ref 74.09/-2.08 76.17/0 74.14/-2.03 73.46/-2.71
rep 73.85/-2.36 73.08/-3.13 76.21/0 73.15/-3.06
partial 75.88/-0.73 73.31/-3.30 74.00/-2.61 76.61/0

TABLE 8: Cross testing of using different padding schemes.
Each row represent a model trained with the correspond-
ing padding methods. Each column indicates use of dif-
ferent padding methods during inference. All models are
ResNet50 and averaged over 5 runs.

since it only requires a re-weight of the convolution results
at the border. We also observe that zero padding achieves
better accuracies when compared to reflection and repetitive
padding. Reflection and repetitive padding introduce unre-
alistic borders, this may cause CNNs to have a more difficult
job when handling boundaries. Padding these borders with
zeros also generates unrealistic borders but at least it is
consistent among all images and can be handled by CNNs
better. Another interesting finding we observe is that explicit
padding [25] which require eight additional filters dedicated
to borders and corners improve results in simple task of
learning Gaussian filtering and deteriorate the accuracies
in image classification task. It also comes with additional
parameters and around 5× slowdown during training and
inference.

Robustness to Cross Testing. We argue that the im-
provements of partial convolution-based padding is pro-
vided because the network learns more robust features.
We experiment that with cross testing set-up between zero,
reflection, repetition and partial convolution-based padding
networks. We set this experiment, for example, by training a
zero padding network and during inference time replacing
the zero padding with partial convolution-based padding.
We do the same for all these different padding based net-
works and with all combinations.

Results are presented in Table 8. Each row presents

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3209702

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on October 01,2022 at 05:03:36 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

zero-ref zero-rep zero-partial

partial-ref partial-rep partial-zero

rep-ref rep-zero rep-partial

ref-rep ref-zero ref-partial

Fig. 9: Feature distance visualization of cross testing exper-
iments. In the first row, model trained with zero padding
is used for inference with different padding methods. In
this set-up, we run inference with two models, zero-padding
versus another, and plot the differences between the feature
values. We calculate the mean absolute differences of feature
values from the last layer of the network which have a spa-
tial dimension of 7×7. Distances are averaged for validation
set. With these plots, we are able to see how much feature
values change when trained with zero-padding and inferred
with a different padding scheme. The other rows show the
same set-up with partial, repetition, and reflection paddings.
The largest differences are observed when model is trained
with zero padding and inferred with partial padding.

the results of the network trained with the corresponding
padding scheme (e.g. first row trained with zero padding).
Each column corresponds to the padding method used dur-
ing inference. The results are averaged over 5 runs. Diagonal
results are the best results since same padding is used for
both training and inference. In other cells, we also share the
difference by subtracting the performance from its diagonal
correspondence. As expected, our results show that when
the padding scheme is changed during inference, the results
degrade. However, we also observe networks that are pow-
ered with partial padding during training are more robust

* * * *

* * * *

* * * *

* * * *

padding with stride zero-partial

Fig. 10: [Left] Visualization of 3x3 convolution operation
with stride 2x2 and padding 1x1. As it shows the left
convolution windows utilize more padded entries than right
convolution windows. Top-left corner utilizes more padded
entries than any other corners. [Right] Feature distance
visualization of zero versus partial padding.

to padding switches and in average their performances
degrade less. They provide the second best results two
times out of three when different paddings are used during
inference. Interestingly, we observe in Table 8 that a model
trained with zero padding suffers a significant drop in test-
time accuracy if switched to the partial convolution-based
padding for inference. On the other hand, the performance
drop when applying a model trained with partial convolu-
tion padding to zero-padded data is nominal (16% versus
0.7%). We also see that reflection and repetition padding
methods are more robust to padding switches than zero
padding since they do not need to over-specialize to handle
borders as much as zero-padding requires.

We extend our cross testing analysis in Figure 9 where
instead of looking at the accuracy of the models, we plot
how much feature values deviate when padding scheme is
switched. We look at the features from the last convolutional
layer of ResNet50 which has a spatial dimension of 7 × 7.
In the first row, we load a model that is trained with
zero-padding and observe how much feature values change
when we run the model with another padding versus zero
padding. Other rows present the same settings for partial,
repetition, and reflection paddings. Since these features are
towards the end of the network, all feature values are
affected but as expected the corners and borders are affected
more than the center pixels. We see that models trained
with zero padding and inferred with partial padding results
in the most difference between feature values overall and
especially a large spike on the left corner and around the
edges. The reason for the larger spike on the left corner
is because the ResNet architecture employs many convo-
lutional layers with kernel size 3 or 7, stride 2, and padding
1 or 3 to decrease the spatial dimension. As shown in Figure
10[Left], when convolutional layer is applied with kernel
size 3, stride 2, and padding 1, there is more padding effect
on the top-left corner which is consistent with our feature
map distance visualization as also given in 10[Right]. When
kernel size 7, stride 2 and padding 3 is used, the difference of
how many padded entries are used between left corners and
right corners becomes even larger. For the other layers in
ResNet where kernel sizes are 3, strides are 1, and paddings
are 1, all corners are affected the same way.

Based on Eq. 1, we see that partial convolution-based
padding is corresponding to the widely used zero padding

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3209702

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on October 01,2022 at 05:03:36 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

input layer22_zero layer22_partial layer32_zero layer32_partial

Fig. 11: Activation Map at 22nd layer and 32nd layer of
VGG19BN network with zero padding and VGG19BN net-
work with partial padding. These two layers are ReLU
layers, and we sum up the activation along channels and
resize the summation for visualization. Red rectangles show
the strong activation regions from VGG19BN network with
zero padding whereas response magnitudes are relatively
uniform for the partial convolution.

with the scaling factor given in Eq. 2. Even though it may
seem that the change between zero and partial padding is
subtle, computationally they output very different results.
In fact, it may seem that zero and partial padding are the
most similar ones to each other, however, based on our
analysis that is not true. There may be cases when the border
values of feature maps are close to zero which results in
repetition and reflection paddings outputting values similar
to the zero padding results. On the other hand, partial
padding has a scaling factor which can change the results
more significantly. The obtained improvements and the
behaviour of zero and partial convolution-based padding
in the cross testing provide further evidence of unwanted
model specialization occurring in models trained on zero-
padded data to deal with image borders. On the other
hand, partial convolution-based padding does not suffer
from such specialization to handle boundaries and show
more robustness. Reflection and repetition paddings also do
not suffer from such specialization but they perform worse
than partial padding.

Activation Map Visualization. We further investi-
gate the behaviour of zero and partial convolution-based
paddings when handling boundaries. They are the top 2
performing methods in our experiments and have subtle
differences where partial convolution-based padding intro-
duces a scaling factor among the borders. However, they
behave very differently in cross testing experiments, partial
convolution-based padding improves the accuracies sig-
nificantly over zero-padding and show more roboustness.
To understand the behaviour of these two methods, we
visualize the activations of various convolutional layers of
partial padding and zero padding based networks for image
classification task. Figure 11 shows the activations for two
examples where zero-padding fails but partial convolution-
based padding succeeds to correctly classify them. By visu-
alizing the activation maps, we notice, for models using zero
padding, the features at the border have strong activation
responses compared to the other spatial locations. On the
other hand, the response magnitudes are relatively uniform
throughout for the partial padded model. We conjecture

that the higher response magnitudes along the edges for
the zero-padded models means that the model is trying
to overcome effects from padded zero values. However, it
sometimes fails, and produces less accurate results com-
pared to the counterpart network with partial convolution-
based padding. These visuals are also consistent with the
semantic segmentation experiments from Section 4.1.3. In
segmentation experiments, we observe that the largest im-
provements were obtained near the image boundaries since
partial convolution-based padding help the network output
robust features across the edges.

6 CONCLUSION

In this paper, we have reviewed various applications of
partial convolution in CNNs. We demonstrated qualitative
improvements provided by partial convolution in image
inpainting and synthesis tasks. We have evaluated the ef-
fectiveness of partial convolution-based padding compared
to existing padding methods. We demonstrate that it outper-
forms the widely adopted zero padding through extensive
experiments on image classification, semantic segmentation
and video action recognition tasks. The improvements are
consistent, and improve on strong baselines.

REFERENCES

[1] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep
convolutional encoder-decoder architecture for image segmenta-
tion. arXiv preprint arXiv:1511.00561, 2015. 6

[2] G. Balakrishnan, A. Zhao, A. V. Dalca, F. Durand, and J. Guttag.
Synthesizing images of humans in unseen poses. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 8340–8348, 2018. 2

[3] A. Bhattad, A. Dundar, G. Liu, A. Tao, and B. Catanzaro. View
generalization for single image textured 3d models. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 6081–6090, 2021. 1

[4] S. R. Bulò, L. Porzi, and P. Kontschieder. In-place activated
batchnorm for memory-optimized training of dnns. CoRR,
abs/1712.02616, December, 5, 2017. 6

[5] R. Cao, X. Zhong, F. Scalzo, S. Raman, and K. Sung. Prostate cancer
inference via weakly-supervised learning using a large collection
of negative mri. In Proceedings of the IEEE International Conference
on Computer Vision Workshops, pages 0–0, 2019. 3

[6] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam.
Encoder-decoder with atrous separable convolution for semantic
image segmentation. arXiv preprint arXiv:1802.02611, 2018. 1, 6

[7] M. Chen, B. H. Newell, Z. Sun, C. A. Corr, and W. Gao. Reconstruct
missing pixels of landsat land surface temperature product using
a cnn with partial convolution. In Applications of Machine Learning,
volume 11139, page 111390E. International Society for Optics and
Photonics, 2019. 3

[8] M. Chen, X. Zhao, and D. Xu. Image inpainting for digital
dunhuang murals using partial convolutions and sliding window
method. In Journal of Physics: Conference Series, volume 1302, page
032040. IOP Publishing, 2019. 3

[9] H.-T. Cheng, C.-H. Chao, J.-D. Dong, H.-K. Wen, T.-L. Liu, and
M. Sun. Cube padding for weakly-supervised saliency prediction
in 360 videos. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1420–1429, 2018. 2

[10] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele. The cityscapes dataset
for semantic urban scene understanding. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 3213–
3223, 2016. 6, 9

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Ima-
geNet: A Large-Scale Hierarchical Image Database. In CVPR09,
2009. 8

[12] Y. Ding, C. Wang, H. Huang, J. Liu, J. Wang, and L. Wang. Frame-
recurrent video inpainting by robust optical flow inference. arXiv
preprint arXiv:1905.02882, 2019. 3

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3209702

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on October 01,2022 at 05:03:36 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

[13] A. Dundar, J. Gao, A. Tao, and B. Catanzaro. Fine detailed texture
learning for 3d meshes with generative models. arXiv preprint
arXiv:2203.09362, 2022. 1

[14] A. Dundar, K. Sapra, G. Liu, A. Tao, and B. Catanzaro. Panoptic-
based image synthesis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 8070–8079, 2020.
2, 4, 9

[15] A. Dundar, K. Shih, A. Garg, R. Pottorff, A. Tao, and B. Catan-
zaro. Unsupervised disentanglement of pose, appearance and
background from images and videos. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2021. 2

[16] L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm of
artistic style. arXiv preprint arXiv:1508.06576, 2015. 8

[17] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets.
In Advances in neural information processing systems, pages 2672–
2680, 2014. 2

[18] X. Han, Z. Zhang, D. Du, M. Yang, J. Yu, P. Pan, X. Yang, L. Liu,
Z. Xiong, and S. Cui. Deep reinforcement learning of volume-
guided progressive view inpainting for 3d point scene completion
from a single depth image. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 234–243, 2019. 3

[19] K. Hara, H. Kataoka, and Y. Satoh. Can spatiotemporal 3d cnns
retrace the history of 2d cnns and imagenet? In Proceedings of the
IEEE conference on Computer Vision and Pattern Recognition, pages
6546–6555, 2018. 1, 8

[20] A. W. Harley, K. G. Derpanis, and I. Kokkinos. Segmentation-
aware convolutional networks using local attention masks. In
IEEE International Conference on Computer Vision (ICCV), volume 2,
page 7, 2017. 2

[21] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE international conference on computer vision,
pages 1026–1034, 2015. 2

[22] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770–778, 2016. 1, 3, 5, 6

[23] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz. Multimodal
unsupervised image-to-image translation. European Conference on
Computer Vision (ECCV), 2018. 2

[24] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Globally and locally
consistent image completion. ACM Transactions on Graphics (TOG),
36(4):107, 2017. 1, 2

[25] C. Innamorati, T. Ritschel, T. Weyrich, and N. J. Mitra. Learning
on the edge: Explicit boundary handling in cnns. arXiv preprint
arXiv:1805.03106, 2018. 2, 5, 6, 10

[26] S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. arXiv
preprint arXiv:1502.03167, 2015. 2

[27] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image trans-
lation with conditional adversarial networks. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2017. 2, 8

[28] V. Ivashkin and V. Lebedev. Spatiotemporal data fusion for
precipitation nowcasting. arXiv preprint arXiv:1812.10915, 2018. 3

[29] H. Jiang, D. Sun, V. Jampani, M.-H. Yang, E. Learned-Miller,
and J. Kautz. Super slomo: High quality estimation of multiple
intermediate frames for video interpolation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages
9000–9008, 2018. 1

[30] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-
time style transfer and super-resolution. In European Conference on
Computer Vision, pages 694–711. Springer, 2016. 8

[31] T. Karras, S. Laine, and T. Aila. A style-based generator architec-
ture for generative adversarial networks. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2019. 1

[32] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijaya-
narasimhan, F. Viola, T. Green, T. Back, P. Natsev, et al. The kinetics
human action video dataset. arXiv preprint arXiv:1705.06950, 2017.
8

[33] M. Kegler, P. Beckmann, and M. Cernak. Deep speech inpainting
of time-frequency masks. arXiv preprint arXiv:1910.09058, 2019. 3

[34] D. P. Kingma and J. Ba. Adam: A method for stochastic optimiza-
tion. arXiv preprint arXiv:1412.6980, 2014. 2

[35] A. X. Lee, R. Zhang, F. Ebert, P. Abbeel, C. Finn, and
S. Levine. Stochastic adversarial video prediction. arXiv preprint
arXiv:1804.01523, 2018. 1

[36] Y. Li, S. Liu, J. Yang, and M.-H. Yang. Generative face completion.
In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), volume 1, page 3, 2017. 2

[37] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and B. Catanzaro.

Image inpainting for irregular holes using partial convolutions.
arXiv preprint arXiv:1804.07723, 2018. 2, 3, 4, 8

[38] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu,
and A. C. Berg. Ssd: Single shot multibox detector. In European
Conference on Computer Vision (ECCV), 2016. 1

[39] X. Liu, G. Yin, J. Shao, X. Wang, et al. Learning to predict layout-to-
image conditional convolutions for semantic image synthesis. In
Advances in Neural Information Processing Systems, pages 568–578,
2019. 3, 6

[40] D. Lorenz, L. Bereska, T. Milbich, and B. Ommer. Unsupervised
part-based disentangling of object shape and appearance. In
CVPR, 2019. 2

[41] M. Mardani, G. Liu, A. Dundar, S. Liu, A. Tao, and B. Catanzaro.
Neural ffts for universal texture image synthesis. Advances in
Neural Information Processing Systems, 33, 2020. 1

[42] J. Mathai, I. Masi, and W. AbdAlmageed. Does generative face
completion help face recognition? arXiv preprint arXiv:1906.02858,
2019. 3

[43] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida. Spectral
normalization for generative adversarial networks. arXiv preprint
arXiv:1802.05957, 2018. 3

[44] V. Nair and G. E. Hinton. Rectified linear units improve restricted
boltzmann machines. In Proceedings of the 27th international confer-
ence on machine learning (ICML-10), pages 807–814, 2010. 2

[45] D. Novotny, B. Graham, and J. Reizenstein. Perspectivenet: A
scene-consistent image generator for new view synthesis in real
indoor environments. In Advances in Neural Information Processing
Systems, pages 7599–7610, 2019. 3

[46] T. Park, M.-Y. Liu, T.-C. Wang, and J.-Y. Zhu. Semantic image
synthesis with spatially-adaptive normalization. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2337–2346, 2019. 2, 3, 9

[47] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros.
Context encoders: Feature learning by inpainting. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2536–2544, 2016. 1, 2

[48] A. Pimkin, A. Samoylenko, N. Antipina, A. Ovechkina,
A. Golanov, A. Dalechina, and M. Belyaev. Multi-domain ct metal
artifacts reduction using partial convolution based inpainting.
arXiv preprint arXiv:1911.05530, 2019. 3

[49] F. A. Reda, D. Sun, A. Dundar, M. Shoeybi, G. Liu, K. J. Shih,
A. Tao, J. Kautz, and B. Catanzaro. Unsupervised video interpola-
tion using cycle consistency. In Proceedings of the IEEE International
Conference on Computer Vision, pages 892–900, 2019. 1

[50] J. S. Ren, L. Xu, Q. Yan, and W. Sun. Shepard convolutional neural
networks. In Advances in Neural Information Processing Systems,
pages 901–909, 2015. 2

[51] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-
time object detection with region proposal networks. In Advances
in neural information processing systems, pages 91–99, 2015. 1, 9

[52] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional
networks for biomedical image segmentation. In International Con-
ference on Medical image computing and computer-assisted intervention,
pages 234–241. Springer, 2015. 5, 6, 8

[53] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford,
and X. Chen. Improved techniques for training gans. In Advances
in neural information processing systems, pages 2234–2242, 2016. 8

[54] K. J. Shih, A. Dundar, A. Garg, R. Pottorf, A. Tao, and B. Catanzaro.
Video interpolation and prediction with unsupervised landmarks.
arXiv preprint arXiv:1909.02749, 2019. 1

[55] M.-L. Shih, S.-Y. Su, J. Kopf, and J.-B. Huang. 3d photography
using context-aware layered depth inpainting. arXiv preprint
arXiv:2004.04727, 2020. 3

[56] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014. 1, 5, 6

[57] Y. Song, C. Yang, Z. Lin, H. Li, Q. Huang, and C.-C. J. Kuo. Image
inpainting using multi-scale feature image translation. arXiv
preprint arXiv:1711.08590, 2017. 2

[58] V. Sterzentsenko, L. Saroglou, A. Chatzitofis, S. Thermos,
N. Zioulis, A. Doumanoglou, D. Zarpalas, and P. Daras. Self-
supervised deep depth denoising. In Proceedings of the IEEE
International Conference on Computer Vision, pages 1242–1251, 2019.
3

[59] K. Sun, Y. Zhao, B. Jiang, T. Cheng, B. Xiao, D. Liu, Y. Mu, X. Wang,
W. Liu, and J. Wang. High-resolution representations for labeling
pixels and regions. arXiv preprint arXiv:1904.04514, 2019. 7

[60] L. Sun, Y. Zhang, X. Chang, Y. Wang, and J. Xu. Cloud-aware
generative network: Removing cloud from optical remote sensing
images. IEEE Geoscience and Remote Sensing Letters, 2019. 3

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3209702

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on October 01,2022 at 05:03:36 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 14

[61] N. Sundaram, T. Brox, and K. Keutzer. Dense point trajectories
by gpu-accelerated large displacement optical flow. In European
conference on computer vision, pages 438–451. Springer, 2010. 8

[62] P. Teterwak, A. Sarna, D. Krishnan, A. Maschinot, D. Belanger,
C. Liu, and W. T. Freeman. Boundless: Generative adversarial net-
works for image extension. In Proceedings of the IEEE International
Conference on Computer Vision, pages 10521–10530, 2019. 2

[63] T. Tieleman and G. Hinton. Lecture 6.5-rmsprop: Divide the gra-
dient by a running average of its recent magnitude. COURSERA:
Neural networks for machine learning, 4(2):26–31, 2012. 2

[64] J. Uhrig, N. Schneider, L. Schneider, U. Franke, T. Brox, and
A. Geiger. Sparsity invariant cnns. arXiv preprint arXiv:1708.06500,
2017. 2

[65] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Deep image prior. arXiv
preprint arXiv:1711.10925, 2017. 2

[66] A. van den Oord, N. Kalchbrenner, L. Espeholt, O. Vinyals,
A. Graves, et al. Conditional image generation with pixelcnn
decoders. In Advances in Neural Information Processing Systems,
pages 4790–4798, 2016. 2

[67] F. Wan, Ö. Smedby, and C. Wang. Simultaneous mr knee image
segmentation and bias field correction using deep learning and
partial convolution. In Medical Imaging 2019: Image Processing,
volume 10949, page 1094909. International Society for Optics and
Photonics, 2019. 3

[68] J. Wang, K. Chen, R. Xu, Z. Liu, C. C. Loy, and D. Lin. Carafe:
Content-aware reassembly of features. In Proceedings of the IEEE
International Conference on Computer Vision, pages 3007–3016, 2019.
3

[69] T.-C. Wang, M.-Y. Liu, J.-Y. Zhu, A. Tao, J. Kautz, and B. Catanzaro.
High-resolution image synthesis and semantic manipulation with
conditional gans. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 8798–8807, 2018. 1, 2, 3

[70] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural
networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 7794–7803, 2018. 2

[71] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image
quality assessment: from error visibility to structural similarity.
IEEE transactions on image processing, 13(4):600–612, 2004. 8

[72] D. Wei, L. Zhang, Z. Wu, X. Cao, G. Li, D. Shen, and Q. Wang.
Deep morphological simplification network (ms-net) for guided
registration of brain magnetic resonance images. Pattern Recogni-
tion, 100:107171, 2020. 3

[73] Y. Wu and K. He. Group normalization. arXiv preprint
arXiv:1803.08494, 2018. 5

[74] Z. Wu, C. Shen, and A. v. d. Hengel. Wider or deeper: Re-
visiting the resnet model for visual recognition. arXiv preprint
arXiv:1611.10080, 2016. 6

[75] C. Xie, S. Liu, C. Li, M.-M. Cheng, W. Zuo, X. Liu, S. Wen, and
E. Ding. Image inpainting with learnable bidirectional attention
maps. In Proceedings of the IEEE International Conference on Com-
puter Vision, pages 8858–8867, 2019. 2

[76] H. Xiong, C. Wang, D. Tao, M. Barnett, and C. Wang. Multiple
sclerosis lesion inpainting using non-local partial convolutions.
arXiv preprint arXiv:1901.00055, 2018. 3

[77] R. Xu, X. Li, B. Zhou, and C. C. Loy. Deep flow-guided video
inpainting. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3723–3732, 2019. 1

[78] C. Yang, X. Lu, Z. Lin, E. Shechtman, O. Wang, and H. Li.
High-resolution image inpainting using multi-scale neural patch
synthesis. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), volume 1, page 3, 2017. 2, 8

[79] X. Yang, X. Yang, M.-Y. Liu, F. Xiao, L. Davis, and J. Kautz. STEP:
Spatio-temporal progressive learning for video action detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019. 1

[80] Z. Yang, X. He, J. Gao, L. Deng, and A. Smola. Stacked attention
networks for image question answering. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 21–29,
2016. 2

[81] R. Yeh, C. Chen, T. Y. Lim, M. Hasegawa-Johnson, and M. N. Do.
Semantic image inpainting with perceptual and contextual losses.
arXiv preprint arXiv:1607.07539, 2016. 2

[82] F. Yu and V. Koltun. Multi-scale context aggregation by dilated
convolutions. In International Conference on Learning Representations
(ICLR), 2016. 1

[83] F. Yu, V. Koltun, and T. Funkhouser. Dilated residual networks. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2017. 9

[84] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang. Gener-
ative image inpainting with contextual attention. arXiv preprint

arXiv:1801.07892, 2018. 1, 2, 8
[85] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang. Free-form

image inpainting with gated convolution. In Proceedings of the IEEE
International Conference on Computer Vision, pages 4471–4480, 2019.
2

[86] N. Yu, G. Liu, A. Dundar, A. Tao, B. Catanzaro, L. S. Davis,
and M. Fritz. Dual contrastive loss and attention for gans. In
Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 6731–6742, 2021. 3

[87] T. Yu, C. Lin, S. Zhang, X. Ding, J. Wu, J. Zhang, et al. End-to-
end partial convolutions neural networks for dunhuang grottoes
wall-painting restoration. In Proceedings of the IEEE International
Conference on Computer Vision Workshops, pages 0–0, 2019. 3

[88] X. Zhan, X. Pan, B. Dai, Z. Liu, D. Lin, and C. C. Loy. Self-
supervised scene de-occlusion. arXiv preprint arXiv:2004.02788,
2020. 3

[89] H. Zhang, K. Dana, J. Shi, Z. Zhang, X. Wang, A. Tyagi, and
A. Agrawal. Context encoding for semantic segmentation. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2018. 6

[90] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena. Self-attention
generative adversarial networks. arXiv preprint arXiv:1805.08318,
2018. 2, 3

[91] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene parsing
network. In IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR), pages 2881–2890, 2017. 6, 7

[92] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba.
Places: A 10 million image database for scene recognition. IEEE
transactions on pattern analysis and machine intelligence, 40(6):1452–
1464, 2017. 8

[93] J.-Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros, O. Wang, and
E. Shechtman. Toward multimodal image-to-image translation. In
Advances in Neural Information Processing Systems (NIPS), 2017. 2

[94] Y. Zhu, K. Sapra, F. A. Reda, K. J. Shih, S. Newsam, A. Tao, and
B. Catanzaro. Improving semantic segmentation via video propa-
gation and label relaxation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 8856–8865, 2019. 1,
6, 7

Guilin Liu is a senior research scientist at
NVIDIA. He obtained his Ph.D. in Computer Sci-
ence from George Mason University in 2017.
He received his B.E. in Spatial Informatics and
Digitalized Technology together with a minor de-
gree in Finance from Wuhan University in 2012.
His research has attracted many attentions from
some media outlets like Forbes, MIT Technology
Review, Yahoo Finance etc. His research inter-
ests include deep learning for image/video edit-
ing and creation, machine learning for graphics

and geometric data processing.

Aysegul Dundar is an Assistant Professor of
Computer Science at Bilkent University, Turkey
and a Sr. Research Scientist at NVIDIA. She
received her Ph.D. degree at Purdue University
in 2016, under supervision of Professor Eugenio
Culurciello. She received a B.Sc. degree in Elec-
trical and Electronics Engineering from Bogazici
University in Turkey, in 2011. Her current re-
search focuses are on domain adaptation, image
segmentation, and generative models for image
synthesis and manipulation.

Kevin J. Shih is a research scientist in the Ap-
plied Deep Learning Research team at NVIDIA.
He obtained his Ph.D. in Computer Science from
University of Illinois at Urbana–Champaign un-
der the supervision of Professor Derek Hoiem.
Prior to that, he received his B.S.E from the
University of Michigan. His research interests
include object localization, pose estimation, at-
tention mechanisms, and models that handle
multiple modalities.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3209702

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on October 01,2022 at 05:03:36 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 15

Ting-Chun Wang is a senior research scientist
at NVIDIA in Santa Clara, US. He obtained his
Ph.D. from University of California, Berkeley, de-
partment of EECS, advised by Professor Ravi
Ramamoorthi and Alexei A. Efros. He received
his B.E from National Taiwan University. He is
a recipient of the Berkeley Fellowship. His re-
search interests include computer vision, ma-
chine learning and computer graphics, particu-
larly the intersections of all three. His recent re-
search focus is on using generative adversarial

models to synthesize realistic images and videos, with applications to
rendering, visual manipulations and beyond.

Fitsum A. Reda received the B.S. degree in
electrical engineering from Mekelle University,
Ethiopia, in 2006, the joint Erasmus Mundus
M.S. degree in computer vision and robotics
from Heriot-Watt University, Edinburgh, UK;
Girona University, Girona, Spain; University of
Burgundy, Le Creusot, France, all in 2009, and
the PhD degree in electrical engineering from
Vanderbilt University, Nashville, TN in 2014.
From 2014 to 2016, he was a senior scientist
at Siemens Healthcare, where he focused on

learning techniques for medical image understanding and parsing. He
was a senior research scientist at NVIDIA, where he focuses on video
understanding for graphics and real-life vision. His primary research
interests are in deep learning, computer vision, and medical imaging.

Karan Sapra is a Senior Research Scientist in
the Applied Deep Learning Research team at
NVIDIA. He graduated with his Ph.D. in Com-
puter Engineering from Clemson University. His
research interests include Deep Learning in
Computer Vision, Graph Theory, and genomic
networks. He has also previously worked in
Peer-to-peer networks, cloud computing, and
High-Performance Computing.

Zhiding Yu joined NVIDIA Research as a Re-
search Scientist in 2018. he received Ph.D. in
ECE from Carnegie Mellon University in 2017,
and M.Phil. in ECE from The Hong Kong Uni-
versity of Science and Technology in 2012. His
research interests mainly focus on deep repre-
sentation learning, weakly/self-supervised learn-
ing, transfer learning and deep structured predic-
tion, with their applications to vision and robotics
problems. He is a winner of the Domain Adap-
tation for Semantic Segmentation Track, WAD

Challenge at CVPR 2018. He is a co-author of the best student paper
at ISCSLP 2014, and a winner of the best paper award at WACV
2015. His intern work on deep facial expression recognition at Microsoft
Research won first runner-up at the EmotiW-SFEW Challenge 2015 and
was integrated into the Microsoft Emotion Recognition API under the
Microsoft Azure Cognitive Services.

Xiaodong Yang is a Principal Scientist at
QCraft. Before joining QCraft in 2019, he was
a Senior Research Scientist at NVIDIA Re-
search. His research interests are in the areas
of computer vision and machine learning. He
has been working on perception and prediction
for autonomous driving, image and video un-
derstanding, human activity and hand gesture
recognition, dynamic facial analytics, target re-
identification, deep generative modeling, multi-
media search, assistive technology, etc. He re-

ceived the B.S. degree from Huazhong University of Science and Tech-
nology, China, in 2009, and the Ph.D. degree from City University of
New York, USA, in 2015. He is a recipient of the best paper award
from Journal of Visual Communication and Image Representation in
2015 for his work on action recognition. His collaborators and he win
first place in the optical flow competition of Robust Vision Challenge
at CVPR 2018. He is recognized as AI2000 Most Influential Scholar
Honorable Mention in 2020. He regularly serves on program committees
and reviews papers for major computer vision and machine learning
conferences. He co-organized tutorials and workshops at GTC 2019,
CVPR 2019, and CVPR 2020.

Andrew Tao is a Distinguished Engineer and
Manager of the Computer Vision side of the Ap-
plied Deep Learning Research group at Nvidia.
He received his Masters in Electrical Engineer-
ing from Stanford University in 1992 with an
emphasis on Computer Architecture. He has
worked as a CPU hardware engineer, as GPU
hardware engineer and architect, as the Director
of Applied Architecture at Nvidia, and has led a
number of Computer Vision teams in the Auto-
motive sector.

Bryan Catanzaro is Vice President of Applied
Deep Learning Research at NVIDIA. After re-
ceiving his Ph.D. from UC Berkeley in 2011, he
worked as a research scientist at NVIDIA on
programming models and applications for GPUs,
focusing on libraries for neural networks, which
led to the creation of the CUDNN library. He
worked at Baidu Silicon Valley AI Lab from 2014-
2016, contributing to the DeepSpeech project.
In 2016, he returned to NVIDIA to build a lab
applying deep learning to problems in computer

vision, graphics, speech, language, and chip design.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2022.3209702

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ULAKBIM UASL - Bilkent University. Downloaded on October 01,2022 at 05:03:36 UTC from IEEE Xplore. Restrictions apply.

